簡易檢索 / 詳目顯示

研究生: 林明浩
Ming-Hao Lin
論文名稱: 使用可變重疊平均濾波和混合池化聚焦式優化網路之影像去雜訊方法
Image Denoising Using Adaptive and Overlapped Average Filtering and Mixed-Pooling Attention Refinement Networks
指導教授: 吳晉賢
Chin-Hsien Wu
彭彥璁
Yan-Tsung Peng
口試委員: 林淵翔
Yuan-Hsiang Lin
林昌鴻
Chang-Hong Lin
陳柏豪
Bo-Hao Chen
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 66
中文關鍵詞: 清除圖像雜訊重疊平均混合池化聚焦
外文關鍵詞: image denoising, overlapped averaging, mixed-pooling attention
相關次數: 點閱:241下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前數位相機(鏡頭)是攜帶式的設備(如智慧手機和平板電腦)的重要組成部分,而大部分人們所擁有的智慧手機,可隨時隨地拍照以記錄生活,但相機(鏡頭)拍攝的這些照片可能會受到雜訊的影響,導致後續圖像分析,例如在圖像中進行圖像識別、物體跟踪和物體分類,本篇論文在這基礎上開發了一種有效的去雜訊的組合架構。
    本論文提出了可變重疊平均濾波(AOAF)和混合池聚焦式優化網絡(MARNs),首先,我們應用AOAF輸入具有雜訊的圖像以獲得初步過濾結果,其中雜訊像素經過AOAF去除雜訊後並嘗試恢復原來圖像的樣貌,接下來以AOAF所輸出的圖像作為MARNs的輸入,產生更細緻化的圖像,並在該圖像中更進一步地重建圖像細節和邊緣,實驗結果證明,我們的方法相對於最新技術具有良好的去雜訊能力。


    Cameras are essential parts of portable devices, such as smartphones and tablets. Mostpeople have a smartphone and can take pictures anywhere and any time to record their lives. However, these pictures captured by cameras may suffer from noise contamination, causing issues for subsequent image analysis, such as image recognition, object tracking, and classification of an objectin the image. This paper develops an effective combinational denoising framework based on theproposed Adaptive and Overlapped Average Filtering (AOAF) and Mixed-pooling Attention Refinement Networks (MARNs). First, we apply AOAF to the noisy input image to obtain a preliminarily denoised result, where noisy pixels are removed and recovered. Next, MARNs take the preliminary result as the input and output a refined image where details and edges are better reconstructed. The experimental results demonstrate that our method performs favorably against state-of-the-art denoising methods.

    第1章 緒 論 11 1.1 研究背景與動機 11 1.2 論文組織及概觀 13 第2章 圖像去雜訊先前技術 14 2.1 清除胡椒鹽雜訊的方法 14 2.2 使用傳統線性或非線性過濾器去除雜訊 18 2.2.1 MDBUTMF [8] 19 2.2.2 DAMF [9] 20 2.2.3 FASMF [10] 22 2.2.4 OAGS [27] 23 2.2.5 MMAP [11] 25 2.3 用深度學習神經網路去除雜訊 28 第3章 論文方法 30 3.1 可變重疊平均過濾器(ADAPTIVE AND OVERLAPPED AVERAGE FILTERING,AOAF) 30 3.1.1 演算法之原理 30 3.1.2 演算法詳細流程 34 3.2 混合池化聚焦式優化網路(MIXED-POOLING ATTENTION REFINEMENT NETWORKS,MARNS) 38 演算法之原理 38 第4章 實驗結果 43 4.1 訓練及測試的設定 43 4.2 效能方法的比較 44 4.2.1 PSNR(Peak Signal to Noise Ratio) 44 4.2.2 SSIM(Structural Similarity Index) [25] 45 4.2.3 NIQE(Natural Image Quality Evaluator) [26] 46 第5章 結論 63 參考文獻 64

