簡易檢索 / 詳目顯示

研究生: 莊永安
Yung-An Chuang
論文名稱: 在FMCW雷達系統中使用少於信號源天線數之聯合距離與角度估測演算法
Joint Distance and Angle Estimation with Less Antennas than Sources in FMCW Radar Systems
指導教授: 方文賢
Wen-Hsien Fang
口試委員: 李枝宏
Ju-Hong Lee
丘建青
Chien-ching Chiu
賴坤財
Kuen-Tsair Lay
陳郁堂
Yie-Tarng Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 68
中文關鍵詞: 聯合距離與角度估測FMCW 雷達旋轉不變信號參數估測離散傅立葉轉換濾波信號分離
外文關鍵詞: TOA-DOA estimation, signal separation, less antenna than sources
相關次數: 點閱:294下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們發展了兩個階層式的演算法—Hierarchical DFT-ESPRIT與Hierarchical ESPRIT。這兩個演算法在估量距離方面可分為離散傅立業轉換以及子空間演算法。兩個演算法皆須藉由到達時間(距離)的資訊而設計投影矩陣,利用投影矩陣可將信號做適當的分群,以提高估量的準確度。在角度估量上則是將分群後的信號進行一維ESPRIT來估量參數,以此克服接收天線個數的問題,透過少於目標物之接收天線個數估量出多目標物之距離以及角度,且在每一階段皆使用一維參數估測演算法來進行估量到達時間(距離)與到達方位角,藉此能大幅降低演算法之複雜度。除此之外這兩個演算法所估量的參數無須額外運算即可達到自動配對,最後我們將利用電腦模擬與其他文獻所提供的方法進行比較。模擬結果顯示,我們的演算法在估量準確度以及複雜度之間取得較好的平衡點,也可以從距離與到達方位角點圖上觀察到,我們提出的兩個演算法在不同模擬場景下都保有很好的性能以達到實際上的應用。


    This thesis presents two accurate, yet low-cost algorithms for joint distance and angle estimation of the targets in the Frequency- modulated continuous-wave (FMCW) radar systems. Both algorithms begin with estimation of time delays and distance - one uses the discrete Fourier transform while the other uses the renowned subspace algorithm, estimation of signal parameters via rotational invariance techniques (ESPRIT). Afterward, based on the estimated time delays, we establish a set of projection matrices to separate the received signals into appropriate groups. Finally, ESPRIT is invoked again to estimate the angles of the targets. With such a signal separation process, there is in general only one target in each group, so the subspace algorithms are applicable even if the number of receive antennas is less than that of the targets. Moreover, these two parameters can be precisely estimated with lower computational overhead, as only one parameter needed to be estimated in each stage. The pairing of the estimated distance and angles is also automatically achieved without extra overhead. Simulations show that both algorithms can provide satisfactory estimation accuracy in various scenarios and strike a better trade-off between accuracy and complexity as compared with the state-of-the art works.

    第一章緒論. . . .. . . .. . . .. . . .. . . .. . . .. . . .. . 1 1.1 引言 . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機 . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 內容章節概述 . . . . . . . . . . . . . . . . . . . . . . . 4 第二章相關背景回顧 . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 雷達的種類及應用 . . . . . . . . . . . . . . . . . . . . . . 5 2.2 FMCW 雷達系統與信號模型 . . . . . . . . . . . . . . . . . . . 7 2.3 FMCW 雷達系統參數估測演算法. . . . . . . . . . . . . . . . . 12 2.3.1 離散傅立葉轉換. . . . . . . . . . . . . . . . . . . . . . 13 2.3.2 子空間演算法. . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 結語 . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 第三章聯合距離與角度估測演算法. . . . . . . . . . . . . . . . . . 18 3.1 距離估測演算法. . . . . . . . . . . . . . . . . . . . . . . 18 3.1.1 離散傅立葉演算法. . . . . . . . . . . . . . . . . . . . . 19 3.1.2 子空間演算法. . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 信號分群 . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 角度估測演算法. . . . . . . . . . . . . . . . . . . . . . . 22 3.4 演算法整體流程與討論. . . . . . . . . . . . . . . . . . . . . 24 3.5 結語 . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 第四章模擬結果與討論. . . . . . . . . . . . . . . . . . . . . . . 26 4.1 模擬分析 . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 複雜度分析 . . . . . . . . . . . . . . . . . . . . . . . . . 30 4.3 結語 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 第五章結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . 46 5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . 47 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    [1] S. Tokoro, ``Automotive application systems of a millimeter-wave Radar," in Proc. IEEE Intelligent Vehicles Symp., pp. 260-265, 1996
    [2] H. Rohling and C. Moller, ``Radar waveform for automotive radar systems and applications,'' in Proc. IEEE Radar Conf., pp. 871-876, May. 2004.
    [3] W. Jones,``Building Safer Cars,'' IEEE Spectrum, vol. 39, no. 1, pp. 82-85, Jan. 2002.
    [4] H. Rohling and M. -M. Meinecke, ``Waveform design principles for automotive
    radar systems,'' in Proc IEEE Radar Conf., vol. 4, pp. 1-4, Oct. 2001.
    [5] V. Winkler, ``Range Doppler detection for automotive FMCW radars,'' in Proc. Eur. Microw. Conf., pp. 1445-1448, 2007.
    [6] E. Hyun, W. Oh and J.-H. Lee, ``Two-step moving target detection algorithm for automotive 77 GHz FMCW radar,'' in Proc. IEEE Vehicular Tech. Conference, pp. 1-5, 2010.
    [7] E. Hyun and J.-H. Lee, ``A meothod for multi-target range and velocity detection in automotive FMCW radar,'' in Proc. IEEE Int. Conf. Intell. Transp. Syst., pp. 1-5, Oct. 2009.
    [8] J. Choi, J. Park, and D. Yeom, ``High angular resolution estimation methods for vehicle FMCW radar,'' in Proc. IEEE Radar Conf., vol. 2, pp. 1868-1871, 2011.
    [9] P. Wenig, M. Schoor, O. Gunther, B. Yang, and R. Weigel, ``System design of a 77 GHz automotive radar sensor with superresolution DOA estimation,''in Proc. Int. Signals, Syst., Electron. Symp., pp. 537-540, Jul. 2007.
    [10] R. O. Schmidt, ``Multiple emitter location and signal parameter
    estimation,'' in Proc. RADC Spectral Estimation Workshop,
    Rome, pp. 243-258, NY. 1979.
    [11] R. Roy and T. Kailath, ``ESPRIT-Estimation of signal parameters
    via rotational invariance techniques,'' IEEE Trans. Acoustics, Speech, and Signal Process., vol. 37, no. 7, pp. 984-995, Jul. 1989.
    [12] F. Belfiori, W. van Rossum, and P. Hoogeboom, ``Application of 2D MUSIC algorithm to range-azimuth FMCW radar data,'' in Proc. Eur. Radar Conf., pp. 242-245, Oct. 2012.
    [13] M. D. Zoltowski and K. T. Wong, ``ESPRIT-based 2-D direction
    finding with a sparse uniform array of electromagnetic vector sensors,'' IEEE Trans. Signal Process., vol. 48, no. 8, pp. 2195-2204, Aug. 2000.
    [14] A.N. Lemma, A. J. van der Veen, and Ed F. Deprettere, ``Analysis of ESPRIT based joint angle-frequency estimation,'' in Proc. IEEE Int.
    Conf. Acoustics, Speech, Signal Processing, vol. 5, pp. 3053-3056, Jun. 2000.
    [15] M. C. Vanderveen, C. B. Papadias and A. Paulraj, ``Joint angle and
    delay estimation (JADE) for multipath signals arriving at an
    antenna array,'' IEEE Communications Letters, vol. 1, no. 1, pp. 12-14, Jan. 1997.
    [16] S. Kim, D. Oh and J. Lee, ``Joint DFT-ESPRIT estimation for TOA and DOA in vehicle FMCW radars,'' IEEE Ant. and Wireless Propagation
    Letters, vol. 14, pp. 1710-1713, Apr. 2015.
    [17] D. Oh, Y. Ju, H. Nam, and J. H. Lee, ``Dual smoothing DOA estimation of
    two-channel FMCW radar,'' IEEE Trans. Aerosp. Electron. Syst., vol. 52, no. 2, pp. 904-917, Apr. 2016.
    [18] C.-H. Lin and W.-H. Fang, ``Efficient multidimensional harmonic retrieval:
    a hierarchical signal separation framework,'' IEEE Signal Processing Letters, vol. 20, no. 5, pp. 427-430, May 2013.
    [19] A. M. Hsimovich and R.S. Blum, ``MIMO radar with
    widely separated antennas,'' IEEE Signal Processing Magazine, vol. 25, no. 1, pp. 116-129, Tan. 2008.
    [20] A. G. Stove, ``Linear FMCW radar techniques,'' in Proc. Inst. Electr. Eng. F-Radar Signal Process., vol. 139, no. 5, pp. 343-350, Oct. 1992.
    [21] K. W. Chang, G. S. Dow, H. Wang, T. H. Chen, K. Tan, B. Allen,
    and J. Bere, ``A W-band single-chip transceiver for FMCW radar,'' IEEE Microw. Millimeter-Wave Monolithic Circuits Symp. Dig., vol. 1, pp. 41-44, 1993.
    [22] A. Meta, P. Hoogeboom, and L. P. Ligthart, ``Signal processing for FMCW SAR,'' IEEE Trans. Geosci. Remote Sens., vol. 45, no. 11, pp. 3519-3532, Nov. 2007.
    [23] H. Zhou, P. Cao, and S. Chen, ``A novel waveform design for
    multi-target detection in automotive FMCW radar,''in Proc. IEEE Radar Conf., pp. 1-5, May. 2016.
    [24] S. Kim, I. Paek, and M. K, ``Simulation and test results of triangular fast
    ramp FMCW waveform,''in Proc. IEEE Radar Conf., pp. 1-4, Apr. 2013.
    [25] S.-H. Jeong, Y.-N, Oh, and K.-H Lee, ``Design of 24 GHz radar with
    subspace-based digital beam forming for ACC stop-and-go system,'' ETRIJ., vol. 32, no. 5, pp. 827-830, Oct. 2010.
    [26] Huang, Y., P. Brennan, D. Patrick, I. Weller, P. Roberts, and
    K. Hughes, ``FMCW based MIMO imaging radar for maritime
    navigation,'' Progress In Electromagnetics Research, vol. 115, pp. 327-342, Apr. 2011.
    [27] I. Ziskind and M. Wax, ``Maximum likelihood localization of multiple sources by alternating projection,'' IEEE Trans. Acoustics,
    Speech, and Signal Process., vol. 36, no. 10, pp. 1553-1560, 1988.
    [28] R. L. Lagendijk, J. Biemond, and D. E. Boekee, ``Blur identification using the expectation-maximization algorithm,''
    in Proc. IEEE Int'l Conf. Acoustics, Speech, and Signal Process., pp. 1397-1400, 1989.
    [29] M. Wax and T. Kailath, ``Detection of signals by information
    theoretic criteria,'' IEEE Trans. Acous. Speech, Sig.
    Process., vol. 33, no. 2, pp. 387-392, Apr. 1985.
    [30] Y.-Y. Wang, J.-T. Chen, and W.-H. Fang, ``TST-MUSIC for joint
    DOA-delay estimation,'' IEEE Trans. Signal Process., vol. 46, pp. 721-729, Apr. 2001.
    [31] G. Woods, D. Maskell, and M. Mahoney, ``A high accuracy microwave
    ranging system for industrial applications,'' IEEE Trans.
    Instrum. Meas., vol. 42, pp. 812-816, 1993.
    [32] E. Aboutanios and B. Mulgrew, ``Iterative frequency estimation by interpolation on Fourier coefficients,'' IEEE Trans. Signal Process., vol. 53, no. 4, pp. 1237-1242, Apr. 2005.
    [33] G. L. Charvat, Small and Short-Range Radar Systems.
    1st ed. Boca Raton, FL, USA: CRC Press, 2014
    [34] G. H. Golub and C. F. Van Loan, Matrix Computations.
    3rd ed. Johns Hopkins University Press, 1996.
    [35] S. Kueppers, H. Cetinkaya and N. Pohl, ``A compact 120 GHz SiGe:C based 2 x 8 FMCW MIMO Radar sensor for robot navigation in low visibility environments,'' in Proc. European Radar Conference, 2017.
    [36] Wang, H. N., Y. W. Huang, and S. J. Chung, ``Spatial diversity 24-GHz FMCW radar with ground effect compensation for automotive applications,'' IEEE Transactions on Vehicular Technology, Vol. 66, No. 2, pp.965–973, 2017.
    [37] K. Ogawa and A. Kajiwara, ``2D High Resolution of
    Stepped-FM Radar Based on MUSIC Scheme,'' in Topical Conference on Wireless Sensors and Sensor Networks, pp. 51-54, Mar. 2018.

    QR CODE