簡易檢索 / 詳目顯示

研究生: Choo Jun Yip
Jun Yip Choo
論文名稱: 智能合約與物聯網資源分配之研究
Smart Contracts for IoT Resource Allocation
指導教授: 鄭欣明
Shin-Ming Cheng
口試委員: 王志宇
Chih-Yu Wang
柯拉飛
Rafael Kaliski
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 79
中文關鍵詞: 區塊鏈智能合約資源分配博弈論拍賣理論
外文關鍵詞: Blockchain, smart contract, resource allocation, game theory, auction theory
相關次數: 點閱:233下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技的進步,物聯網 (Internet of Things, IoT) 的應用日益擴大,已成為一個不可或缺的存在。在物聯網領域,技術的成熟和工具的普及化帶來了新的挑戰,其中包括基地台的支援和頻寬的優化,這些都是我們需要謹慎面對的課題。基地台作為物聯網的核心,在實務應用中,合理的配置不僅確保裝置間的運行,還能提高數據傳輸的效率。因此,我們必須思考如何在不同的環境和條件下合理分配,以滿足不同的需求和應用。
    在物聯網的蓬勃發展下,無論是工廠設備還是家用裝置,都傾向於高生產力、高效率且低成本的運作模式。然而,在整合多個設備和大量感測器的過程中,資源分配將面臨巨大挑戰。為解決此問題,我們引入「智能合約」和「資源代幣」(Resource Token)來自動分配資源,同時採用第二價格密封拍賣理論 (Second-price sealed-bid auctions) 確保分配的公平性。在這個理論中,物聯網裝置將使用「資源代幣」來競標資源如 5G 網路、長期演進技術 (LTE) 等。第二價格密封拍賣理論的運作方式是每個裝置根據實際需求決定出價,價格最高的裝置將獲得資源,但實際支付的代幣價格將是第二高的價格,以鼓勵競標者誠實競爭。在這個理論基礎上,我們建立了一套投標管理系統,可大幅減少設備提交數據請求的次數,進而降低無線干擾,提升數據傳輸效率,同時節省系統資源。透過對傳輸時間的控制,確保在指定的時間點僅有少數設備在傳輸數據,減低無線干擾的可能性,從而提高整體效能。
    除此之外,為提升裝置傳輸間的安全性,我們在數位簽章演算法 (Merkle Signature Scheme) 上 加 入 了 身 份 認 證 功 能, 創 建 了 「身 分 認 證 簽 證 演 算 法」(Identity-based Encryption Merkle Signature Scheme (IBE-MSS))。此新的加密架構通過對身份基礎加密技術的深化與應用,只允許經過身份驗證的「擁有者」使用數位簽章,確保傳輸的穩定性。接著,再加入「靜態賽局」的理論 (one-shot game),目的為使設備減少向服務器提出連接請求的次數,減少不必要的網路流量並增強網路品質,加強傳輸的可靠性。同時,亦可減輕伺服器的負載,使其更專注於處理關鍵任務,而非大量連接請求的處理。
    綜合上述所說,我們將透過 C# 程式開發與智能合約,以進一步驗證此方式的可行性和效能。


    The application of the Internet of Things (IoT) is expanding, becoming an indispensable
    presence. In the field of IoT, the maturity of technology and the popularization of tools
    bring new challenges, including the support of base stations and the optimization of band-
    width, which needs to be addressed carefully. As the core of the IoT, the rational configu-
    ration of base stations not only ensures the operation between devices but also improves the
    efficiency of data transmission. Therefore, we must consider how to reasonably distribute
    under different environments and conditions to meet different needs and applications.
    Under the rapid development of IoT, whether it is industrial applications or home
    devices, IoT devices are considered low-cost devices that are required to operate with high
    productivity and efficiency. However, in the process of integrating multiple devices and a
    large number of sensors, resource allocation became a barrier to the solution. To solve this
    problem, we introduce ”smart contracts” and ”resource tokens” to automatically allocate
    resources, while adopting second-price sealed-bid auction theory to ensure the fairness of
    distribution. In this theory, IoT devices will use ”resource tokens” to bid for resources
    such as 5G networks, Long Term Evolution (LTE) technology, etc. The working principle
    of the second-price sealed-bid auction theory is that each device decides to bid according
    to its used memory capacity, the device with the highest price will get the resources but
    pays the price of the second-highest bid to encourage bidders to compete honestly.
    Based on this theory, we have established a bidding management system, which
    can greatly reduce the number of times IoT devices submits data requests thereby re-
    ducing wireless interference, improving data transmission efficiency, and saving system
    resources. By controlling the transmission time, only a few devices are transmitting data
    at the specified time to reduce the occurrence of wireless interference and thus improve
    overall performance.
    Furthermore, it’s essential to address the reality that IoT devices. Despite their con-
    venience and productivity benefits, the devices are vulnerable to a myriad of attacks such
    as data breaches, device spoofing, and network attacks such as man-in-the-middle attacks.
    These problems can be addressed by the application of smart contracts. By incorporating
    ii
    blockchain-based solutions, we can significantly enhance the security and resilience of
    IoT systems, ensuring safer and more reliable operations across the board. The trans-
    parent, immutable nature of blockchain coupled with the automatic enforcement of smart
    contracts and equitable resource distribution allows us to safeguard our IoT devices from
    a range of potential attacks.
    In addition, to enhance the security between device transmissions, we have added an
    Identity Based Encryption Merkle Signature Scheme, to allow only ”owners” who have
    passed identity verification to use digital signatures, ensuring the stability of transmission.
    Next, we incorporate the theory of ”one-shot game” to reduce the number of times
    the device requests connections from the server, reduce unnecessary network traffic, and
    enhance network quality, strengthening the reliability of transmission. At the same time,
    it can also alleviate the load on the server, allowing it to focus more on processing critical
    tasks rather than handling a large number of connection requests. In summary, we will
    use C# programming and smart contracts to further verify the feasibility and performance
    of this method.

    Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Contents . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . v 0.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0.2 Study Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 0.3 Study Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 0.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 Internet of Things (IoT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Merkle Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Game Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.1 Dominant Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.2 Second Price Auction . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4.3 One-Shot Game . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5 Blockchain for IoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.1 Traditional Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Proposed Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Private Key Generator with RSA . . . . . . . . . . . . . . . . . . . . . . 27 2.4 Secure Data Submission Identity based encryption Merkle Signature Scheme 29 2.5 Little’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.6 One-Time Signature Scheme . . . . . . . . . . . . . . . . . . . . . . . . 35 2.7 Second Price Auction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.8 Tim Sort . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 2.9 Smart Contract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1 Aloha and Slotted Aloha . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.2 Resource Token . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 Resource Allocation Contract . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4 Second Price Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5 Sorting bids in queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.6 Comparing to Round robin and Proportional Fairness . . . . . . . . . . . 56 3.7 Device Registration Process . . . . . . . . . . . . . . . . . . . . . . . . 59 4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

    [1] T. Network, “Internet of things will deliver $1.9 trillion boost to supply chain and logistics operations,”
    2015.
    [2] H.-N. Dai, Z. Zheng, and Y. Zhang, “Blockchain for internet of things: A survey,” IEEE Internet of
    Things Journal, vol. 6, no. 5, pp. 8076–8094, 2019.
    [3] A.-E. Bouaouad, A. Cherradi, S. Assoul, and N. Souissi, “The key layers of iot architecture,” in 2020
    5th International Conference on Cloud Computing and Artificial Intelligence: Technologies and Ap-
    plications (CloudTech), pp. 1–4, IEEE, 2020.
    [4] R. Chivukula, T. J. Lakshmi, L. R. R. Kandula, and K. Alla, “A study of cyber security issues and
    challenges,” in 2021 IEEE Bombay Section Signature Conference (IBSSC), pp. 1–5, IEEE, 2021.
    [5] H. R. Andrian, N. B. Kurniawan, et al., “Blockchain technology and implementation: a systematic
    literature review,” in 2018 international conference on information technology systems and innovation
    (ICITSI), pp. 370–374, IEEE, 2018.
    [6] S. Wang, Y. Yuan, X. Wang, J. Li, R. Qin, and F.-Y. Wang, “An overview of smart contract: architec-
    ture, applications, and future trends,” in 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 108–113,
    IEEE, 2018.
    [7] F. Shrouf, J. Ordieres, and G. Miragliotta, “Smart factories in industry 4.0: A review of the concept and
    of energy management approached in production based on the internet of things paradigm,” in 2014
    IEEE international conference on industrial engineering and engineering management, pp. 697–701,
    IEEE, 2014.
    [8] M. Rehman, N. Javaid, M. Awais, M. Imran, and N. Naseer, “Cloud based secure service providing for
    iots using blockchain,” in 2019 IEEE Global Communications Conference (GLOBECOM), pp. 1–7,
    IEEE, 2019.
    [9] K. Chung and R. C. Park, “P2p cloud network services for iot based disaster situations information,”
    Peer-to-Peer Networking and Applications, vol. 9, no. 3, pp. 566–577, 2016.
    [10] F. B. Schneider, “Implementing fault-tolerant services using the state machine approach: A tutorial,”
    ACM Computing Surveys (CSUR), vol. 22, no. 4, pp. 299–319, 1990.
    [11] L. Lamport, “The weak byzantine generals problem,” Journal of the ACM (JACM), vol. 30, no. 3,
    pp. 668–676, 1983.
    [12] P. Ferraro, C. King, and R. Shorten, “Distributed ledger technology for smart cities, the sharing econ-
    omy, and social compliance,” Ieee Access, vol. 6, pp. 62728–62746, 2018.
    [13] P. McCorry, C. Buckland, B. Yee, and D. Song, “Sok: Validating bridges as a scaling solution for
    blockchains,” Cryptology ePrint Archive, 2021.
    [14] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and A. Juels, “Flash boys
    2.0: Frontrunning, transaction reordering, and consensus instability in decentralized exchanges,” arXiv
    preprint arXiv:1904.05234, 2019.
    [15] B. K. Mohanta, D. Jena, S. Ramasubbareddy, M. Daneshmand, and A. H. Gandomi, “Addressing
    security and privacy issues of iot using blockchain technology,” IEEE Internet of Things Journal,
    vol. 8, no. 2, pp. 881–888, 2020.
    [16] Y. Sompolinsky and A. Zohar, “Accelerating bitcoin’s transaction processing. fast money grows on
    trees, not chains,” Cryptology ePrint Archive, 2013.
    [17] Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and scalable cryptocurrency protocol,”
    Cryptology ePrint Archive, 2016.
    [18] A. Churyumov, “Byteball: A decentralized system for storage and transfer of value,” URL https://
    byteball. org/Byteball. pdf, 2016.
    [19] S. Popov, “The tangle,” White paper, vol. 1, no. 3, p. 30, 2018.
    [20] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized Business Review,
    p. 21260, 2008.
    [21] G. Wood et al., “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum project
    yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.
    [22] D. Hasselquist, A. Rawat, and A. Gurtov, “Trends and detection avoidance of internet-connected in-
    dustrial control systems,” IEEE Access, vol. 7, pp. 155504–155512, 2019.
    [23] M. A. Khan and K. Salah, “Iot security: Review, blockchain solutions, and open challenges,” Future
    generation computer systems, vol. 82, pp. 395–411, 2018.
    [24] N. M. Kumar and P. K. Mallick, “Blockchain technology for security issues and challenges in iot,”
    Procedia Computer Science, vol. 132, pp. 1815–1823, 2018.
    [25] S. N. Mohanty, K. Ramya, S. S. Rani, D. Gupta, K. Shankar, S. Lakshmanaprabu, and A. Khanna, “An
    efficient lightweight integrated blockchain (elib) model for iot security and privacy,” Future Genera-
    tion Computer Systems, vol. 102, pp. 1027–1037, 2020.
    [26] S. S. Panda, B. K. Mohanta, U. Satapathy, D. Jena, D. Gountia, and T. K. Patra, “Study of blockchain
    based decentralized consensus algorithms,” in TENCON 2019-2019 IEEE Region 10 Conference
    (TENCON), pp. 908–913, IEEE, 2019.
    [27] B. K. Mohanta, A. Sahoo, S. Patel, S. S. Panda, D. Jena, and D. Gountia, “Decauth: Decentralized au-
    thentication scheme for iot device using ethereum blockchain,” in TENCON 2019-2019 IEEE Region
    10 Conference (TENCON), pp. 558–563, IEEE, 2019.
    [28] S. Petersen and S. Carlsen, “Wirelesshart versus isa100. 11a: The format war hits the factory floor,”
    IEEE Industrial Electronics Magazine, vol. 5, no. 4, pp. 23–34, 2011.
