簡易檢索 / 詳目顯示

研究生: 卡齊
Qazi Mazhar Ul Haq
論文名稱: 一種基於邊緣感知的雙目圖像立體匹配特徵提取技術
An Edge­-aware Based Feature set Extraction and Stereo Matching of Binocular Images Under Radiometric Variation
指導教授: 阮聖彰
Shanq-Jang Ruan
口試委員: 林昌鴻
Chang-Hong Lin
呂政修
Jenq-Shiou Leu
魏榮宗
Rong-Jong Wai
彭文志
Wen-Chih Peng
彭彥璁
Yan-Tsung Peng
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 90
中文關鍵詞: 立體匹配功能集直方圖均衡双目影像梯度模型中值濾波
外文關鍵詞: Stereo Matching, Feature sets, Histogram Equalization, Binocular images, Gradient Models, Median filtering
相關次數: 點閱:250下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 物件立體視覺通常是電腦視覺中深入研究的領域之一。立體匹配用於許多現代應用,包括機器人導航、增強現實和汽車應用。儘管它有著悠久的研究歷史,但對於輻射變化下的無紋理、不連續和遮擋區域的邊緣仍然具有挑戰性。這篇研究文章提出了一種改進的長條圖均衡化、一種新穎的特徵提取、一種空間梯度模型和匹配成本,它對在不同輻射變化下拍攝的圖像具有魯棒性和穩定性。所提出的方法將不良圖元的平均百分比降低到 3.35,並將 Middlebury 資料集上差異照明和曝光值的相對均方誤差 (RMSE) 降低到 30.08。對所提出方法的定量和定性評估表明,在增加 PSNR 和降低壞圖元百分比方面對輻射變化和最先進的局部立體匹配演算法有顯著改善。


    Object Stereo Vision has conventionally been one of the deeply examined areas in com­puter vision. Stereo matching is employed in numerous modern applications, including robot navigation, augmented reality, and automotive applications. Even though it has a long research history, it is still challenging for the edges of textureless, discontinues, and occluded regions under radiometric variation. This research article proposes a modified histogram equalization, a novel feature extraction, a spatial gradient model, and matching cost, which is robust and stable to images taken in different radiometric variations. The proposed method reduced the average percentage of bad pixels to 3.35 and reduced the relative mean square error (RMSE) up to 30.08 on the Middlebury dataset for different illumination and exposure values. Quantitative and qualitative evaluation of the proposed method demonstrates significant improvement in increasing PSNR and decreasing bad pixel percentage against radiometric variation and state­of­the­art local stereo matching algorithms.

    Recommendation Letter Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Applications of Stereo Matching . . . . . . . . . . . . . . . . . . . . . . 1.3 Fundamentals of Stereo Matching . . . . . . . . . . . . . . . . . . . . . 1.4 Disparity Estimation steps . . . . . . . . . . . . . . . . . . . . . . . . 1.5 Stereo Matching Under Radiometric Condition . . . . . . . . . . . . . . 1.6 Organization of this Dissertation . . . . . . . . . . . . . . . . . . . . . . 2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1 Overview of Stereo Matching . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Global methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Local methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4 Multi­stages of Stereo Matching . . . . . . . . . . . . . . . . . . . . . . 2.4.1 Matching Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.2 Cost Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 2.4.3 Disparity Optimization . . . . . . . . . . . . . . . . . . . . . . . 2.4.4 Disparity Map Refinement: . . . . . . . . . . . . . . . . . . . . . 2.5 Existing techniques on Stereo Matching . . . . . . . . . . . . . . . . . . 2.5.1 Sum of Square Differences (SSD): . . . . . . . . . . . . . . . . . 2.5.2 Sum of Absolute Differences (SAD): . . . . . . . . . . . . . . . 2.5.3 Census Transform (CT): . . . . . . . . . . . . . . . . . . . . . . 2.5.4 Normalized Cross Correlation (NCC): . . . . . . . . . . . . . . . 2.5.5 Rank Transform (RT): . . . . . . . . . . . . . . . . . . . . . . . 