    [1] Huang, S.C.; Peng, Y.T.; Chang, C.H.; Cheng, K.H.; Huang, S.W.; Chen, B.H. Restoration of Images With High-Density Impulsive Noise Based on Sparse Approximation and Ant-Colony Optimization. IEEE Access 2020, 8, 99180–99189. [CrossRef]
    [2] Chen, H.J.; Ruan, S.J.; Huang, S.W.; Peng, Y.T. Lung X-ray Segmentation using Deep Convolutional Neural Networks on Contrast-Enhanced Binarized Images. Mathematics 2020, 8, 545. [CrossRef]
    [3] Yang, H.; Wang, J.; Miao, Y.; Yang, Y.; Zhao, Z.; Wang, Z.; Sun, Q.; Wu, D.O. Combining spatio-temporal context and Kalman filtering for visual tracking. Mathematics 2019, 7, 1059. [CrossRef]
    [4] Astola, J.; Kuosmanen, P. Fundamentals of Nonlinear Digital Filtering; CRC Press: Boca Raton, FL, USA, 1997.
    [5] Toh, K.K.V.; Isa, N.A.M. Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction. Signal Process. Lett. 2009, 17, 281–284. [CrossRef]
    [6] Zhang, S.; Karim, M.A. A new impulse detector for switching median filters. Signal Process. Lett. 2002, 9, 360–363. [CrossRef]
    [7] Ng, P.E.; Ma, K.K. A switching median filter with boundary discriminative noise detection for extremely corrupted images. IEEE Trans. Image Process. 2006, 15, 1506–1516. [PubMed]
    [8] Esakkirajan, S.; Veerakumar, T.; Subramanyam, A.N.; PremChand, C. Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter. Signal Process. Lett. 2011, 18, 287–290. [CrossRef]
    [9] Erkan, U.; Gökrem, L.; Engino˘glu, S. Different applied median filter in salt and pepper noise. Comput. Electr. Eng. 2018, 70, 789–798. [CrossRef]
    [10] Fareed, S.B.S.; Khader, S.S. Fast adaptive and selective mean filter for the removal of high-density salt and pepper noise. IET Image Process. 2018, 12, 1378–1387. [CrossRef]
    [11] Satti, P.; Sharma, N.; Garg, B. Min-Max Average Pooling Based Filter for Impulse Noise Removal. Signal Process. Lett. 2020, 27, 1475–1479. [CrossRef]
    [12] Chen, F.; Ma, G.; Lin, L.; Qin, Q. Impulsive noise removal via sparse representation. J. Electron. Imaging 2013, 22, 043014. [CrossRef]
    [13] Aggarwal, H.K.; Majumdar, A. Exploiting spatiospectral correlation for impulse denoising in hyperspectral images. J. Electron. Imaging 2015, 24, 013027. [CrossRef]
    [14] Yin, J.L.; Chen, B.H.; Li, Y. Highly accurate image reconstruction for multimodal noise suppression using semisupervised learning on big data. IEEE Trans. Multimed. 2018, 20, 3045–3056. [CrossRef]
    [15] Ulyanov, D.; Vedaldi, A.; Lempitsky, V. Deep image prior. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Guangzhou, China, 23–26 November 2018.
    [16] Xing, Y.; Xu, J.; Tan, J.; Li, D.; Zha, W. Deep CNN for removal of salt and pepper noise. IET Image Process. 2019, 13, 1550–1560. [CrossRef]
    [17] Laine, S.; Karras, T.; Lehtinen, J.; Aila, T. High-quality self-supervised deep image denoising. In Proceedings of the Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019.
    [18] Agustsson, E.; Timofte, R. Ntire 2017 challenge on single image super-resolution: Dataset and study. In Proceedings of the Conference on Computer Vision and Pattern Recognition Workshops, Honolulu, HI, USA, 21–26 July 2017.
    [19] Kong, L.; Wen, H.; Guo, L.; Wang, Q.; Han, Y. Improvement of linear filter in image denoising. In Proceedings of the International Conference on Intelligent Earth Observing and Applications 2015, Guilin, China, 23–24 October 2015.
    [20] Brownrigg, D.R. The weighted median filter. Commun. ACM 1984, 27, 807–818. [CrossRef]
    [21] Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of the Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), Bombay, India, 7 January 1998.
    [22] Francis, J.; De Jager, G. The bilateral median filter. In Proceedings of the 14th Annual Symposium of the Pattern Recognition Association of South Africa, Langebaan, South Africa, 27–28 November 2003.
    [23] Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [CrossRef] [PubMed]
    [24] Hou, Q.; Zhang, L.; Cheng, M.M.; Feng, J. Strip pooling: Rethinking spatial pooling for scene parsing. In Proceedings of the Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020.
    [25] Zhou, W. Image quality assessment: from error measurement to structural similarity. IEEE Trans. Image Process. 2004, 13, 600–613.
    [26] Mittal, A.; Soundararajan, R.; Bovik, A.C. Making a “completely blind” image quality analyzer. Signal Process. Lett. 2012, 20, 209–212. [CrossRef]
    [27] Y.-T. Peng, M.-H. Lin, C.-L. Tang, C.-H. Wu, Image denoising based on overlapped and adaptive gaussian smoothing and convolutionalrefinement networks, in: IEEE International Symposium on Multimedia (ISM), 2019 (2019).

    無法下載圖示
    全文公開日期 2031/10/27 (校外網路)
    全文公開日期 2031/10/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE