簡易檢索 / 詳目顯示

研究生: 曹廷聿
Ting-Yu Tsao
論文名稱: 串聯式雷射陣列結構模擬與特性分析
Simulation and Analysis of Cascaded DFB Laser Array Structure
指導教授: 李三良
San-Liang Lee
口試委員: 李三良
San-Liang Lee
徐世祥
Shih-Hsiang Hsu
廖顯奎
Shian-Kuei Liaw
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 133
中文關鍵詞: 串聯式雷射雷射陣列結構
外文關鍵詞: Cascaded DFB Laser Array, Laser Structure
相關次數: 點閱:132下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於自駕車技術需要精密的感測器去感測周遭環境,光學相位陣列(Optical phase array)光達有高穩定度與體積較小等優點。為能藉由調動波長掃描光學相位陣列出光角度,研究室曾委外製造出一批由不同波長組成的雷射陣列。此雷射陣列共有四對,每對有兩個不同波長的雷射進行串接。本論文採用波長1530奈米與1546奈米那組串接式雷射進行模擬分析,調整其結構參數使雷射達到雷射波長易於調控及較好的旁模抑制比。
    研究時採用VPI Photonics and Design Suite軟體進行模擬,雷射增益層為於波長1560奈米的位置。我的研究包含調整高反射鍍膜-抗反射鍍膜與抗反射鍍膜-抗反射鍍膜的比較,波長1534.7奈米的雷射為主雷射與波長1549.7奈米的雷射為主雷射,不同增益頻寬(Gain bandwidth)的比較,不同雷射光柵耦合(κL)的比較。
    在研究成果方面,輸入端使用抗反射鍍膜比全反射鍍膜的串接式雷射,波長調控性明顯較佳。在1549.7奈米雷射為主雷射,1534.7奈米雷射為僕雷射的情況下,雷射增益頻寬100奈米的雷射比雷射增益頻寬60奈米的雷射,波長會往兩者之間移動。在不同κL參數的模擬中,得出κL大於1.3雷射波長較穩定,功率與旁模抑制比較好。


    Abstract
    Due to the requirement for precise sensing of the surrounding environment, self-driving car technology relies on advanced sensors. Optical phase array lidar, which offers high stability and a compact size, has several advantages. To steer the emission angle by adjusting the wavelength, our research laboratory outsourced the production of a set of laser arrays consisting of different wavelengths. The laser arrays comprise four pairs, with each pair containing two lasers of different wavelengths. This thesis focuses on simulating and analyzing the laser array composed of lasers with wavelengths of 1530 nm and 1546 nm. We adjusted the device structural parameters to achieve easy wavelength control and improved side mode suppression ratio for the lasers.
    The simulations were conducted using the VPI Photonics and Design Suite software. The laser gain layer is positioned at a wavelength of 1560 nm. Our study includes comparing the performance of high reflectance coating-antireflection coating and antireflection coating-antireflection coating configurations. The laser operating at a wavelength of 1534.7 nm serves as the master laser, while the laser operating at a wavelength of 1549.7 nm serves as the slave laser. We also compare the effects of different gain bandwidths and laser grating coupling coefficients (κL).
    In terms of research findings, we observed that using antireflection coating instead of high-reflectance coating in the input section of the laser array significantly improves wavelength tunability. When the master laser operates at 1549.7 nm and the slave laser operates at 1534.7 nanometers, lasers with a gain bandwidth of 100 nm exhibit larger wavelength shift between the two lasers compared to lasers with a gain bandwidth of 60 nm. In our simulations with different κL parameters, we found that κL values greater than 1.3 result in more stable laser wavelengths and better power and side mode suppression ratio.

    目錄 目錄 iv 圖目錄 vii 表目錄 ix 第一章 導論 1 1-1前言 1 1-2研究方向 1 1-3 文獻回顧 2 1-4論文架構 2 第二章 元件基本原理 3 2-1 DFB雷射原理 3 2-2 串接雷射介紹 3 2-3-1高反射鍍膜-抗反射鍍膜 (HR-AR) 串聯式雷射運作原理 3 2-3-2抗反射鍍膜-抗反射鍍膜 (AR-AR) 串聯式雷射運作原理 4 2-4 增益頻譜(Gain spectrum) 4 2-5 光柵(Grating) 5 第三章 HR-AR串聯式雷射陣列與AR-AR串聯式雷射陣列模擬結果的比較 7 3-1 串聯式雷射陣列 7 3-2 雷射端面鍍膜HR-AR與AR-AR串聯式雷射模擬參數 8 3-3 HR-AR串聯式雷射與AR-AR串聯式雷射比較圖 11 第四章 端面鍍膜為HR-AR,1534.7 nm雷射為主雷射與1549.7 nm雷射為主雷射的串接式雷射比較 14 4-1 CASE 1: Gain bandwidth為60 nm,1534 nm雷射為主雷射與1549 nm雷射為主雷射模擬參數 14 4-2 CASE 2: Gain bandwidth為100 nm,1534 nm雷射為主雷射與1549 nm雷射為主雷射模擬參數 16 4-3 1534 nm 雷射為主雷射與 1549 nm 雷射為主雷射,CASE 1與CASE 2模擬數據結果比較 17 第五章 端面鍍膜為AR-AR,Gain bandwidth 60 nm與Gain bandwidth 100 nm的比較 26 5-1 Gain bandwidth為60 nm的情形 26 5-2 Gain bandwidth 60 nm與Gain bandwidth 100 nm的模擬數據比較 27 第六章 不同κL比較 32 6-1 不同κL模擬參數 32 6-2 不同κL模擬結果的比較 34 第七章 結論 39 7-1 成果與討論 39 7-2 未來發展方向 39 參考文獻 41 附錄A : HR-AR串聯式雷射與AR-AR串聯式雷射比較模擬圖(第三章) 44 附錄B : 1534.7 nm雷射為主雷射與1549.7 nm雷射為主雷射的串接式雷射比較模擬圖(第四章) 55 附錄 C : Gain bandwidth 60 nm與Gain bandwidth 100 nm比較模擬圖(第五章) 83 附錄 D :不同κL比較模擬圖(第六章) 94

    [1] M. Nesnidal,L. J. Mawst, T. Earles, D. Botez and J. Buus, “ 0.4-W diffraction-limited beam and single-frequency operation from resonant antiguided phase-locked laser array with DFB grating,” Conference on Lasers and Electro-Optics (CLEO) , vol. 6, May 1998.
    [2] DFB laser using travelling wave laser model (TWLM)
    https://optics.ansys.com/hc/en-us/articles/360047024294-DFB-laser-using-travelling-wave-laser-model-TWLM-
    [3] https://www.rp-photonics.com/bandwidth.html
    [4]盧廷昌,王興宗,「半導體雷射技術」,五南圖書有限公司,民國99年
    [5]蔣佩玲,「設計與製作新型分佈反饋式雷射」,碩士論文,國立台灣科技大學,台北(2003)
    [6] 姚久琳,「設計與製作新型高速可調式雷射」, 碩士論文,國立台灣科技大學, 台北(2006)
    [7]洪綾秀,「多段式分佈反饋式雷射的設計製作與特性比較」 ,碩士論文,國立台灣科技大學, 台北(2014)
    [8]游源晉,「電致吸收調變雷射之積體化元件設計與製作」, 碩士論文,國立台灣科技大學, 台北(2012)
    [9]杜長耕,「雙量子井結構之光積體化元件設計與製作」,碩士論文,國立台灣科技大學,台北(2009)
    [10] T. R. Chen, W. Hsin, S. B. Chen, P. Chen and H. Erlig, “Ultra wide temperature operation of DFB lasers,” 20th International Conference on Indium Phosphide and Related Materials, 2008.
    [11] J. Li, S. Tang, J. Wang, Y. Liu, X. Chen and J. Cheng, “ An Eight- Wavelength BH DFB Laser Array With Equivalent Phase Shifts for WDM Systems,” IEEE Photonics Technology Letters, vol. 26, no. 16, pp. 1593- 1596, Jun. 2014.
    [12] L. A. Coldren, S. W. Corzin and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits 2nd, John Wiley & Sons, Inc., 2012.
    [13] J. Hong, H. Kim, F. Shepherd, C. Rogers, B. Baulcomb and S. Clements, “Matrix-grating strongly gain-coupled (MC-SGC) DFB lasers with 34- nm continuous wavelength tuning range,” IEEE Photonics Technology Letters, Vol. 11, No. 5, pp. 515-517, May 1999.
    [14] P. Steinmann, B. Borchert, and B. Stegmuller, “Improved Behavior of Monolithically Integrated Laser/Modulator by Modified Identical Active Layer Structure,” IEEE Photonics Technology Letters, Vol. 9, No.12, pp. 1561-1563(1997)
    [15] T. Okamoto, T. Yamazaki, S. Sakamoto, S. Tamura and S. Arai, “ Multiple-wavelengths low-threshold membrane BH-DFB laser arrays,” 2004 IEEE 19th International Semiconductor Laser Conference”004. Conference Digest, pp. 20-21, Feb. 2005.
    [16] J. E. A. Whiteaway,G. H. B. Thompson, A. J. Collar and C. J. Armistead, The Design and Asessment of λ⁄4 Phase-Shifted DFB Laser Structure” IEEE Journal of Quantum Electronics, Vo1. 25.,No. 6, pp. 1261 -1279,JINE 1989.
    [17] Uwe Brinkman, “A laser-based three-dimensional display”, Lasers & Applications, 8 , 1985, p72
    [18] Richard Cunningham, “Choosing a laser power meter”,
    Lasers & Applications, 11, 1984
    [19] Minoru Yamada, Springer-Verlog, “Theory of Semiconductor Lasers”, 2014
    [20] O’ shea , Callen ,Rbodes , “An introduction to lasers and their applications”, 國興出版社, 1980 年
    [21] S. L. Lee, C. J. Wang, P. L. Jiang, I. F. Jang, H. W. Chang, C. L. Yao, C. C. Lin and W. J. Ho, “Two – Section Bragg – Wavelength – Detuned DFB Lasers and Their Applications for Wavelength Conversion” IEEE Journal of Selected Topics in Quantum Electronics, Vol. 11, No. 1, pp. 1153 - 1161, Sep 2005.
    [22] H. Zhu, H. Wang, D. Kong, S. Liang, L. Zhao and W. Wang, “The Fabrication of Eight- Channel DFB Laser Array Using Sampled Gratings” IEEE Photonics Technology Letters s, vol. 22, no. 5, pp. 353-355, Feb. 2010
    [23] Rami Arieli, “The Laser Adventure”
    (https://perg.phys.ksu.edu/vqm/laserweb/Ch-5/F5s1p5.htm)
    [24] Farhan Rana, Cornell University “Semiconductor optoelectronics”
    (https://courses.cit.cornell.edu/ece533/Lectures/handout13.pdf)
    [25] Ann Neal, FIERCE “Electronics”
    (https://www.fierceelectronics.com/components/lidar-vs-radar)
    [26] Gene Muster, “Seeing the Road Ahead: “What You Need to Know About LIDAR”
    (https://loupfunds.com/seeing-the-road-ahead-what-you-need-to-know-about-lidar/)
    [27] 粘為博、陳澤民、張雍昌、陳立函、楊宗賢、徐世偉,工研院資通所,「無人駕駛車、自駕車技術探索」
    (https://jictcms.itri.org.tw/xcdoc/cont?xsmsid=0M236556470056558161&sid=0M269414698632727798)
    [28]林秉毅, 「設計雷射陣列合光元件與量測分析串聯式分佈反饋雷射陣列」,碩士論文,國立台灣科技大學, 台北(2021)
    [29] John F. Ready, Industrial applications of lasers, New York, Academic Press, 1978
    [30] SS. Charschan, Lasers in Industry, Van Nostrand, 1983
    [31] Hermann C. Weisbuch C. Modern problems in condensed matter science. Volume 8, Optical orentation, ed Agranovich VM, Maradudin AA. Amsterdam: North-Holland; I1984. P463-508
    [32] Lewis Holmes, “Commerical lasers – the next five years”, Laser Focus / Electro – Optics, 1985
    [33] Luo JH, Zory PS, “Ray optics determination of the DFB coupling coefficient in separate confinement and multiquantum - well laser structures”, IEEE J Quantum Electron, 1994
    [34] Chen K-L, Wang S, “An approximate expression for the effective refractive index in symmetric DH Laser”, IEEE J Quantum Electron, 1983
    [35] T. Song, H. Lianping, C. Xiangfei and M H. John, “DFB Laser arrays with precise channel separation and high coupling coefficient”, Conference on laser and Electro – Optics Europe (CLEO EUROPE), Jun 2017
    [36] W Li, P. Huang, X. Hua and J. Huang, “Multiwavelength Gain-Coupled DFB Laser Cascade: Design and Modeling and Simulation”, IEEE Journal of Quantum Electronics, vol. 36, no. 10, pp. 1110-1116, Oct 2000
    [37] Hu SY, Young DB, Corzine SW, Gossary AC, “High - efficiency and low - threshold InGaAs/AlGaAs quantum - well laser”, Journal of Applied Physics, 1994
    [38] Zhao H, Arif RA, Tansu N, “Self - consistent gain analysis of type - Ⅱ with InGaN - GaAsN quantum well lasers”, Journal of Applied Physics, 2008
    [39] Boroson SD, Yokoyama H, Ippen EP, “Spontaneous emission rate alteration in optical waveguide structure”, IEEE Journal of Quantum Electronics

    無法下載圖示
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE