簡易檢索 / 詳目顯示

研究生: 于厚澤
Hou-Tse Yu
論文名稱: 一個使用電容校正技術的混合式二十位元逐次漸進式類比數位轉換器之設計與實現
Design and Implementation of 20-bit Hybrid-SAR ADC Using Capacitor Calibration Technology
指導教授: 鍾勇輝
Yung-Hui Chung
口試委員: 陳伯奇
Po-Ki Chen
陳筱青
Hsiao-Chin Chen
陳信樹
Hsin-Shu Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 100
中文關鍵詞: 電容校正技術快速二位元視窗切換技術數位斜率式技術類比數位轉換器
外文關鍵詞: Capacitor Calibration, Fast Binary Window (FSB), Digital Slope, Analog-to-digital conversion (ADC)
相關次數: 點閱:179下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文提出一個採用電容校正技術之二十位元每秒十萬次取樣的混合式逐次漸進式類比數位轉換器。對於一個二十位元類比數位轉換器而言,雜訊與線性度分別為兩個主要的設計考量。對於雜訊而言,採用數字斜波類比數位轉換器來抑制比較器所貢獻的雜訊以滿足設計規格。而就著線性度而言,則是使用數位電容校正技術來避免大面積的電容式數位類比轉換器。此外,快速二元視窗切換技術被用來輔助電容校正所需要的部份功能,藉由減少不必要的電容切換,進一步改善無雜散動態範圍。
在台積電的0.18微米CMOS製程下,其晶片面積是6.67平方毫米。在3.3伏特及1.8伏特的操作電壓下,功率消耗為2.48毫瓦。經過電容校正後,在奈奎斯特頻率下,後模擬的訊號對雜訊與失真比是99.5dB,無雜散動態範圍是123.3dB,性能指標是172.6dB。


This thesis presents a 20-bit hybrid successive approximation register analog-to-digital converter (Hybrid-SAR ADC) using capacitor calibration technique. For 20-bit ADCs, noise and linearity are two major design challenges. For the noise, digital slope ADC is proposed to suppress the noise contributed by the comparator to meet specifications. For the linearity, a capacitor calibration technique is proposed to prevent using a large capacitive digital-to-analog converter (C-DAC). In addition, Fast-Binary-Window DAC switching scheme is adopted in this design to assist the proposed capacitor calibration technique and improve the ADC linearity. In addition, spurious free dynamic range (SFDR) is also improved by avoiding unnecessary capacitor switching.
A 20-bit 80-kS/s Hybrid-SAR ADC using capacitor calibration technique is implemented in TSMC 180-nm CMOS. This die area of this ADC is 6.67 mm^2. It consumes 2.48 mW at 3.3 V and 1.8 V supply. After capacitor calibration, at Nyquist, the post-layout simulation results for SNDR and SFDR are 99.5 dB and 123.3 dB, respectively. The simulated figure-of-merit (FOM) is 172.6 dB.

論 文 摘 要 Abstract 誌 謝 目錄 List of Table List of Figure Chapter 1 Introduction 1.1 Research Motivation and Purpose 1.2 Chapter Description Chapter 2 Review of ADCs 2.1 Capacitance Calibration Technology 2.1.1 Self-Calibration Technique 2.1.2 The Least Significant Bit (LSB) Repetition Technology 2.1.3 Perturbation-Based Background Digital Calibration 2.1.4 Conclusion of Capacitance Enhancement Technology 2.2 Noise Enhancement Technology 2.2.1 Optimal LSB Repeats 2.2.2 Digital-Slope Technology Chapter 3 Architecture Considerations 3.1 SAR ADC with Digital-Slope Technology 3.2 The Concept of Capacitance Calibration 3.3 The Technology of Capacitance Calibration 3.3.1 Accuracy of Common Mode Voltage 3.3.2 Accuracy of Z-ADC 3.3.3 Quantization Range of Z-ADC 3.3.4 Common DC Level Offset of Comparators 3.4 Segmented C-DAC Technology 3.5 Fast-binary-window Technology 3.6 MATLAB Behavior Model for Noise Evaluation 3.6.1 Requirements for Thermal Noise 3.6.2 Determine the Resolutions of SAR ADC and Slope ADC 3.6.3 Noise Requirement of D-CMP 3.6.4 Noise Requirements of CT-CMP Chapter 4 Implementation of 20–bit Hybrid SAR ADC Using Capacitor Calibration Technology 4.1 Circuit Architecture and Calibration Process 4.2 Track-and-Hold Circuit 4.3 Hybrid Comparators 4.4 Bridge Capacitive Digital-to-Analog Converter 4.4.1 Design Considerations for MSB Array 4.4.2 Design Considerations for LSB Array 4.4.3 Design Considerations for Bridge Capacitor (CB) 4.5 DAC Control Logic Circuit 4.6 SAR Logic Circuit 4.7 Reference Buffer 4.8 Noise Analysis 4.9 ENOB Enhancement 4.10 Layout Considerations 4.10.1 Capacitor Array Layout 4.11 Simulation Results 4.11.1 Pre-simulation 4.11.2 Post-simulation (C+CC) 4.11.3 Summary Chapter 5 Conclusion and Future Prospect 5.1 Conclusion 5.2 Future Prospect References

[1]C. P. Hurrell, et al., "An 18b 12.5MS/s ADC With 93 dB SNR," in IEEE Journal of Solid-State Circuits, vol. 45, no. 12, pp. 2647-2554, Dec. 2010.
[2]A. Bannon, et al., "An 18b 5MS/s SAR ADC with 100.2 dB Dynamic Range," in VLSI Symposium on Circuits, June 2014, pp. 1-2.
[3]M. Maddox, et al., “A 16-bit linear passive-charge-sharing SAR ADC in 55nm CMOS,” in Proc. of IEEE A-SSCC, Nov. 2016, pp. 153-156.
[4]J. Shen, et al., "A 16-bit 16MS/s SAR ADC with On-Chip Calibration in 55nm CMOS," in VLSI Symposium on Circuits, Jun 2017, pp. 282-283.
[5]D. Hummerston, et al., "An 18-bit 2MS/s Pipelined SAR ADC utilizing a sampling distortion cancellation circuit with -107dB THD at 100kHz," in VLSI Symposium on Circuits, Jun 2017, pp. 280-281.
[6]R. Guan, et al., "16-bit 1-MS/s SAR ADC with foreground digital-domain calibration," in IET Circuits, Devices & Systems, vol. 12, issue 4, pp. 505-513, 2018.
[7]C. C. Lee, et al., "A 12b 70MS/s SAR ADC with Digital Startup Calibration in 14nm CMOS," in VLSI Symposium on Circuits, Jun 2015, pp. 62-63.
[8]Y.-S. Shu, et al., "An oversampling SAR ADC with DAC mismatch error shaping achieving 105dB SFDR and 101dB SNDR over 1kHz BW in 55nm CMOS," in IEEE International Solid-State Circuit Conference, Feb. 2016.
[9]C.-C. Liu, et al., "A 12 bit 100 MS/s SAR-Assisted Digital-Slope ADC," in IEEE Journal of Solid-State Circuits, vol. 51, no. 12, pp. 2941-2950, Dec. 2016.
[10]J. Fredenburg, et al., "A 90MS/s 11MHz Bandwidth 62dB SNDR Noise-Shaping SAR ADC," in IEEE International Solid-State Circuit Conference, Feb. 2012. pp. 468-469.
[11]C.-C. Liu, et al., "A 0.46mW 5MHz-BW 79.7dB-SNDR Noise-Shaping SAR ADC with Dynamic-Amplifier-Based FIR-IIR Filter," in IEEE International Solid-State Circuit Conference, Feb. 2017. pp. 466-467.
[12]S. Li, et al., "A 13-ENOB 2nd-Order Noise-Shaping SAR ADC Realizing Optimized NTF Zeros Using an Error-Feedback Structure," in IEEE International Solid-State Circuit Conference, Feb. 2018. pp. 234-235.
[13]H. Li, et al., "Signal-Independent Background-Calibrating 20b 1MS/s SAR ADC with 0.3ppm INL, " in Proc. of IEEE ISSCC, Feb. 2018, pp. 242-243.
[14]Y.-H. Chung, et al., "A 102dB-SFDR 16-bit Calibration-Free SAR ADC in 180-nm CMOS, " in IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Nov. 2019, pp. 5-8.
[15]H.-S. Lee, et al., "A Self-Calibrating 15 Bit CMOS A/D Converter," in IEEE J. Solid-State Circuits, vol. SC-19, no. 6, pp. 813–819, Dec. 1984.
[16]W.-H. Tseng, et al., "A 12-bit 104 MS/s SAR ADC in 28 nm CMOS for digitally-assisted wireless transmitters, " in IEEE A-SSCC Dig. Tech. Papers, Nov. 2015, pp. 1–4.
[17]W. Liu, et al., "A 12-bit, 45 MS/s, 3 mW Redundant Successive-Approximation-Register Analog-to-Digital Converter with Digital Calibration, " in IEEE J. Solid-State Circuits, vol. 46, no. 11, pp. 2661–2672, Nov. 2011.
[18]A. H. T. Chang, et al., "Low-Power High-Performance SAR ADC with Redundancy and Digital Background Calibration, " Ph.D. dissertation, Dept. Elect. Eng. Comput. Sci., Massachusetts Inst. Technol., Cambridge, MA, USA, 2013.
[19]C.-C Liu, et al., "A 10b 100MS/s 1.13mW SAR ADC with binary scaled error compensation, " in IEEE ISSCC Dig. Tech. Papers, pp.386–387, Feb. 2010.
[20]M. Dessouky, et al., "Input switch configuration suitable for rail-to-rail operation of switched-opamp circuits, " in IEE Electron. Letter, vol. 35, pp. 8-10, Jan. 1999.
[21]B.-S. Song, et al., "A 1 V 6 b 50 MHz current-interpolating CMOS ADC, " in Symp. VLSI Circuits, 1999, pp. 79-80.
[22]S.-W. M. Chen, et al., "A 6-bit 600 MS/s 5.3 mW asynchronous ADC in 0.13- μ m CMOS, " in IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 2669–2680, Dec. 2006.
[23]T. Y. Man, et al., "Development of single-transistor-control LDO based on flipped voltage follower for SoC, " in IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 5, pp. 1392–1401, Jun. 2008.

無法下載圖示 全文公開日期 2027/07/27 (校內網路)
全文公開日期 2027/07/27 (校外網路)
全文公開日期 2027/07/27 (國家圖書館:臺灣博碩士論文系統)
QR CODE