3 Proposed Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.1 Modified histogram equalization . . . . . . . . . . . . . . . . . . . . . . 3.2 Extracting Feature Set . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.3 Adaptive Entropy based Weighting . . . . . . . . . . . . . . . . . . . . . 3.4 Local Stereo Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.5 Weighted Median Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Evaluation of Robustness to Radiometric Variation . . . . . . . . . . . . 4.3 Evaluation and Comparisons on Percentage of Bad Pixels. . . . . . . . . 4.4 Evaluation on Peak Signal to Noise Ratio (PSNR) . . . . . . . . . . . . . 4.5 Root Mean Square Value (RMSE) . . . . . . . . . . . . . . . . . . . . . 4.6 Visualization of Images for Different Radiometric Condition . . . . . . . 5 Conclusions and Future Works . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . APPENDIX A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    [1] Q.M. U.Haq, M. A.Haq, S.­J. Ruan, P.­J.Liang, and D.­Q.Gao, “3d object detection based on proposal generation network utilizing monocular images,” IEEE Consumer Electronics Magazine, pp. 1–1, DOI: 10.1109/MCE.2021.3059565, 2021.
    [2] P. Chondro, Z.­R. Yao, and S.­J. Ruan, “Depth­based dynamic lightness adjust­ment power­saving algorithm for AMOLED in head­mounted display,”Optics express,vol. 26, no. 25, pp. 33158–33165, 2018.
    [3] Q. M. U. Haq, S.­J. Ruan, M. A. Haq, S. Karam, J. L. Shieh, P. Chondro, and D.­Q.Gao, “An incremental learning of yolov3 without catastrophic forgetting for smart city applications,” IEEE Consumer Electronics Magazine, pp. 1–1, DOI:10.1109/MCE.2021.3096376, 2021.
    [4] Y. Xu, M. Li, L. Cui, S. Huang, F. Wei, and M. Zhou, “Layoutlm: Pre­trainingof text and layout for document image understanding,” in Proceedings of the 26th ACMSIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1192–1200, 2020.
    [5] T. Kanade and M. Okutomi, “A stereo matching algorithm with an adaptive window: Theory and experiment,” IEEE Transactions on Pattern Analysis and Machine In­telligence, vol. 16, no. 9, pp. 920–932, 1994.
    [6] K.­J. Yoon and I. S. Kweon, “Adaptive support­weight approach for correspondence search,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 4, pp. 650–656, 2006.
    [7] M. Gong and Y.­H. Yang, “Near real­time reliable stereo matching using pro­grammable graphics hardware,” in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 924–931, IEEE,2005.
    [8] E. Gudis, G. van der Wal, S. Kuthirummal, S. Chai, S. Samarasekera, R. Kumar, and V. Branzoi, “Stereo vision embedded system for augmented reality,” in201282
    IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 15–20, IEEE, 2012.
    [9] Z. Zhang, X. Ai, N. Canagarajah, and N. Dahnoun, “Local stereo disparity estimation with novel cost aggregation for sub­pixel accuracy improvement in automotive ap­plications,” in 2012 IEEE Intelligent Vehicles Symposium, pp. 99–104, IEEE, 2012.
    [10] J. M. López­Valles, M. A. Fernández, A. Fernández­Caballero, M. T. López, J. Mira,and A. E. Delgado, “Motion­based stereo vision method with potential utility in robot navigation,” in International Conference on Industrial, Engineering and Other Ap­plications of Applied Intelligent Systems, pp. 16–25, Springer, 2005.
    [11] X. Zhou and P. Boulanger, “Radiometric invariant stereo matching based on rela­tive gradients,” in 2012 19th IEEE International Conference on Image Processing, pp. 2989–2992, IEEE, 2012.
    [12] H. Hirschmuller and D. Scharstein, “Evaluation of stereo matching costs on images with radiometric differences,” IEEE Transactions on Pattern Analysis and MachineIntelligence, vol. 31, no. 9, pp. 1582–1599, 2008.
    [13] N. Gac, S. Mancini, M. Desvignes, and D. Houzet, “High-speed 3d tomography CPU, GPU, and FPGA,” EURASIP Journal on Embedded systems, vol. 2008, pp. 1–12,2009.
    [14] G. Zhao, Y. K. Du, and Y. D. Tang, “A new extension of the rank transform for stereo matching,” inAdvanced Engineering Forum, vol. 2, pp. 182–187, Trans Tech Publ,2012.
    [15] X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and X. Zhang, “On building an ac­curate stereo matching system on graphics hardware,” in 2011 IEEE InternationalConference on Computer Vision Workshops (ICCV Workshops), pp. 467–474, IEEE,2011.
    [16] C. Cigla and A. A. Alatan, “Information permeability for stereo matching,” Signal Processing: Image Communication, vol. 28, no. 9, pp. 1072–1088, 2013.83
    [17] K. R. Vijayanagar, M. Loghman, and J. Kim, “Real­time refinement of Kinect depth map using multi­resolution anisotropic diffusion,” Mobile Networks and Applica­tions, vol. 19, no. 3, pp. 414–425, 2014.
    [18] M. Michael, J. Salmen, J. Stallkamp, and M. Schlipsing, “Real­time stereo vision: Optimizing semi­global matching,” in2013 IEEE Intelligent Vehicles Symposium(IV), pp. 1197–1202, IEEE, 2013.
    [19] Z. Ma, K. He, Y. Wei, J. Sun, and E. Wu, “Constant time-weighted median filtering for stereo matching and beyond,” in Proceedings of the IEEE International Confer­ence on Computer Vision, pp. 49–56, 2013.
    [20] A. Banno and K. Ikeuchi, “Disparity map refinement and 3d surface smoothing via directed anisotropic diffusion,” Computer Vision and Image Understanding, vol. 115, no. 5, pp. 611–619, 2011.
    [21] S. Zhang, C. Wang, and S. Chan, “A new high-resolution depth map estimation sys­tem using stereo vision and depth-sensing device,” in 2013 IEEE 9th InternationalColloquium on Signal Processing and its Applications, pp. 49–53, IEEE, 2013.
    [22] E. Z. Psarakis and G. D. Evangelidis, “An enhanced correlation­based method for stereo correspondence with subpixel accuracy,” in Tenth IEEE International Con­ference on Computer Vision (ICCV’05) Volume 1, vol. 1, pp. 907–912, IEEE, 2005.[23] B. Jia, S. Liu, and Z. Du, “A progressive framework for dense stereo matching,” Pattern Recognition and Image Analysis, vol. 26, no. 2, pp. 294–301, 2016.
    [24] S. Mukherjee and R. M. R. Guddeti, “A hybrid algorithm for disparity calculation from sparse disparity estimates based on stereo vision,” in2014 International Con­ference on Signal Processing and Communications (SPCOM), pp. 1–6, IEEE, 2014.
    [25] K. Zhang, J. Li, Y. Li, W. Hu, L. Sun, and S. Yang, “Binary stereo matching,” inPro­ceedings of the 21st International Conference on Pattern Recognition (ICPR2012), pp. 356–359, IEEE, 2012.
    [26] G. A. Kordelas, D. S. Alexiadis, P. Daras, and E. Izquierdo, “Enhanced disparity estimation in stereo images,” Image and Vision Computing, vol. 35, pp. 31–49, 2015.84
    [27] S. Lee, J. H. Lee, J. Lim, and I. H. Suh, “Robust stereo matching using adaptive random walk with restart algorithm,” Image and Vision Computing, vol. 37, pp. 1–11, 2015.
    [28] M. Yang, Y. Liu, Y. Cai, and Z. You, “Stereo matching based on classification of materials,” Neurocomputing, vol. 194, pp. 308–316, 2016.
    [29] Y. S. Heo, K. M. Lee, and S. U. Lee, “Robust stereo matching using adaptive nor­malized cross­correlation,” IEEE Transactions on Pattern Analysis and Machine In­telligence, vol. 33, no. 4, pp. 807–822, 2010.
    [30] I.­L. Jung, T.­Y. Chung, J.­Y. Sim, and C.­S. Kim, “Consistent stereo matching under varying radiometric conditions,” IEEE Transactions on Multimedia, vol. 15, no. 1, pp. 56–69, 2012.
    [31] Y. S. Heo, K. M. Lee, and S. U. Lee, “Joint depth map and color consistency estima­tion for stereo images with different illuminations and cameras,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 5, pp. 1094–1106, 2012.
    [32] T. Mounts, N. Aouf, and M. A. Richardson, “A novel image representation via local frequency analysis for illumination invariant stereo matching,” IEEE Transactions on Image Processing, vol. 24, no. 9, pp. 2685–2700, 2015.
    [33] V. D. Nguyen, D. D. Nguyen, S. J. Lee, and J. W. Jeon, “Local density encoding for robust stereo matching,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 12, pp. 2049–2062, 2014.
    [34] Y. Qu, J. Jiang, X. Deng, and Y. Zheng, “Robust local stereo matching under varying radiometric conditions,” IET Computer Vision, vol. 8, no. 4, pp. 263–276, 2014.
    [35] V. Q. Dinh, V. D. Nguyen, and J. W. Jeon, “Robust matching cost function for stereo correspondence using matching by tone mapping and adaptive orthogonal integral image,” IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 5416–5431,2015.85
    [36] L. Xu, O. C. Au, W. Sun, L. Fang, F. Zou, and J. Li, “Stereo matching with optimal local adaptive radiometric compensation,” IEEE Signal Processing Letters, vol. 22, no. 2, pp. 131–135, 2014.
    [37] L. De­Maeztu, A. Villanueva, and R. Cabeza, “Stereo matching using gradient sim­ilarity and locally adaptive support­weight,” Pattern Recognition Letters, vol. 32, no. 13, pp. 1643–1651, 2011.
    [38] I.­L. Jung, J.­Y. Sim, C.­S. Kim, and S.­U. Lee, “Robust stereo matching under ra­diometric variations based on cumulative distributions of gradients,” in 2013 IEEE International Conference on Image Processing, pp. 2082–2085, IEEE, 2013.
    [39] Y.­H. Kim, J. Koo, and S. Lee, “Adaptive descriptor­based robust stereo matching under radiometric changes,” Pattern Recognition Letters, vol. 78, pp. 41–47, 2016
    .[40] C.­K. Liang, C.­C. Cheng, Y.­C. Lai, L.­G. Chen, and H. H. Chen, “Hardware­efficient belief propagation,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 5, pp. 525–537, 2011.
    [41] M. Z. Brown, D. Burschka, and G. D. Hager, “Advances in computational stereo,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 8, pp. 993–1008, 2003.
    [42] H. Hirschmuller, “Stereo processing by semi-global matching and mutual informa­tion,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 2, pp. 328–341, 2007.
    [43] K. Yamaguchi, D. McAllester, and R. Urtasun, “Efficient joint segmentation, occlu­sion labeling, stereo, and flow estimation,” in European Conference on ComputerVision, pp. 756–771, Springer, 2014.
    [44] C. Zhang, Z. Li, Y. Cheng, R. Cai, H. Chao, and Y. Rui, “Meshstereo: A global stereo model with mesh alignment regularization for view interpolation,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 2057–2065, 2015.86
    [45] D.Scharsteinand R.Szeliski, “A taxonomy and evaluation of dense two­framestereocorrespondence algorithms,” International Journal of Computer Vision, vol. 47, no. 1, pp. 7–42, 2002.
    [46] X. Zhang and Z. Chen, “Sad­based stereo vision machine on a system­on­programmable­chip (sopc),” Sensors, vol. 13, no. 3, pp. 3014–3027, 2013.
    [47] R. K. Gupta and S.­Y. Cho, “Window­based approach for fast stereo correspon­dence,” IET Computer Vision, vol. 7, no. 2, pp. 123–134, 2013.
    [48] K. Sharma, K.­y. Jeong, and S.­G. Kim, “Vision-based autonomous vehicle navi­gation with self­organizing map feature matching technique,” in 2011 11th Interna­tional Conference on Control, Automation, and Systems, pp. 946–949, IEEE, 2011.
    [49] X. Song, X. Zhao, L. Fang, H. Hu, and Y. Yu, “Edgestereo: An effective multi­tasklearning network for stereo matching and edge detection,” International Journal of Computer Vision, vol. 128, no. 4, pp. 910–930, 2020.
    [50] F. Ekstrand, C. Ahlberg, M. Ekström, and G. Spampinato, “High­speedsegmentation­driven high­resolution matching,” in Seventh International Confer­ence on Machine Vision (ICMV 2014), vol. 9445, p. 94451Y, International Society for Optics and Photonics, 2015.
    [51] D.Scharsteinand R.Szeliski, “A taxonomy and evaluation of dense two­framestereocorrespondence algorithms,” International Journal of Computer Vision, vol. 47, no. 1, pp. 7–42, 2002.
    [52] J. Fang, A. L. Varbanescu, J. Shen, H. Sips, G. Saygili, and L. Van Der Maaten, “Accelerating cost aggregation for real­time stereo matching,” in2012 IEEE 18thInternational Conference on Parallel and Distributed Systems, pp. 472–481, IEEE,2012.
    [53] A. Hosni, M. Bleyer, and M. Gelautz, “Secrets of adaptive support weight techniques for local stereo matching,” Computer Vision and Image Understanding, vol. 117, no. 6, pp. 620–632, 2013.87
    [54] L. Nalpantidis and A. Gasteratos, “Stereo vision for robotic applications in the pres­ence of non­ideal lighting conditions,” Image and Vision Computing, vol. 28, no. 6, pp. 940–951, 2010.
    [55] K. Zhang, J. Lu, Q. Yang, G. Lafruit, R. Lauwereins, and L. Van Gool, “Real­timeand accurate stereo: A scalable approach with bitwise fast voting on Cuda,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 7, pp. 867–878, 2011.
    [56] Z. Lee, J. Juang, and T. Q. Nguyen, “Local disparity estimation with three­modedcross census and advanced support weight,” IEEE Transactions on Multimedia, vol. 15, no. 8, pp. 1855–1864, 2013.
    [57] H.­q. Wang, M. Wu, Y.­b. Zhang, and L. Zhang, “Effective stereo matching using reliable points-based graph cut,” in 2013 Visual Communications and Image Pro­cessing (VCIP), pp. 1–6, IEEE, 2013.
    [58] A. Arranz, Á. Sánchez, and M. Alvar, “Multiresolution energy minimization frame­work for stereo matching,” IET Computer Vision, vol. 6, no. 5, pp. 425–434, 2012.
    [59] Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér, “Stereo matching withcolor­weighted correlation, hierarchical belief propagation, and occlusion handling,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 3, pp. 492–504, 2008.
    [60] A. Fusiello, U. Castellani, and V. Murino, “Relaxing symmetric multiple windows stereo using Markov random fields,” inInternationalWorkshoponEnergyMinimiza­tion Methods in Computer Vision and Pattern Recognition, pp. 91–105, Springer,2001.
    [61]R. Yang and M. Pollefeys, “Multi­resolution real­time stereo on commodity graphics hardware,” in 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings., vol. 1, pp. I–I, IEEE, 2003.
    [62]B. J. Tippetts, D.­J. Lee, J. K. Archibald, and K. D. Lillywhite, “Dense disparityreal­time stereo vision algorithm for resource­limited systems,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 21, no. 10, pp. 1547–1555, 2011.88
    [63]S. H. Lee and S. Sharma, “Real­time disparity estimation algorithm for stereo camera systems,” IEEE Transactions on Consumer Electronics, vol. 57, no. 3, pp. 1018–1026, 2011.
    [64]M. Humenberger, C. Zinner, M. Weber, W. Kubinger, and M. Vincze, “A fast stereo matching algorithm suitable for embedded real­time systems,” Computer Vision and Image Understanding, vol. 114, no. 11, pp. 1180–1202, 2010.
    [65]L. Ma, J. Li, J. Ma, and H. Zhang, “A modified census transform based on the neigh­borhood information for the stereo matching algorithm,” in 2013 Seventh InternationalConference on Image and Graphics, pp. 533–538, IEEE, 2013.
    [66]H. Hirschmuller and D. Scharstein, “Evaluation of cost functions for stereo match­ing,” in2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, IEEE, 2007.
    [67]S. Satoh, “Simple low­dimensional features are approximating ncc­based image match­ing,” Pattern Recognition Letters, vol. 32, no. 14, pp. 1902–1911, 2011.
    [68]D. Scharstein and C. Pal, “Learning conditional random fields for stereo,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, IEEE, 2007.
    [69] L. De­Maeztu, A. Villanueva, and R. Cabeza, “Stereo matching using gradient sim­ilarity and locally adaptive support­weight,” Pattern Recognition Letters, vol. 32, no. 13, pp. 1643–1651, 2011.
    [70]I.­L. Jung, J.­Y. Sim, C.­S. Kim, and S.­U. Lee, “Robust stereo matching under ra­diometric variations based on cumulative distributions of gradients,” in2013 IEEE International Conference on Image Processing, pp. 2082–2085, IEEE, 2013.
    [71] A. Banno and K. Ikeuchi, “Disparity map refinement and 3d surface smoothing via directed anisotropic diffusion,” Computer Vision and Image Understanding, vol. 115, no. 5, pp. 611–619, 2011.
    [72]H. Liu, R. Wang, Y. Xia, and X. Zhang, “Improved cost computation and adaptive shape guided filter for local stereo matching of low texture stereo images,” Applied Sciences, vol. 10, no. 5, p. 1869, 2020.89

    [73] J. Lim and S. Lee, “Patchmatch­based robust stereo matching under radiometric changes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, no. 5, pp. 1203–1212, 2018.
    [74] S. Katsigiannis, J. Scovell, N. Ramzan, L. Janowski, P. Corriveau, M. A. Saad, and G. Van Wallendael, “Interpreting mos scores, when can users see a difference? un­derstanding user experience differences for photo quality,” Quality and User Expe­rience, vol. 3, no. 1, pp. 1–14, 2018.
    [75] A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in 2010 20th Interna­tional Conference on Pattern Recognition, pp. 2366–2369, IEEE, 2010.
    [76] L. De­Maeztu, S. Mattoccia, A. Villanueva, and R. Cabeza, “Linear stereo match­ing,” in2011 International Conference on Computer Vision, pp. 1708–1715, IEEE,2011.[77] K.­H. Thung and P. Raveendran, “A survey of image quality measures,” in 2009 International Conference for Technical Postgraduates (TECHPOS), pp. 1–4, IEEE,2009.
    [78] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEEsignalprocessingletters, vol. 9, no. 3, pp. 81–84, 2002.90

    無法下載圖示 全文公開日期 2023/12/06 (校內網路)
    全文公開日期 2026/12/06 (校外網路)
    全文公開日期 2026/12/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE