簡易檢索 / 詳目顯示

研究生: 鄭彥誠
Yan-chen chen
論文名稱: 切換電容式二階三角積分器
Switched-capacitor second-order Sigma-Delta modulator
指導教授: 陳伯奇
Poki Chen
口試委員: 阮聖彰
none
許孟超
none
宋國明
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 84
中文關鍵詞: 類比數位轉換器三角積分器量化器運算放大器積分器
外文關鍵詞: ADC, sigma-delta modulator, quantizer, OPAMP
相關次數: 點閱:230下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超取樣和三角積分調變技術早已被廣泛地應用在現代超大型積體電路中的類比和數位轉換介面,例如數位音響系統和寬頻網路上的應用。在數位音響應用中,類比數位轉換器(ADC)在20 仟赫的頻帶範圍內必需達到16 到20 個位元的精確度。利用三角積分調變技術不但可以達到這樣的精確度而且對於其內部組成電路的要求不像其他類比數位轉器這樣嚴苛。它在高精度類比數位轉換器的實現上提供了許多卓越的優點。正因為三角積分調變技術對類比電路的表現要求不高,所以就功率的消耗上也可大幅的減少,另外相較於其他種類的類比數位轉換器,其電晶體的數量和電路的複雜度也簡單得多。同時三角積分調變器也容許將主要的電路性能和功率消耗集中在其輸入級的類比電路中。
    對於一個多位元三角積分調變器來說,整個系統性能的好壞往往取決於其系統迴授路徑中數位類比轉換器(DAC)的線性度。如今已有許多種動態元素匹配演筭法(Dynamic Element-Matching Algorithm)被提出,用來改善三角積分調變器中數位到類比轉換的不理想性,藉由這些演算法可以將不理想數位類比轉換過程所產生的誤差和雜訊,用類似消除量化誤差的方法將其壓制,有效地改善實際多位元三角積分調變器之性能。
    整篇論文簡單地描述了三角積分調變器的基本原理,以及一元位三角積分調變器從設計到電路實現。整個類比數位轉器透過0.35微米互補式金氧半的製程實現,可有效地應用在頻寬為20 仟赫的數位音響系統中。


    Oversampling techniques based on delta-sigma modulation are widely used to implement the interface between analog and digital signals in VLSI systems, such as digital audio systems. This type of systems requires a large dynamic range (i.e., about 16 ~ 20 bits) at low-frequency bandwidth of 20 kHz. The delta-sigma modulation approach is relatively insensitive to imperfections in circuit components and offers numerous advantages for the realization of high-resolution analog-to-digital (A/D) converters. In particular, oversampling architectures is a potentially power-efficient means of implementing high-resolution A/D converters because they reduce the number and complexity of the analog circuits in comparison Nyquist-rate converters. Furthermore, they allow the performance requirements, and thus most of the power dissipation, to be concentrated in the input stage of a converter.

    For a multibit ΔΣ modulator, the performance is directly related to the linearity of the internal multibit DAC in the feedback path. Various dynamic element-matching techniques have been proposed to circumvent the nonlinearity of the internal DAC. By using these techniques, the DAC noise is also shaped like quantization noise in delta-sigma modulators.

    This thesis describes the results of research into the design of the oversampling one-level delta-sigma modulators implemented by switch-capacitor circuits, digital audio applications. The experimental modulators described herein can deliver a high dynamic range over a 20 kHz bandwidth and have been fabricated in standard 0.35 μm CMOS technologies.

    第一章 介紹 4 1.1 電路系統簡介: 5 第二章 三角積分器的基本原理 7 2.1 量化誤差 7 2.2 超取樣技術 10 2.3 雜訊頻移 13 2.3.1 一階三角積分器 15 2.3.2 二階三角積分器 16 2.4 高階三角積分器 18 2.5 多級單迴路雜訊頻移三角積分器 20 2.6 串接積分器前授三角積分器 21 第三章 系統與電路規格 23 3.1 系統架構規格 23 3.2 二階三角積分器 23 3.3 前授二階三角積分器 25 3.4 電路規格 27 3.4.1 有限的運算放大器直流增 27 3.4.2 運算放大器的暫態響應與迴轉率 29 3.4.3 取樣雜訊 34 3.4.4 熱雜訊 39 第四章 行為模擬 41 4.1 一位元量化器之二階三角積分器 41 4.2 一位元量化器之前授二階三角積分器 45 第五章 三角積分器的設計與實現 47 5.1 類比電路的設計與模擬 47 5.1.1 積分器 47 5.1.2 增益提昇運算放大器與共模回授電路 51 5.1.3 偏壓產生電路 59 5.1.4 電容 62 5.1.5 開關 62 5.1.6 比較器 67 5.1.7 非重疊時脈產生電路 69 5.2 二階三角積分器的模擬結果 72 5.3 二階三角積分器的佈局圖 75 第六章 總結與未來研究方向 76

    [1] J. Candy and G. Temes, "Oversampling methods for A/D and D/A conversion," in Oversampling Delta-Sigma Data Converters, pp. 1-29, New York: IEEE Press, 1992.
    [2] M. Sarhang-Nejad and G. Temes, "A high-resolution multibit ΣΔ ADC with digital correction and relaxed amplifier requirements," IEEE J. Solid-State Circuits, vol. 28, no.6, pp. 648-660, June 1993.
    [3] I. Fujimori, L. Longo, and A. Hairapetian, "A 90-dB SNR 2.5-MHz output rate ADC using cascaded multibit delta-sigma modulation at 8x oversampling ratio," IEEE J. of Solid-State Circuits, vol. 35, no. 12, pp. 1820-1828, December 2000.
    [4] L. R. Carley, "A noise-shaping coder topology for 15+ bit converters," IEEE J. of Solid-State Circuits, vol. SC-24, no.2, pp. 267-273, April 1989.
    [5] K. C. H. Chao, S. Nadeem, W. L. Lee, and C. G. Sodini, "A higher order topology for interpolative modulators for oversampling A/D converters," IEEE Trans. on Circuits and Systems II, vol. CAS-37, pp. 309-318, March 1990.
    [6] P. J. Naus, E. C. Dijkmans, E. F. Stikvoort, A. J. McKnight, D. J. Holland and W. Brandinal, "A CMOS stereo 16-bit D/A converter for digital audio," IEEE J. of Solid-State Circuits, vol. SC-22, pp. 390-395, June 1987.
    [7] D. Welland, B. Del Signore, and E. Swanson, "A stereo 16-bit delta-sigma A/D Converter for digital audio," Journal of the Audio Engineering Society, vol. 37, pp. 476-486, June 1989.
    [8] L. R. Carley and J. Kenney, "A 16-bit 4’th order noise-shaping D/A converter," Proceedings of the 1988 IEEE Custom Integrated Circuits Conferences, vol.31, pp. 21.7.1-21.7.4, Rochester, NY, May 1988.
    [9] B. Leung and S. Sutarja, “ Multibit ΣΔ A/D converter incorporating a novel class of dynamic element matching techniques,” IEEE Trans. Circuits and Systems II, vol. 39, no. 1, pp. 35-51, January 1992.
    [10] The MathWorks, Matlab User Guide, The MathWorks, Inc., Natick, MA, 1994.
    [11] S. Haykin, Communication Systems, 3rd ed. John Wiley & Sons, New York, 1994.
    [12] D. A. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, New York, 1997.
    [13] A. V. Oppenheim and A. S. Willky, Signals & Systems, 2nd ed. Prentice-Hall, New Jersey, 1997.
    [14] A. V. Oppenheim and R. W. Schafer, Discrete-time Signal Processing, 2nd ed. Prentice-Hall, New Jersey, 1999.
    [15] P. Aziz, H. Sorensen, and J. Spiegel, ”An overview of sigma-delta converters”, IEEE Signal Processing Magazine, pp. 61-84, January 1996.
    [16] J. C. Candy, "Decimation for delta-sigma modulation," IEEE Trans. Commun., vol. 34, pp. 72-76, January 1986.
    [17] B. Boser and B. Wooley, "The design of sigma-delta modulation analog-to-digital converters," IEEE J. of Solid-State Circuits, vol. SC-23, no. 6, pp. 1298-1308, December 1988.
    [18] Y. Matsuya, K. Uchimura, A. Iwata, T. Kobayashi, M. Ishikawa, and T. Yoshitome, "A 16-bit oversampling A-to-D conversion technology using triple-integration noise shaping," IEEE J. of Solid-State Circuits, vol. SC-22, pp. 921-929, December 1987.
    [19] G. Franklin, J. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addison-Wesley Publishing Company, New York, 1994.
    [20] P. Ferguson, A. Ganesan, and R. Adams, "One bit higher order sigma-delta A/D converters," Proc. 1990 IEEE Int. Symp. Circuits Syst., pp. 890-893, May 1990.
    [21] P. Cusinato, D. Tonietto, F. Stefani, and A. Baschirotto, "A 3.3-V CMOS 10.7-MHz Sixth-Order Bandpass ΣΔ modulator with 74-dB dynamic range," IEEE J. of Solid-State Circuits, vol. 36, no. 4 pp. 629-638, April 2001.
    [22] L. Williams and B. Wooley, “A third-order sigma-delta modulator with extended dynamic range,” IEEE J. Solid-State Circuits, vol. 29, no. 3, pp. 193-202, March 1994.
    [23] M. Rebeschini, N.V. Bavel, P. Rakers, R. Greene, J. Caldwell, and J. Hang, “A 16-b 160-kHz CMOS A/D converter using sigma-delta modulation,” IEEE J. of Solid-State Circuits, vol. 25, no. 2, pp. 431-440, April 1990.
    [24] L. Longo and M. Copeland, “A 13 bit ISDN-band oversampling ADC using two-stage third order noise shaping,” IEEE 1988 Custom Integrated Circuit Conference, pp. 21.2.1-4, 1990.
    [25] L. Williams and B. Wooley, “Third-order cascaded sigma-delta modulators,” IEEE Trans. On Circuits and Systems II, vol. 38, pp. 489-498, May 1991.
    [26] W Chou and R. M. Gray, “Dithering and its effects on sigma-delta and multi-stage sigma-delta modulation,” IEEE Proc. ISCAS’90, pp. 368-371, May 1990.
    [27] S. Rabii and B. A. Wooley, The Design of Low-Voltage, Low-Power Sigma-Delta Modulators, Kluwer Academic Publishers, 1999.
    [28] Behzad Razavi, Principles of Data Conversion System Design, AT&T Bell Laboratories, New York, 1995.
    [29] Hairapetian, G. C. Temes, and Z. X. Zhang, “Multibit sigma-delta modulator with reduced sensitivity to DAC nonlinearity,” Electron. Lett., vol. 27, pp. 990-991, May 1991.
    [30] R. J. Van De Plassche, “A monolithic 14-bit D/A converter,” IEEE J. of Solid-State Circuits, vol. SC-14, no. 3, pp. 552-556, June 1979.
    [31] J. G. Kenney and L. R. Carley, “Design of multi-bit noise-shaping data converters,” Analog Integrated Circuits Signal Proc. J. (Kluwer), vol. 3, pp. 259-272, May 1993.
    [32] J. Shyu, G. C. Temes and F. Krummenacher, “Random error effects in matched MOS capacitors and current sources,” IEEE J. of Solid-State Circuits, vol. SC-19, pp. 948-955, December 1984.
    [33] S. Lindfors, K. A. I. Halonen, “Two-step quantization in multibit ΔΣ modulators,” IEEE Tran. Circuits and Systems II, vol. 48, no. 2, pp. 171-176, February 2001.
    [34] O. Nys and R. K. Henderson, “An analysis of dynamic element matching techniques in sigma-delta modulation,” IEEE Proc. ISCAS’96, pp. 231-234, May 1996.
    [35] K. D. Chen and T. H. Kuo, Automatic Coefficients Synthesis and Circuit Implementation Techniques for High-Order Sigma-Delta Modulator, Ph. D. Thesis, National Cheng Kung University.
    [36] K. D. Chen, and T. H. Kuo, “An improved technique for reducing baseband tones in sigma-delta modulators employing data weighted averaging algorithm without adding dither,” IEEE Trans. On CAS II, vol. 46, no. 1, pp. 63-68, Jan. 1999.
    [37] K. Vieugels, S. Rabii and B. A. Wooley, “A 2.5V broadband multi-bit ΣΔ modulator with 95dB dynamic range,” ISSCC, pp. 50-51, 2001.
    [38] Hairapetian, and G. C. Temes, “A dual-quantization multi-bit sigma-delta analog/digital converter,” IEEE Int. Symp. on Circuits and Systems, pp. 437-441, May 1994.
    [39] S. Hein and A. Zakhor, “On the stability of sigma delta modulator,” IEEE Trans. Signal Proc., vol. 41, no 7, pp. 2322-2348, July 1993.
    [40] L. Risbo, “Stability prediction for high-order Σ-Δ modulators based on quasilinear modeling,” IEEE Proc. ISCAS’94, pp. 361-364, May 1994.
    [41] T. C. Leslie and B. Singh, “An improved sigma-delta modulator architecture,” IEEE Proc. ISCAS’89, vol. 1, pp. 372-375, May 1990.
    [42] B. P. Brandt and B. A. Wooley, “A 50-Mhz multi-bit sigma-delta modulator for 12-b 2-MHz A/D conversion,” IEEE J. of Solid-State Circuits, vol. 26, no. 12, pp. 1764-1756, December 1991.
    [43] G. Yin and W. Sansen, “A high-frequency and high-resolution fourth-order sigma-delta A/D converter in BiCMOS technology,” IEEE J. of Solid-State Circuits, vol. 29, no. 8, pp. 857-865, August 1994.
    [44] D. B. Ribner, R. D. Baertsch, S. L. Garverick, D. T. McGrath, J. E. Krisciunas and T. Fujii, “A third-order multistage sigma-delta modulator with reduced sensitivity to nonidealities,” IEEE J. of Solid-State Circuits, vol. 26, no. 12, pp. 1764-1773, December 1991.
    [45] Y. Greets, M. Marques, M. S. J. Steyaert and W. Sansen, “A 3.3-V, 15-bit delta-sigma ADC with a signal bandwidth of 1.1 MHz for ADSL applications,” IEEE J. of Solid-State Circuits, vol. 34, no. 7, pp. 927-936, July 1999.
    [46] G. C. Temes, “Finite amplifier gain and bandwidth effects in switch-capacitor filters,” IEEE J. of Solid-State Circuits, vol. 15, no. 3, pp. 358-361, June 1980.
    [47] F. Medeiro, A. Pérez-Verdú and A. Rodríguez-Vázquez, Top-Down Design Of High-Performance Sigma-Delta Modulators, Kluwer Academic Publishers, 1999.
    [48] W. Sansen et al., “Transient Analysis of charge transfer in SC filters: Gain error and distortion,” IEEE J. of Solid-State Circuits, vol. 22, pp. 268-276, April 1987.
    [49] Behzad Razavi, Design of Analog CMOS Integrated Circuit, McGraw-Hill, New York, 2001.
    [50] S. Rabii and B. A. Wooley, “A 1.8-V digital-audio sigma-delta modulator in 0.8μm CMOS,” IEEE J. Solid-State Circuits, vol. 32, no. 6, pp. 783-796, June 1997.
    [51] A. N. Karanicolas, H. S. Lee and K. L. Bacrania, "A 15-b 1-Msample/s digitally self-calibrated pipeline ADC," IEEE J. of Solid-State Circuits, vol. 28, no. 12, pp. 1207-1215, December 1993.
    [52] D. G. Haigh and B. Singh, “A switching scheme for switch-capacitor filters, which reduces effectof parasitic capacitances associated with control terminal,” Proc. IEEE Int. Symp. On Circuits and Systems, vol. 2, pp. 586-589, June 1983.
    [53] K. Nagaraj, "SC circuits with reduced sensitivity to finite amplifier gain," Proc. IEEE Int. Symp. Circuits and Syst., pp. 618-621, 1986.
    [54] K. Nagaraj, J. Vlach, T. Viswanathan, and K. Singhal, "Switched-capacitor integrator with reduced sensitivity to amplifier gain," Electronic Letters, vol. 22, no. 21, pp. 1103-1105, October 1986.
    [55] Y. Geerts, M. S. J. Steyaert and W. Sansen, “A high-performance multibit ΔΣ CMOS ADC,” IEEE J. of Solid-State Circuits, vol. 35, no. 12, pp. 1829-1840, December 2000.
    [56] R. J. Baker, H. W. Li and D. E. Boyce, CMOS Circuit Design, Layout, and Simulation, The Institute of Electrical and Electronics Engineers, Inc., New York, 1998.
    [57] J. M. Steininger, “Understanding wide-band MOS transistor,” IEEE Circuits and Devices, vol. 6, no. 3, pp. 26-31, May 1990.
    [58] N. S. Sooch, “MOS Cascode Current Mirror,” U.S. patent, no. 4,550,284, October 1985.
    [59] J. N. Babanezhad and R. Gregorian, "A programmable gain/loss circuit," IEEE J. of Solid-State Circuits, vol. 22, no. 6, pp. 1082-1090, December 1987.
    [60] A. Yukawa, "A CMOS 8-bit high speed A/D converter IC," IEEE J. of Solid-State Circuits, vol. 20, pp. 775-779, June 1985.
    [61] S. Lewis and P. Gray, "A pipelined 5 MHz 9b analog-to-digital converter," IEEE J. of Solid-State Circuits, vol. SC-22, pp. 954-961, December 1987.
    [62] Y. Geerts, M. S. J. Steyaert and W. Sansen, “A high-performance multibit ΔΣ CMOS ADC,” IEEE J. of Solid-State Circuits, vol. 35, no. 12, pp. 1829-1840, December 2000.
    [63] R. J. Baker, H. W. Li and D. E. Boyce, CMOS Circuit Design, Layout, and Simulation, TheInstitute of Electrical and Electronics Engineers, Inc., New York, 1998.
    [64] J. M. Steininger, “Understanding wide-band MOS transistor,” IEEE Circuits and Devices, vol. 6,no. 3, pp. 26-31, May 1990.
    [65] N. S. Sooch, “MOS Cascode Current Mirror,” U.S. patent, no. 4,550,284, October 1985.
    [66] J. N. Babanezhad and R. Gregorian, "A programmable gain/loss circuit," IEEE J. of Solid-State Circuits, vol. 22, no. 6, pp. 1082-1090, December 1987.
    [67] A. Yukawa, "A CMOS 8-bit high speed A/D converter IC," IEEE J. of Solid-State Circuits, vol. 20, pp. 775-779, June 1985.
    [68] S. Lewis and P. Gray, "A pipelined 5 MHz 9b analog-to-digital converter," IEEE J. of Solid-State Circuits, vol. SC-22, pp. 954-961, December 1987.

    QR CODE