簡易檢索 / 詳目顯示

研究生: 何奕儒
Yi-Ju Ho
論文名稱: 實現複合光電積體化的圖案結構矽晶片黏合及 DFB 雷射陣列特性分析
Silicon Chip bonding on Patterned Structure and DFB Laser Array Analysis for Enabling Hybrid Photonic Inte-gration
指導教授: 李三良
San-Liang Lee
口試委員: 李三良
San-Liang Lee
何文章
Wen-Jeng Ho
徐世祥
Shih-Hsiang Hsu
洪勇智
Yung-Jr Hung
張英發
Ying-Fa Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 81
中文關鍵詞: DFB雷射複合光積體化
外文關鍵詞: DFB laser, Hybrid Photonic Integration
相關次數: 點閱:135下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討將三五族雷射與矽光子積體電路進行複合積體化的兩項關鍵技術:一為研究晶片黏合,另一則為使用晶圓代工廠製作雷射的特性與可行性分析。晶片黏合是利用二乙烯基矽氧烷-雙苯並環丁烯 (DVS-BCB)緊密黏合具有圖案結構的矽晶片,以模擬使用有元件結構的矽光子晶片,並達到以超薄DVS-BCB完成晶片黏合的目標。雷射陣列部分則以研發溫度調控多波長雷射陣列的效能為載具,評估雷射結構與材料作為複合光電積體化的可行性。
    以不同DVS-BCB旋塗速度探討晶片黏合介質的厚度變化,並使用氫氧化鉀與異丙酮混合液蝕刻矽晶片成具有光滑表面的脊狀結構,晶片黏合後使用冷鑲埋將晶片直立固定,這使晶片能夠直立研磨、拋光,讓劈裂斷面平滑,在電子顯微鏡下的量測距離更加準確。期望藉由增加旋塗速度達到較小的黏合間距,以實現積體光路。本論文實現100奈米以下之BCB黏合間距,最小間距達到20奈米。
    多波長分布反饋雷射陣列經委託晶圓代工製作後,量測溫度對雷射陣列光譜、光功率及串擾的影響,證實以此材料及方法製作的雷射陣列可以有相當好的效能。多波長分布反饋雷射陣列平均閥值11.38毫安培,旁模抑制比達到50 dB,在90毫安培時平均功率達到23.2毫瓦。為改善散熱效果以降低熱串擾, 將雷射陣列與合光器封裝在一起,並分析封裝前與封裝後之雷射陣列之光頻譜圖、相對雜訊、光功率及串擾特性, 證實封裝後的分布反饋雷射陣列有更好的元件特性。


    This thesis investigates two key technologies related to the hybrid pho-tonic integration of III-V semiconductor lasers with silicon photonic in-tegrated circuits. One is to develop the chip-bonding technology, and the other is to investigate the feasibility of manufacturing the semiconductor lasers with foundry services. The final goal is to use the chip bonding technique to combine the foundry-made III-V semiconductor laser with silicon photonic integrated circuits.
    The chip-bonding is conducted by using DVS-BCB (Divinylsilox-ane-bis-benzocyclobutene) to bond silicon chip with another patterned silicon chip. We use KOH and IPA mixed solution to realize patterned silicon substrate. Different speeds to spin the BCB on the patterned chip are tested to achieve thin adhesive layer between the bonded chips. After chip bonding, we use epoxy resin to fix the chip and then lap and polish the chips perpendicular. This procedure allows to measure the thickness of the adhesive layer. We expect to reduce the BCB thickness between the smooth and patterned silicon chips by increasing the spinning speed. We achieve the thickness of BCB below100 nm, and the minimal thickness is around 20 nm.
    The fabrication of lasers with foundry model is evaluated by using the thermally-tuned multi-wavelength DFB laser arrays as the carriers. We measure the temperature tuning characteristics of DFB laser array. The laser arrays have average threshold current of 11.38 mA, SMSR of 50 dB, and optical output power of 23.2 mW at 90mA of injection current. The lasers can have excellent output power and optical spec-trum characteristics when the lasers are tuned from 20 to 60 oC. By comparing the performance of the DFB laser arrays before and after packaging, the thermal crosstalk can be greatly reduced after packaging due to better heatsink.

    摘要 ii Abstract iv 目錄 vi 圖目錄 ix 表目錄 xii 第1章 緒論 1 1.1 研究動機 1 1.2 研究方向 3 1.3 論文架構 4 第2章 元件技術介紹 5 2.1 DFB雷射陣列簡介 5 2.2 晶片黏合簡介 7 2.3 晶片黏合製程 8 第3章 DFB雷射陣列量測與討論 11 3.1 DFB雷射陣列的設計與規格 11 3.2 量測架構 12 3.2.1 封裝前後量測架構 12 3.2.2 光功率量測 14 3.2.3 光頻譜量測 15 3.2.4 串擾量測量測 17 3.3 DFB雷射陣列量測結果與討論 18 3.3.1 L-I-V量測結果 18 3.3.2 頻譜量測結果 22 3.3.3 串擾 27 3.4 DFB陣列雷射封裝後量測結果與討論 31 3.4.1 頻譜量測結果 31 3.4.2 串擾 36 第4章 晶片黏合 39 4.1 製程流程 39 4.1.1 KOH蝕刻脊狀結構步驟 39 4.1.2 KOH蝕刻脊狀結構製程流程 41 4.1.3 晶片黏合步驟 43 4.1.4 晶片製程流程 45 4.1.5 研磨與拋光步驟 47 4.1.6 研磨與拋光流程 49 4.2 製程結果與討論 51 4.2.1 KOH蝕刻脊狀結構 51 4.2.2 未壓合晶片之BCB厚度 53 4.2.3 壓合後晶片之BCB厚度 56 第5章 結論 60 5.1 成果與討論 60 5.2 未來研究方向 61 參考文獻 62

    [1] L. Pavesi and D. J. Lockwood, “Silicon photonics III,” Topics Appl. Phys., vol. 119, 2016.
    [2] J. M. Ramirez , H. Elfaiki, T. Verolet, C. Besancon, A. Gallet , D. Néel, K. Hassan , S. Olivier, C. Jany, S. Malhouitre, K. Gradkow-ski ,
    P. E. Morrissey, P. O’Brien, C. Caillaud, N. Vaissière, J. Decobert , “Silicon Integration: From Hybrid Devices to Heterogeneous Photonic Integrated Circuits,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 26, Issue 2 ,March-April 2020.
    [3] G. Roelkens et al., “III-V/silicon photonics for on-chip and in-tra-chipoptical interconnects,” Laser Photon. Rev., vol. 4, no. 6, pp. 751–779, 2010.
    [4] S. Tanaka, T. Akiyama,; S. Sekiguchu, Morito, K. “ Silicon pho-tonics optical transmitter technology for Tb/s-class I/O co-packaged with CPU,” FUJUTSI Sci. Technol. J. 2014, 50, 123–131. 2.
    [5] T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, J. Bowers, “Widely tunable narrow-linewidth monolithically inte-grated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 2015, 21, 1–9. 3.
    [6] Y. Jhang, K. Tanabe, S. Iwamoto, Y. Arakawa, “InAs/GaAs quan-tum dot lasers on silicon-on-insulator substrated by metal-stripe wafer bonding,” IEEE Photonics Technology Letters, Volume 27, Issue 8, April 15, 2015.
    [7] S.Keyvaninia, M. Muneeb, S. Stankovic, R. van Veldhoven, D. van Thourhout, G. Roelkens, “Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned sili-con-on-insulator substrate,” Optical Materials Express , Vol. 3, Issue 1, pp. 35-46 (2013)
    [8] Z. Wang, B. Tian, M. Paladugu, M. Pantouvaki, N. L. Thomas, C. Merckling,W. Guo, J. Dekoster, J. V. Campenhout, P. Absil, and D. V. Thourhout ,“Polytypic InP Nanolaser Monolithically Integrated on (001) Silicon”, 2013 American Chemical Society, 13, 11, 5063–5069, 2013.
    [9] G. Roelkens, A. Abassi, P. Cardile, U. Dave, A. d. Groote, Et al. “III-V-on-Silicon Photonic Devices for Optical Communication and Sensing”, Photonics , (2)3, 969-1004, 2015.

    [10] G. de Valicourt , C.M.Chang, M. S. Eggleston, A. Melikyan, Chen Zhu, J. Lee, J. E. Simsarian , S. Chandrasekhar, J. H. Sinsky, K.W. Kim, P. Dong , A. Maho , A. Verdier, R. Brenot, and Y. K. Chen, “Photonic Integrated Circuit Based on Hybrid III–V/Silicon Inte-gration,” Journal of Lightwave Technology, Volume 36 , Issue 2 , Jan.15, 15 2018.
    [11] N. Daix et al., “Towards large size substrates for III-V co-integration
    made by direct wafer bonding on Si,” APL Materials, vol. 2, no. 8, 2014.
    [12] B. Klepser and H. Hillmer, “Investigations of Thermal Crosstalk in Laser Arrays for WDM Applications,” Journal of Lightwave Technology, vol. 16, no. 10, pp.1888, 1989.
    [13] M. Milanizadeh, D. Aguiar, A. Melloni, and F. Morichetti, “Can-celing Thermal Cross-Talk Effects in Photonic Integrated Circuits,” Vol. 37, Issue 4, pp. 1325-1332 (2019).
    [14] Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for com-puter and data communications beyond 100 G,” IEEE Commun. Mag., vol. 50, no. 2, pp. s67–s72, Feb. 2012.
    [15] C. R. Doerr, “Silicon photonic integration in telecommunications,” Frontiers Phys., vol. 3, p. 37, 2015.
    [16] 盧廷昌、王興宗 (2010)。《半導體雷射技術》。台灣:五南圖書出版有限公司。
    [17] F. Niklaus, P. Enoksson, E. Kalvesten, and G. Stemme, “Low-temperature full wafer adhesive bonding,” J. Micromech. Microeng. 11(2), 100–107 (2001).
    [18] D.-H. Choi, C.-H. Yeo, J.-T. Kim, C.-W. Ok, J.-S. Kim, Y. Kwon,and Y.-H. Im, “Study on bisbenzocyclobutene bonding for the development of a si-based miniaturized reformer of fuel cell systems,” J. Micromech. Microeng.19(7), 075013 (2009)
    [19] 張郁香, ”利用晶圓接合增加氮化鎵族發光二極體亮度—金錫薄膜與金錫合金為接合介質的比較”,碩士論文,國立交通大學,民國96年。
    [20] Dow Chemical Company, “CYCLOTENE™ 3000 Series Ad-vanced Electronics Resins,” Sep. 2012.
    [21] E. M. Gavrishchuk, E. Yu. Vilkova, O. V. Timofeev, S. P. Kush-nir, and B. A. Radbil, “Study of the process of polishing poly-crystalline zinc selenide using rosin-based polishing resin,” Journal of Optical Technology, Vol. 75, Issue 9, pp. 603-607 (2008).
    [22] 詹博鈞,”利用標準CMOS製程製作十字網格濾波紅外線熱輻射發光元件”,碩士論文,國立台灣科技大學,民國108年7月。
    [23] 黃仕宇,”3D磁性感測器基板研究”,碩士論文,國立台灣大學,民國103年7月。
    [24] N. Burham, A. Azlan Hamzah, B. Yeop Majlis, “Effect of isopropyl alcohol (IPA) on etching rate and surface roughness of silicon etched in KOH solution,” 2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM), 19-21 Aug. 2015.

    QR CODE