    [29] K. Mekki, E. Bajic, F. Chaxel, and F. Meyer, “A comparative study of lpwan technologies for large-
    scale iot deployment,” ICT express, vol. 5, no. 1, pp. 1–7, 2019.
    [30] A. Reyna, C. Martín, J. Chen, E. Soler, and M. Díaz, “On blockchain and its integration with iot.
    challenges and opportunities,” Future generation computer systems, vol. 88, pp. 173–190, 2018.
    [31] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital signature algorithm (ecdsa),”
    International journal of information security, vol. 1, no. 1, pp. 36–63, 2001.
    [32] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for the internet of things,” Ieee
    Access, vol. 4, pp. 2292–2303, 2016.
    [33] Q. Lu and X. Xu, “Adaptable blockchain-based systems: A case study for product traceability,” Ieee
    Software, vol. 34, no. 6, pp. 21–27, 2017.
    [34] Y. Zhang and J. Wen, “An iot electric business model based on the protocol of bitcoin,” in 2015 18th
    international conference on intelligence in next generation networks, pp. 184–191, IEEE, 2015.
    [35] A. K. Singh, “Error detection and correction by hamming code,” in 2016 International Conference
    on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC),
    pp. 35–37, IEEE, 2016.
    [36] R. S. Winternitz, “A secure one-way hash function built from des,” in 1984 IEEE Symposium on
    Security and Privacy, pp. 88–88, 1984.
    [37] C.-C. Huang, R.-G. Cheng, and R. Harwahyu, “Performance evaluating of small data transmissions in
    generalized multichannel slotted aloha systems,” in 2016 International Conference On Communica-
    tion Problem-Solving (ICCP), pp. 1–2, IEEE, 2016.
    [38] C. d. V. Silva and M. M. Carvalho, “Slotted aloha for wireless powered resource-constrained net-
    works,” in ICC 2021 - IEEE International Conference on Communications, pp. 1–6, 2021.
    [39] D. Zucchetto and A. Zanella, “Multi-rate aloha protocols for machine-type communication,” in 2018
    International Conference on Computing, Networking and Communications (ICNC), pp. 524–530,
    2018.
    [40] K. Pavani and P. Sriramya, “Enhancing public key cryptography using rsa, rsa-crt and n-prime rsa with
    multiple keys,” in 2021 Third International Conference on Intelligent Communication Technologies
    and Virtual Mobile Networks (ICICV), pp. 1–6, IEEE, 2021.
    [41] A. Shoufan and N. Huber, “A fast hash tree generator for merkle signature scheme,” in Proceedings
    of 2010 IEEE International Symposium on Circuits and Systems, pp. 3945–3948, IEEE, 2010.
    [42] L. P. Perin, G. Zambonin, D. M. B. Martins, R. Custódio, and J. E. Martina, “Tuning the winternitz
    hash-based digital signature scheme,” in 2018 IEEE Symposium on Computers and Communications
    (ISCC), pp. 00537–00542, IEEE, 2018.
    [43] S. Alboaie, D. Cosovan, L.-D. Chiorean, and M. F. Vaida, “Lamport n-time signature scheme,” in 2018
    IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), pp. 1–6, IEEE,
    2018.
    [44] S. Alboaie, D. Cosovan, L.-D. Chiorean, and M. F. Vaida, “Lamport n-time signature scheme,” in 2018
    IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), pp. 1–6, 2018.
    [45] J. Buchmann, E. Dahmen, S. Ereth, A. Hülsing, and M. Rückert, “On the security of the winternitz
    one-time signature scheme,” Informatik, TU Darmstadt, 2011.
    [46] D. G. Miandaob, D. Booher, B. Cambou, and S. Assiri, “Hash based encryption schemes using phys-
    ically unclonable functions,” in Science and Information Conference, pp. 602–616, Springer, 2022.
    [47] D. McGrew, M. Curcio, and S. Fluhrer, “Leighton-micali hash-based signatures,” tech. rep., 2019.
    [48] S. A. Amri, L. Aniello, and V. Sassone, “A review of upgradeable smart contract patterns based on
    openzeppelin technique,” The Journal of The British Blockchain Association, 2023.

    無法下載圖示 全文公開日期 2028/08/23 (校內網路)
    全文公開日期 2028/08/23 (校外網路)
    全文公開日期 2028/08/23 (國家圖書館:臺灣博碩士論文系統)
    QR CODE