簡易檢索 / 詳目顯示

研究生: 張元碩
Yuan-Shuo Chang
論文名稱: 聚氨酯/氧化石墨烯高分子奈米複合材料:材料製備與其結構、機械性質及氣體阻隔性質之研究
Polyurethane/Graphene Oxide Nanocomposites:Study of Preparation and the Structural, Mechanical, and Gas Barrier Properties
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 鄭智嘉
Chih-Chia Cheng
黃盟舜
Meng-Shun Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 98
中文關鍵詞: 聚氨酯石墨烯阻氣性質
外文關鍵詞: Polyurethane, Graphene, Gas barrier properties
相關次數: 點閱:231下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文探討以奈米分散技術製備氧化石墨烯混成材料,將氧化石墨烯混入聚氨酯(Polyurethane, PU)中,製備具阻氣能力之薄膜。研究以分散碳材為主軸,從第四章開始首先探討高分子型分散劑對不同氧化數之氧化石墨烯進行分散,並添加自行合成之聚乙基醚段鏈與異氰酸鹽衍生之高分子型界面活性劑(Poly(oxyethylene)-segmented urea, POEU),控制氧化石墨烯與分散劑之不同比例下(1:1、1:10及1:20),此POEU為非離子型親水/親油界面活性劑,從分子結構的觀點,苯環結構式存在於高分子型界面活性劑中,提供高分子界面活性劑與氧化石墨烯於界面上,促成π-π電子的影響,且構造上包含Urea的官能基,則Urea上之hydrogen bonding可使氧化石墨烯分子呈現可控制性分子級分散效應。最後將POEU/氧化石墨烯奈米混成物均勻分散於油性PU當中,控制氧化石墨烯不同氧化數含量(0%、4%、40%)以不同比例(0.5wt%、1wt%及3wt%)分散於PU高分子基材中,並比較不同片徑之石墨烯對阻氣能力之影響。由於氧化石墨烯本身的立體結構與高長寬比等特性,能在PU中形成立體結構障礙,作為阻擋氣體通過的路障,製作出具高阻氣能力的PU/氧化石墨烯複合薄膜,且機械性能上展現出極佳的效應。


    Because of graphene oxide mechanical, and thermal properties, it is being explored for various applications and has attracted enormous academic and industrial interest. In this study, the preparation of polyurethane (PU) nanocomposites with graphene oxide (GO) using a simple solution dispersion processing method with surfactant poly(oxyethylene)-segmented urea (POEU). Well-dispersed graphene oxide/PU nanocomposties have good gas barrier properties, mechanical properties and thermal properties. The gas barrier properties of the graphene oxide-based nanocomposite with molecule-level dispersion are significantly improved. Graphene layers in the polymer matrix are capable of producing a tortuous path, which acts as a barrier for gases. A high tortuosity leads to superior barrier properties and lower permeability of PU. PU/GO have a 44.31% increase in gas barrier properties. Furthermore, a 507% increase in tensile strength and a 96.26% improvement of toughness and a 19.75% increase of water contact angle and a 14.5% increase of degradation temperature are achieved by addition of 3wt% of GO 4% which oxygen content is 4%. The improved properties of the composite film could lead to potential applications in food package.

    目錄 致謝 I 摘要 II Abstract III 第一章:緒論 1 1.1前言 1 1.2研究動機 3 第二章:文獻回顧 4 2.1奈米材料的演變 4 2.1.1石墨烯(Graphene) 4 2.1.2氧化石墨(Graphite oxide) 4 2.1.3氧化石墨烯(Graphene oxide, GO) 5 2.1.4石墨烯的製備方法 7 2.2聚氨基甲酸酯(Polyurethane, PU) 10 2.3分散劑 14 2.3.1分散劑介紹 14 2.3.2分散劑聚醚胺介紹 15 2.4拉曼光譜檢測石墨烯 16 2.5石墨烯的分散 18 2.6液體濕潤表面特性 19 2.7阻氣性質介紹 23 2.7.1阻氣性質的應用 23 2.7.2阻隔氣體分子之機制 23 2.7.3高分子阻氣性薄膜 24 第三章:實驗方法 27 3.1實驗藥品與設備儀器 27 3.1.1藥品與耗材 27 3.1.2實驗設備 28 3.2實驗流程圖 30 3.3實驗步驟 31 3.3.1分散劑(Poly(oxyethylene)-segmented urea, POEU)合成 31 3.3.2製備氧化石墨烯分散溶液 31 3.3.3製備PU/氧化石墨烯阻氣薄膜 31 3.3.4分析儀器 32 第四章:PU/GO複合材料薄膜 40 4.1高分子型分散劑的合成鑑定 40 4.1.1 高分子型分散劑(Poly(oxyethylene)-segmented urea, POEU) 40 4.1.2傅立葉轉換紅外線光譜分析儀(FTIR) 41 4.1.3凝膠滲透層析儀(GPC) 42 4.1.4分散劑於不同溶劑中的溶解情形 45 4.2拉曼光譜儀鑑定不同含氧量之GO 47 4.3製備GO分散溶液 49 4.4高分子型分散劑對氧化石墨烯分散於溶劑之影響 52 4.4.1分散劑比例不同對氧化石墨烯分散於有機溶劑之影響 52 4.4.2分散劑與GO不同比例分散於有機溶劑的情形 54 4.4.3分散劑對不同含氧數的GO分散於有機溶劑中之影響 57 4.5 製備PU/GO複合薄膜 62 4.6 檢測PU/GO複合薄膜之性質 62 4.6.1探討PU/GO複合薄膜之接觸角 62 4.6.2探討PU/GO複合薄膜之熱重損失分析(TGA) 65 4.6.3探討PU/GO複合薄膜之機械性質 70 4.6.4探討PU/GO複合薄膜之阻氣能力 75 4.6.5探討PU/GO複合薄膜之TEM截面 77 第五章:結論 79 第六章:參考文獻 80

    [1] A. Ammar, A. M. Al-Enizi, M. A. AlMaadeed, and A. Karim, "Influence of graphene oxide on mechanical, morphological, barrier, and electrical properties of polymer membranes," Arabian Journal of Chemistry, vol. 9, no. 2, pp. 274-286, 2016.
    [2] J. Liang et al., "Molecular-Level Dispersion of Graphene into Poly(vinyl alcohol) and Effective Reinforcement of their Nanocomposites," Advanced Functional Materials, vol. 19, no. 14, pp. 2297-2302, 2009.
    [3] W. B. Park, P. Bandyopadhyay, T. T. Nguyen, T. Kuila, N. H. Kim, and J. H. Lee, "Effect of high molecular weight polyethyleneimine functionalized graphene oxide coated polyethylene terephthalate film on the hydrogen gas barrier properties," Composites Part B: Engineering, vol. 106, pp. 316-323, 2016.
    [4] P. Bandyopadhyay et al., "Hexylamine functionalized reduced graphene oxide/polyurethane nanocomposite-coated nylon for enhanced hydrogen gas barrier film," Journal of Membrane Science, vol. 500, pp. 106-114, 2016.
    [5] A. Ciesielski et al., "Modifying the Size of Ultrasound-Induced Liquid-Phase Exfoliated Graphene: From Nanosheets to Nanodots," ACS Nano, vol. 10, no. 12, pp. 10768-10777, Dec 27 2016.
    [6] K. S. Novoselov et al., "Electric field effect in atomically thin carbon films," (in English), Science, Article vol. 306, no. 5696, pp. 666-669, Oct 2004.
    [7] C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene," (in English), Science, Article vol. 321, no. 5887, pp. 385-388, Jul 2008.
    [8] R. R. Nair et al., "Fine structure constant defines visual transparency of graphene," (in English), Science, Article vol. 320, no. 5881, pp. 1308-1308, Jun 2008.
    [9] W. S. Hummers Jr and R. E. Offeman, "Preparation of graphitic oxide," the American Chemical Society, 1958.
    [10] A. Lerf, H. Y. He, M. Forster, and J. Klinowski, "Structure of graphite oxide revisited," (in English), Journal of Physical Chemistry B, Article vol. 102, no. 23, pp. 4477-4482, Jun 1998.
    [11] S. K. Lee and B. K. Kim, "Synthesis and properties of shape memory graphene oxide/polyurethane chemical hybrids," Polymer International, vol. 63, no. 7, pp. 1197-1202, 2014.
    [12] X. Gao, J. Jang, and S. Nagase, "Hydrazine and Thermal Reduction of Graphene Oxide: Reaction Mechanisms, Product Structures, and Reaction Design," The Journal of Physical Chemistry C, vol. 114, no. 2, pp. 832-842, 2010.
    [13] Q. Chen, J. D. Mangadlao, J. Wallat, A. De Leon, J. K. Pokorski, and R. C. Advincula, "3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties," ACS Appl Mater Interfaces, vol. 9, no. 4, pp. 4015-4023, Feb 01 2017.
    [14] X. Jing, H.-Y. Mi, M. R. Salick, X.-F. Peng, and L.-S. Turng, "Preparation of thermoplastic polyurethane/graphene oxide composite scaffolds by thermally induced phase separation," Polymer Composites, vol. 35, no. 7, pp. 1408-1417, 2014.
    [15] X. Li et al., "Graphene/thermoplastic polyurethane nanocomposites: Surface modification of graphene through oxidation, polyvinyl pyrrolidone coating and reduction," Composites Part A: Applied Science and Manufacturing, vol. 68, pp. 264-275, 2015.
    [16] E. J. Lee et al., "Graphene Oxide-Decorated PLGA Collagen Hybrid Fiber Sheets for Application to Tissue Engineering Scaffolds," Biomater Res., pp. 18-24, 2014.
    [17] Y. J. Kim and B. K. Kim, "Synthesis and properties of silanized waterborne polyurethane/graphene nanocomposites," Colloid and Polymer Science, vol. 292, no. 1, pp. 51-58, 2013.
    [18] B. Yu, X. Wang, W. Xing, H. Yang, L. Song, and Y. Hu, "UV-Curable Functionalized Graphene Oxide/Polyurethane Acrylate Nanocomposite Coatings with Enhanced Thermal Stability and Mechanical Properties," Industrial & Engineering Chemistry Research, vol. 51, no. 45, pp. 14629-14636, 2012.
    [19] K. S. Novoselov, V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, "A roadmap for graphene," (in English), Nature, Review vol. 490, no. 7419, pp. 192-200, Oct 2012.
    [20] K. M. Al-Shurman and H. Naseem, "CVD Graphene Growth Mechanism on Nickel Thin Films," In Proceedings of the 2014 COMSOL Conference in Boston, 2014.
    [21] K. P. Loh, Q. Bao, P. K. Ang, and J. Yang, "The chemistry of graphene," Materials Chemistry, 2010.
    [22] C.-H. Tsou et al., "Synthesis and properties of antibacterial polyurethane with novel Bis(3-pyridinemethanol) silver chain extender," Polymer, vol. 85, pp. 96-105, 2016.
    [23] X. Liu, T. Wang, J. Li, J. Cheng, and J. Zhang, "Synthesis and properties of segmented polyurethanes with hydroquinone ether derivatives as chain extender," Journal of Polymer Research, vol. 22, no. 8, 2015.
    [24] A. Lapprand, F. Méchin, and J. P. Pascault, "Synthesis and properties of self-crosslinkable thermoplastic polyurethanes," Journal of Applied Polymer Science, vol. 105, no. 1, pp. 99-113, 2007.
    [25] M. Charlon, B. Heinrich, Y. Matter, E. Couzigné, B. Donnio, and L. Avérous, "Synthesis, structure and properties of fully biobased thermoplastic polyurethanes, obtained from a diisocyanate based on modified dimer fatty acids, and different renewable diols," European Polymer Journal, vol. 61, pp. 197-205, 2014.
    [26] S. Yamasaki, D. Nishiguchi, K. Kojio, and M. Furukawa, "Effects of polymerization method on structure and properties of thermoplastic polyurethanes," Journal of Polymer Science Part B: Polymer Physics, vol. 45, no. 7, pp. 800-814, 2007.
    [27] C. Prisacariu, E. Scortanu, and B. Agapie, "Synthesis and characterization of dibenzyl based polyurethane blends obtained via the one shot synthesis route," Procedia Engineering, vol. 10, pp. 984-989, 2011.
    [28] Y. Cai et al., "Synthesis and characterization of thermoplastic polyurethane/montmorillonite nanocomposites produced by reactive extrusion," Journal of Materials Science, vol. 42, no. 14, pp. 5785-5790, 2007.
    [29] L. Pizzatto et al., "Synthesis and characterization of thermoplastic polyurethane/nanoclay composites," Materials Science and Engineering: C, vol. 29, no. 2, pp. 474-478, 2009.
    [30] P. H. Chen et al., "Synthesis and properties of transparent thermoplastic segmented polyurethanes," Advances in Polymer Technology, vol. 26, no. 1, pp. 33-40, 2007.
    [31] R.-P. Jia, A.-X. Zong, X.-Y. He, J.-Y. Xu, and M.-s. Huang, "Synthesis of newly fluorinated thermoplastic polyurethane elastomers and their blood compatibility," Fibers and Polymers, vol. 16, no. 2, pp. 231-238, 2015.
    [32] 趙承琛, 界面科學基礎. 復文書局, 民國八十八年二月十八版.
    [33] J. M. Harries, Poly(ethylene glycol) chemistry: biotechnical and biomedical applications. New York, Plenum Press, 1992.
    [34] C. Thomsen and S. Reich, "Double resonant Raman scattering in graphite," Physical Review Letters, 2000.
    [35] Y. Hernandez, M. Lotya, D. Rickard, S. D. Bergin, and J. N. Coleman, "Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery," Langmuir, vol. 26, no. 5, pp. 3208-13, Mar 02 2010.
    [36] S. Park et al., "Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents," Nano Lett, vol. 9, pp. 1593-1597, 2009.
    [37] S. Wang, Y. Zhang, N. Abidi, and L. Cabrales, "Wettability and surface free energy of graphene films," Langmuir, vol. 25, no. 18, pp. 11078-81, Sep 15 2009.
    [38] J. I. Paredes, S. Villar-Rodil, A. Martı´nez-Alonso, and J. M. D. Tasco´n, "Graphene oxide dispersions in organic solvents," Langmuir, 2008.
    [39] T. Young, "An essay on the cohesion of fluids," Philosophical Transactions of the Royal Society of London, vol. 95, pp. 65-87, 1805.
    [40] J. N. Wang, Y. L. Zhang, Y. Liu, W. Zheng, L. P. Lee, and H. B. Sun, "Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications," Nanoscale, vol. 7, no. 16, pp. 7101-14, Apr 28 2015.
    [41] R. N. Wenzel, "Resistance of solid surfaces to wetting by water," Industrial & Engineering Chemistry Research, vol. 28, pp. 988-994, 1936.
    [42] A. Cassie and S. Baxter, "Wettability of porous surfaces," Transactions of the Faraday society, vol. 40, pp. 546-551, 1944.
    [43] A. Martinez-Abad, J. M. Lagaron, and M. J. Ocio, "Development and characterization of silver-based antimicrobial ethylene-vinyl alcohol copolymer (EVOH) films for food-packaging applications," J Agric Food Chem, vol. 60, no. 21, pp. 5350-9, May 30 2012.
    [44] Y. Cui, S. I. Kundalwal, and S. Kumar, "Gas barrier performance of graphene/polymer nanocomposites," Carbon, vol. 98, pp. 313-333, 2016.
    [45] Y. Guan et al., "Ecofriendly Fabrication of Modified Graphene Oxide Latex Nanocomposites with High Oxygen Barrier Performance," ACS Appl Mater Interfaces, vol. 8, no. 48, pp. 33210-33220, Dec 07 2016.
    [46] D. Patra, P. Vangal, A. A. Cain, C. Cho, O. Regev, and J. C. Grunlan, "Inorganic nanoparticle thin film that suppresses flammability of polyurethane with only a single electrostatically-assembled bilayer," ACS Appl Mater Interfaces, vol. 6, no. 19, pp. 16903-8, Oct 08 2014.
    [47] C. Xiang et al., "Functionalized Low Defect Graphene Nanoribbons and Polyurethane Composite Film for Improved Gas Barrier and Mechanical Performances," ACS Nano, 2013.
