簡易檢索 / 詳目顯示

研究生: 林妤靜
Yu-Jing Lin
論文名稱: 氧化石墨烯複合式拋光液於單晶碳化矽晶圓之化學機械拋光製程分析研究
Analysis on Compound Slurry with Graphene Oxide for Chemical Mechanical Polishing of Single Crystalline Silicon Carbide Wafer
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 林士傑
Shih-Chieh Lin
趙崇禮
Chao-Choung Lii
劉顯光
Hsien-Kuang Liu
郭俞麟
Yu-Lin Kuo
陳炤彰
Chao-Chang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 194
中文關鍵詞: 單晶碳化矽晶圓氧化石墨烯複合式拋光液氣液輔助化學機械拋光
外文關鍵詞: 4H-SiC Wafer, Graphene Oxide, Compound-Slurry, GLACMP
相關次數: 點閱:369下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單晶碳化矽晶圓(Silicon Carbide, SiC)在高功率元件裡相較於單晶單化矽(Silicon)具有高崩潰電壓高寬能隙、高崩潰電壓及高熱傳導率,然而單晶碳化矽具有高硬度(Mohs 9.2)硬脆基板,在傳統化學機械拋光(Chemical Mechanical Polishing, CMP)製程時間長並且耗材成本高,以降低加工時間為目標而進行探討。以不同基底之拋光液針對4H-SiC來進行30分鐘浸泡實驗,在拉曼光譜分析中添加0.1wt%GO粉末C-face產生COOH與C-O-OH鍵結,而Si-face則無明顯反應。本研究以複合式拋光液(Compound-Slurry Chemical Mechanical Polishing, CSCMP)添加0.1 wt%氧化石墨烯(Graphene Oxide, GO)與氣液輔助化學機械拋光(Gas Liquid Assisted Chemical Mechanical Polishing, GLA-CMP)結合使拋光液中OH基、COOH基與含氧之鍵結快速的與碳化矽表面產生軟質之鈍化層,達到高效率之拋光製程。研究方法先以四種不同之拋光製程相同參數對16 mm×16 mm單晶碳化矽進行C-face與Si-face拋光,其中CS+GLACMP製程具有最佳移除率,其C-face最佳之移除率為1289.91 nm/h;Si-face最佳之移除率為267.72 nm/h。最後以兩吋單晶碳化矽單面研光後應用CS+GLACMP製程比較傳統CMP整合後之加工效率,本論文所提出整合的方法,單晶碳化矽C-face拋光可降低60.6 %的製程時間;單晶碳化矽Si-face拋光可降低39.5 %的製程時間,達成降低製程時間之目標。


    Single Crystalline Silicon Carbide (SiC) Wafer has high and wide voltage, high breakdown voltage, and high thermal conductivity properties in high power devices. However, it has a very high Mohs hardness 9.2 and brittle substrate, which is a time-consuming process in the traditional chemical mechanical polishing (CMP). A 30 minutes dipping test was performed on 4H-SiC with different base slurry, and 0.1 wt% GO powder add in C -face produce COOH and C-O-OH bonds, while Si-face had no obvious reaction by Raman spectroscopy. This study aims to improve the process time by Compound-Slurry Chemical Mechanical Polishing (CSCMP) add 0.1 wt% graphene oxide (GO) and Gas Liquid Assisted Chemical Mechanical Polishing (GLA-CMP). The process contains OH and COOH bonding to form a soft passivation layer on 4H-SiC wafer surface in the slurry. Four kinds of polishing processes for C-face and Si-face of SiC wafer with the same parameters. It can achieve the best material removal rate (MRR) is 1289.91 nm/ h on C-face and the best MRR is 267.72 nm/h on Si-face by the HS+GLACMP process. Comparision of CMP and CS+GLACMP, it reduces 60.6% processing time on C-face and reduce 39.5 % processing time on Si-face after single side lapping and reduce processing time.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XV 符號表 XX 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 3 1.3 論文架構 5 第二章 文獻回顧 7 2.1 單晶碳化矽基板 7 2.2 單晶碳化矽基板CMP製程 12 2.3 單晶碳化矽基板CMP拋光液 20 2.4 石墨烯/氧化石墨烯相關文獻 25 2.4.1 石墨烯性質介紹 25 2.4.2 石墨稀發展 26 2.5 氣體輔助化學機械拋光製程設備相關專利 28 2.6 文獻回顧總結 31 第三章 複合式拋光液CMP製程介紹 32 3.1 氧化石墨烯拋光液製備 32 3.2 氣體輔助複合式拋光液化學機械拋光 34 3.3 化學液基本量測 37 3.3.1 研光液 37 3.3.2 拋光液 39 3.4 Dipping Test靜態浸泡實驗 44 3.4.1 接觸角量測 45 3.4.2 維克式硬度量測 50 3.4.3 拉曼光譜量測分析 52 3.4.4 小結 55 第四章 實驗規劃與設備 56 4.1 實驗規劃 56 4.1.1 16×16 mm單晶4H-SiC基板不同拋光製程分析(實驗 A) 60 4.1.2 16×16 mm單晶4H-SiC基板化學機械拋光(實驗B) 64 4.1.3 兩吋單晶4H-SiC平坦化分析(實驗C) 71 4.2 實驗設備 73 4.2.1 M15-PVS 密閉式拋光機 74 4.2.2 M-15P 研磨拋光機 75 4.2.3 HAS-9 拋光液溫控攪拌系統 76 4.3 量測設備 77 第五章 實驗結果與討論 78 5.1 不同製程與4H-SiC晶圓影響分析(實驗A) 79 5.1.1 製程試驗設定 79 5.1.2 以去離子水為基底之拋光液拋光 81 5.1.2.1 4H-SiC C-face之CMP與CSCMP拋光效益 81 5.1.2.2 4H-SiC Si-face之CMP與CSCMP拋光效益 84 5.1.3 以商用拋光液為基底之拋光液拋光效果 87 5.1.3.1 4H-SiC C-face之CMP與CSCMP拋光效益 87 5.1.3.2 4H-SiC Si-face之CMP與CSCMP拋光效益 90 5.1.4 加入氣液輔助化學機械拋光製程之拋光效益 93 5.1.4.1 D.I.W.基底拋光液之C-face實驗驗證結果 93 5.1.4.2 D.I.W.基底拋光液之Si-face實驗驗證結果 97 5.1.4.3 DSC0901基底拋光液之C-face實驗驗證結果 101 5.1.4.4 DSC0902基底拋光液之Si-face實驗驗證結果 105 5.1.5 小結 109 5.2 16 mm×16 mm化學機械拋光製程參數試驗(實驗B) 110 5.2.1 化學機械拋光參數設置 110 5.2.2 不同參數對於單晶4H-SiC C-face影響 112 5.2.3 不同參數對於單晶4H-SiC Si-face影響 118 5.2.4 4H-SiC CMP材料移除模型 124 5.2.5 小結 130 5.3 兩吋單晶4H-SiC製程整合分析(實驗C) 131 5.3.1 兩吋4H-SiC晶圓製程參數設定 131 5.3.2 研光與拋光製程之次表層裂縫量測 133 5.3.3 兩吋單晶4H-SiC CMP與CS+GLACMP製程效益分析 137 5.3.4 小結 141 5.4 綜合結果與討論 142 第六章 結論與建議 143 6.1 結論 143 6.2 建議 144 參考文獻 145 附錄 A 量測設備 149 附錄 B 實驗耗材 152 B-1 研光盤 152 B-2 拋光墊 153 附錄 C 單晶4H-SiC表面粗糙度 154 附錄 D 二氧化矽與氧化石墨烯奈秒雷射之4H-SiC C-faceCMP製程 168

    [1] "The Next Generation of Power Conversion Systems Enabled by SiC Power Devices," ROHM Semiconductor, 2014.
    [2] “Power SiC 2018: Materials, Devices, Modules, and Applications”, Yole Developpement, 2018.
    [3] “Graphene materials for opto & electronic applications report”, Yole Developpement, 2014.
    [4] 陳鼎鈞, "單晶碳化矽晶圓之鑽石研光與化學機械拋光平坦化製程研究," 碩士學位論文, 國立臺灣科技大學, 2014.
    [5] Sang Kwon Lee, "Processing and Characterization of Silicon Carbide (6H and 4H-SiC) Contacts for High Power and High Temperature Device Applications," Department of Electronics, KTH, Royal Institute of Technology, 2002.
    [6] 顏誠廷,”碳化矽功率半導體元件”,電子資訊,功率電子專刊,第20卷第1期,2014.
    [7] Yan Zhou, Guoshun Pan, Xiaolei Shi, Suman Zhang, Hua Gong, Guihai Luo. "Effects of ultra-smooth surface atomic step morphology on chemical mechanical polishing (CMP) performances of sapphire and SiC wafers." Tribology International 87: 145-150, 2015.
    [8] Osamu Ohnishi, Toshiro Doi, Syuhei Kurokawa, Tsutomu Yamazaki, Michio Uneda, Tao Yin, Isamu Koshiyama, Koichiro Ichikawa, and Hideo Aida. "Effects of Atmosphere and Ultraviolet Light Irradiation on Chemical Mechanical Polishing Characteristics of SiC Wafers." Japanese Journal of Applied Physics, vol. 51, p. 05EF05, 2012.
    [9] 楊竣凱, "複合式能量化學機械拋光於單晶碳化矽晶圓平坦化製程之研究," 碩士學位論文, 國立台灣科技大學, 2013.
    [10] 張士宸, "氣液輔助化學機械拋光應用於單晶碳化矽晶圓之平坦化製程分析研究," 碩士學位論文, 國立臺灣科技大學, 2016.
    [11] Junji Murata, Koushi Yodogawa, and Kazuma Ban. "Polishing-pad-free electrochemical mechanical polishing of single-crystalline SiC surfaces using polyurethane–CeO2 core–shell particles." International Journal of Machine Tools and Manufacture 114: 1-7, 2017.
    [12] 黃裕程, "氧化石墨烯複合式拋光液於單晶碳化矽晶圓化學機械拋光之研究," 碩士學位論文, 國立臺灣科技大學, 2017.
    [13] Hiroshi Nitta, Akira Isobe, Park Jae Hong, and Takashi Hirao. "Research on Reaction Method of High Removal Rate Chemical Mechanical Polishing Slurry for 4H-SiC substrate." Japanese Journal of Applied Physics 50.4R, 2011.
    [14] Kubota, Akihisa, Yoshimura Masahiko, Fukuyama Sakae, Iwamoto Chihiro, and Touge Mutsumi, "Planarization of C-face 4H-SiC substrate using Fe particles and hydrogen peroxide solution." Precision Engineering 36.1: 137-140, 2012.
    [15] Uma Rames Krishna Lagudu and S. V. Babu. "Effect of Transition Metal Compounds on Amorphous SiC Removal Rates." ECS Journal of Solid State Science and Technology 3.6: P219-P225, 2014.
    [16] Kunjie Yuan, Huichun Wang, Jian Liu, Xiaoming Fang, and Zhengguo Zhang. "Novel slurry containing graphene oxide-grafted microencapsulated phase change material with enhanced thermo-physical properties and photo-thermal performance." Solar Energy Materials and Solar Cells 143: 29-37, 2015.
    [17] Hsien-Kuang Liu, Chao-Chang A. Chen, and Wei-Chung Chen. "Diamond Lapping of Sapphire Wafer with Addition of Graphene in Slurry." Procedia Engineering 184: 156-162, 2017.
    [18] Jing Lu, Yongchao Xu, Yunhe Zhang, and Xipeng Xu. "The effects of SiO2 coating on diamond abrasives in sol-gel tool for SiC substrate polishing." Diamond and Related Materials 76: 123-131, 2017.
    [19] Robert J. Young, Ian A. Kinloch, Lei Gong, and Kostya S. Novoselov. "The mechanics of graphene nanocomposites: a review." Composites Science and Technology 72.12: 1459-1476, 2012.
    [20] Andre K. Geim and Philip Kim, Sci. Am. 298, 90 ,2008.
    [21] 蘇清源. "石墨烯量產技術與產業應用." 光連: 光電產業與技術情報108 : 61-71, 2013.
    [22] Sébastien Vizzini, Hanna B. Enriquez, Shirley Chiang, Hamid Oughaddou, and Patrick G. Soukiassian. "Nano-structures developing at the graphene/silicon carbide interface." Surface Science 605.5: L6-L11, 2011.
    [23] Chamseddine Bouhafs, Alexei A. Zakharov, Ivan G. Ivanov, Filippo Giannazzo, Jens Eriksson, Vallery Stanishev, Philipp Kühne, Tihomir Iakimov, Tino Hofmann, Mathias M. Schubert, Fabrizio Roccaforte, Rositza T. Yakimova, and Vanya Darakchieva. "Multi-scale investigation of interface properties, stacking order and decoupling of few layer graphene on C-face 4H-SiC." Carbon 116: 722-732, 2017.
    [24] 土肥俊郎, "拋光工件的拋光裝置及方法," 中華人民共和國 Patent, 2005.
    [25] 陳炤彰, 周炳伸, and 杜維剛, "氣體添加研磨液的供應系統及其方法," 中華人民共合和國 Patent, 2015.

    QR CODE