    [48] N. AHzni, Y. NIR, D. WANG, and M. NARKIS, "EVOH/clay nanocomposites produced by melt processing," polymer Composites, vol. 22, 2001.
    [49] N. Artzi, B. B. Khatua, M. Narkis, and A. Siegmann, "Studies on nylon-6/EVOH/clay ternary composites," Polymer Composites, vol. 27, no. 1, pp. 15-23, 2006.
    [50] N. Artzi, M. Narkis, and A. Siegmann, "EVOH/clay nanocomposites produced by dynamic melt mixing," Polymer Engineering and Science, vol. 44, no. 6, pp. 1019-1026, 2004.
    [51] N. Artzi, Y. Nir, M. Narkis, and A. Siegmann, "Melt blending of ethylene-vinyl alcohol copolymer/clay nanocomposites: Effect of the clay type and processing conditions," Journal of Polymer Science Part B: Polymer Physics, vol. 40, no. 16, pp. 1741-1753, 2002.
    [52] N. Artzi, A. Tzur, M. Narkis, and A. Siegmann, "The effect of extrusion processing conditions on EVOH/clay nanocomposites at low organo-clay contents," Polymer Composites, vol. 26, no. 3, pp. 343-351, 2005.
    [53] J. P. Cerisuelo, J. Alonso, S. Aucejo, R. Gavara, and P. Hernández-Muñoz, "Modifications induced by the addition of a nanoclay in the functional and active properties of an EVOH film containing carvacrol for food packaging," Journal of Membrane Science, vol. 423-424, pp. 247-256, 2012.
    [54] J. P. Cerisuelo, R. Gavara, and P. Hernández-Muñoz, "Diffusion modeling in polymer-clay nanocomposites for food packaging applications through finite element analysis of TEM images," Journal of Membrane Science, vol. 482, pp. 92-102, 2015.
    [55] D. Kim, H. Kwon, and J. Seo, "EVOH nanocomposite films with enhanced barrier properties under high humidity conditions," Polymer Composites, vol. 35, no. 4, pp. 644-654, 2014.
    [56] H. Kwon, D. Kim, and J. Seo, "Thermal and barrier properties of EVOH/EFG nanocomposite films for packaging applications: Effect of the mixing method," Polymer Composites, vol. 37, no. 6, pp. 1744-1753, 2016.
    [57] S. Seethamraju, P. C. Ramamurthy, and G. Madras, "Flexible poly(vinyl alcohol-co-ethylene)/modified MMT moisture barrier composite for encapsulating organic devices," RSC Advances, vol. 3, no. 31, p. 12831, 2013.
    [58] J. Yang et al., "Thermal Reduced Graphene Based Poly(ethylene vinyl alcohol) Nanocomposites: Enhanced Mechanical Properties, Gas Barrier, Water Resistance, and Thermal Stability," Industrial & Engineering Chemistry Research, vol. 52, no. 47, pp. 16745-16754, 2013.
    [59] T. V. Duncan, "Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors," J Colloid Interface Sci, vol. 363, no. 1, pp. 1-24, Nov 01 2011.
    [60] N. Alipour et al., "Structure and properties of polyethylene-based and EVOH-based multilayered films with layer thicknesses of 150nm and greater," European Polymer Journal, vol. 64, pp. 36-51, 2015.
    [61] S. Dhawan, C. Varney, G. V. Barbosa-Cánovas, J. Tang, F. Selim, and S. S. Sablani, "Pressure-assisted thermal sterilization effects on gas barrier, morphological, and free volume properties of multilayer EVOH films," Journal of Food Engineering, vol. 128, pp. 40-45, 2014.
    [62] 蘇清淵, "石墨烯氧化物之特性與應用前景," 物理, pp. 163-167, 2011.
    [63] Y. Xue, Y. Liu, F. Lu, J. Qu, H. Chen, and L. Dai, "Functionalization of Graphene Oxide with Polyhedral Oligomeric Silsesquioxane (POSS) for Multifunctional Applications," J Phys Chem Lett, vol. 3, no. 12, pp. 1607-12, Jun 21 2012.

    無法下載圖示 全文公開日期 2022/07/06 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE