簡易檢索 / 詳目顯示

研究生: 蔡承全
Cheng-Chuan Tsai
論文名稱: 以半導體光放大器為增益介質之線性共振腔多波長可調光纖雷射
Linear-Cavity Tunable Multi-Wavelength Fiber Lasers Using an SOA as Gain Medium
指導教授: 廖顯奎
Shien-Kuei Liaw 
口試委員: 徐世祥
Shih-Hsiang Hsu
王倫
Lon A. Wang
單秋成
Chow-Shing Shin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 87
中文關鍵詞: 波長可調光纖雷射極化控制器雙通型Mach-Zehnder干涉濾波器Sagnac迴路反射鏡多波道光纖雷射半導體光放大器
外文關鍵詞: semiconductor optical amplifier, multi-channel fiber laser, wavelength-tunable fiber laser, fiber polarization controller, Sagnac loop mirror, double-pass Mach-Zehnder interferometer
相關次數: 點閱:308下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製以半導體光放大器為增益介質之光纖雷射。我們設計三種多波長且波長可調之線性型光纖雷射,第一種架構為利用Fabry-Perot濾波器作為多波長選擇元件,實驗輸出可得到波道間距為0.4 nm之國際電信聯盟之標準規範,平坦且穩定的多波道數目可達36個波長。第二種架構為以極化保持光纖與3 dB光耦合器所組成的Sagnac迴路反射鏡作為多波長濾波元件,它具有低成本與低損耗特性,波道間距也可設定到0.4或0.8 nm,在偏壓電流480 mA下中心雷射輸出功率為-11 dBm且有23 dB的光訊雜比。第三種架構則利用全光纖式雙通型Mach-Zehnder干涉法設計的濾波元件來研製多波道雷射光源,同樣可選取0.4或0.8nm之波道間距,在增益介質偏壓電流480 mA下可提供約14 dB的有效增益,光源之訊雜比可達32 dB。上述三種架構在共振腔內皆可加入光纖極化控制器有效改變雷射共振腔之極化相關損耗,達到波長可調的效果。我們發現雙通型Mach-Zehnder干涉濾波元件式雷射架構可得到波長變動範圍達34 nm,且變動過程皆可維持鄰近波道間之功率穩定性。


    This thesis proposes fiber lasers using a semiconductor optical amplifier (SOA) as the gain medium. We propose three schemes of linear-cavity multi-wavelength fiber lasers. The first structure uses a commercial Fabry-Perot filter as a multi-channel generator in the laser cavity. The experimental result indicates that the 36 wavelengths have stable output powers in 0.4 nm channel spacing nm corresponding to the ITU-T grid of 50 GHz. The second structure consists of a Sagnac loop mirror (SLM), which used as a low-loss comb filter inside the resonant cavity. Channel spacing of either 0.4 or 0.8 nm could be generated depends on the optical path length. The output peak power at central wavelength is -11 dBm and signal to noise ratio (SNR) is 23 dB, respectively. The third structure is based on an all-fiber based double-pass Mach-Zehnder interferometer (DP-MZI), which is used as comb-filter for generating the multiple channels. Channel spacing of either 0.4 or 0.8 nm could be generated. When the SOA drive current is biased at 480 mA, a small signal gain of 14 dB is obtained with an output SNR of 32 dB. Moreover, , we effectively change the polarization-dependent property of these laser cavities using a polarization controller. A wide tuning range of up to 34 nm, with stable output power, among during wavelength tuning is obtained.

    摘要 .....................................................................................................................I Abstract ..............................................................................................................II 誌謝 ..................................................................................................................III 目錄 ..................................................................................................................IV 圖表索引 ..........................................................................................................VI 符號表 ..............................................................................................................X 第一章 緒論 ......................................................................................................1 1.1 前言 .....................................................................................................1 1.2 研究動機 .............................................................................................2 1.3 論文架構 .............................................................................................3 第二章 多波長光纖雷射相關組件基本原理...................................................5 2.1 半導體光放大器原理介紹 .................................................................5 2.2 激發性與自發性轉換效率 .................................................................9 2.3 半導體光放大器增益及頻寬特性 ...................................................11 2.4 光纖極化控制器 ...............................................................................16 2.5 極化保持光纖 ...................................................................................18 2.6 均勻與非均勻增益介質特性的影響 ...............................................20 第三章 Fabry-Perot濾波器式多波長可調光纖雷射 ..................................22 3.1 光纖迴路反射鏡原理介紹 ...............................................................22 3.2 Fabry-Perot濾波器原理介紹 ...........................................................24 3.3 Fabry-Perot濾波器特性量測 ...........................................................27 3.4 Fabry-Perot濾波器式多波長光纖雷射架構量測 ...........................28 3.5 Fabry-Perot濾波器式多波長可調光纖雷射 ...................................35 3.6 本章小節 ...........................................................................................38 第四章 Sagnac迴路反射式多波長可調光纖雷射 .......................................39 4.1 Sagnac迴路反射濾波器原理介紹 ..................................................39 4.2 Sagnac迴路反射鏡特性量測 ..........................................................42 4.2.1 波道間距0.4 nm .................................................................43 4.2.2 波道間距0.8 nm .................................................................45 4.3 Sagnac迴路反射式多波長光纖雷射架構量測 ..............................47 4.4 Sagnac迴路反射式多波長可調光纖雷射 ......................................56 4.5 本章小結 ...........................................................................................59 第五章 雙通型Mach-Zehnder干涉濾波器式多波長可調光纖雷射 .........60 5.1 雙通型MZI干涉濾波器原理介紹 ..................................................60 5.2 雙通型MZI濾波器特性量測 ..........................................................63 5.2.1 波道間距0.4 nm .................................................................64 5.2.2 波道間距0.8 nm .................................................................65 5.3 雙通型MZI濾波器式多波長光纖雷射架構量測 ..........................66 5.4 雙通型MZI濾波器式多波長可調光纖雷射 ..................................75 5.5 本章小結 ...........................................................................................78 第六章 結論與未來展望 ................................................................................79 6.1 結論 ...................................................................................................79 6.2 未來展望 ...........................................................................................81 參考文獻 .........................................................................................................83

    [1] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proceedings of IEEE, vol. 113, no. 7, pp.1551-1558, Jun. 1966.
    [2] M. R. Shirazi, N. S. Shahabuddin, S. N. Aziz, K. Thambiratnam, S. W. Harun, and H. Ahmad, “A linear cavity Brillouin fiber laser with multiple wavelengths output,” Laser Physics Letters, vol. 5, no. 5, pp. 361–363, May 2008.
    [3] S. W. Harun, M. R. Shirazi, and H. Ahmad, “A new configuration of multi-wavelength Brillouin fiber laser,” Laser Physics Letters, vol. 5, no. 1, pp. 48–50, Jan. 2008.
    [4] D. N. Wang, F. W. Tong, X. Fang, W. Jin, P. K. A.Wai, and J. M. Gong, “Multiwavelength erbium-doped fiber ring laser source with a hybrid gain medium,” Optics Communications, vol. 228, no. 4-6, pp. 295-301, Dec. 2003.
    [5] S. Qin, D. Chen, Y. Tang, and S. He, “Stable and uniform multi-wavelength fiber laser based on hybrid Raman and Erbium-doped fiber gains,” Optics Express, vol. 14, pp. 10522-10527, Oct. 2006.
    [6] X. Feng, H. Tam, H. Liu, and P. K. A. Wai, “Multiwavelength Erbium-doped fiber laser employing a nonlinear optical loop mirror,” Optics Communications, vol. 268, no. 2, pp. 278–281, Dec. 2006.
    [7] Y. G. Han, “Tunable multiwavelength erbium-doped fiber laser based on an in-line Mach-Zehnder interferometer,” Journal of the Korean Physical Society, vol. 57, no. 6, pp. 1743∼1746, Dec. 2010.
    [8] S. Roh, S. Chung, Y. W. Lee, I. Yoon, and B. Lee, “Channel-Spacing- and Wavelength-Tunable Multiwavelength Fiber Ring Laser Using Semiconductor Optical Amplifier,” IEEE Photonics Technology Letters, vol. 18, no. 21, pp. 2302-2304, Oct. 2006.
    [9] J. Sun, “Multiwavelength ring lasers employing semiconductor optical amplifier as gain medium,” Microwave and Optical Technology Letters, vol. 43, no. 4, pp. 301-303, Nov. 2004.
    [10] C.H. Yeh and S. Chi, “Fibre-fault monitoring technique for passive optical networks based on fibre Bragg gratings and semiconductor optical amplifier”, Optics Communications, vol. 257, no. 2, pp. 306-310, Aug. 2005.
    [11] Masato Kimura, Fiber Lasers: Research, Technology and Applications, Nova Science Publishers Inc, 2009.
    [12] D. K. Mynbaev and L. L. Scheiner, Fibre Optic Communications Technology, Prentice-Hall, 2000.
    [13] A. Bilenca and G. Eisenstein, “Statistical noise properties of an optical pulse propagating in a nonlinear semiconductor optical amplifier,” IEEE Journal of Quantum Electronics, vol. 41, no. 1, pp. 36-38, Jan. 2005.
    [14] M. J. Connelly, Semiconductor Optical Amplifiers, Kluwer Academic Publishers, 2002.
    [15] N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers, World Scientific Publishing, 2006.
    [16] T. G. Hodgkinson and R. P. Webb, “Carrier-density modulation effects in a traveling-wave semiconductor optical amplifier: communications theory analysis and experiment,” IEEE Journal of Lightwave Technology, vol. 9, no. 5, pp. 605-622 , May 1991.
    [17] A. Yariv, Quantum Electronics, Wiley, 1989.
    [18] J. C. Simon, P. Doussiere, L. Pophillat, and B. Fernier, “Gain and noise characteristics of a 1.5 mu m near-travelling-wave semiconductor laser amplifier,” Electronics Letters, vol. 25, no. 7, pp. 434-436, Aug. 2002.
    [19] Y. Yamamoto, “Characteristics of AlGaAs Fabry-Perot cavity type laser amplifiers,” IEEE Journal of Quantum Electronics, vol. 16, no. 10, pp. 1047-1052, Oct. 1980.
    [20] X. Dong, P. Shum, N. Q. Ngo, H. Y. Tam, and X. Dong, “Output power characteristics of tunable erbium-doped fiber ring lasers, ” IEEE Journal of Quantum Electronics, vol. 23, no. 3, pp. 1334-1341, Mar. 2005.
    [21] M. J. O’Mahony, “Semiconductor laser optical amplifiers for use in future fiber systems,” IEEE Journal of Lightwave Technology, vol. 6, no. 4, pp. 531-544, Apr. 1998.
    [22] Y. Yamamoto, Coherence Amplification and Quantum Effect in Semiconductor Lasers, Wiley, 1991.
    [23] D. Derickson, Fiber Optic Test and Measurement, Prentice Hall, 1998.
    [24] T. Okoshi, “Single-polarization single-mode optical fiber,” IEEE Journal of Quantum Electronics, vol. QE-17, no. 6, pp. 879-884, Jun. 1981.
    [25] M. Monerie and L. Jeunhomme, “Polarization mode coupling in long single-mode fibres”, Optical and Quantum Electronics, vol. 12, no. 6, pp. 449-461, May 1980.
    [26] R. Ulrich, S. Rashleigh, and W. Eickhoff, “Bending induced birefringence in single mode fibres,” Optics Letters, vol. 5, no. 6, pp. 273–275, Jun. 1980.
    [27] O. Frazão, J. M. Baptista and J. L. Santos, “Recent advances in high-birefringence fibre loop mirror sensors”, Sensors, vol. 7, no. 11, pp. 2970-2983, Nov. 2007.
    [28] D. B. Mortimore, “Fiber loop reflectors,” IEEE Journal of Lightwave Technology, vol. 6, no. 7, pp.1217-1224, Jul. 1988.
    [29] 許凱翔, C頻帶波長可調線性型單縱模光纖雷射之研製, 碩士論文, 台灣科技大學, 民國九十九年
    [30] S. V. Kartalopoulos, Introduction to DWDM Technology: Data in a Rainbow, Wiley-IEEE Press, 2002.
    [31] F. W. Sheu, C.Y. Chiou and S.C. Yang, “Performance of a wavelength-tunable erbium-doped fiber laser using a Sagnac interferometer,” Optics Communications, vol. 281, no. 18, pp. 4719-4722, Sep. 2008.
    [32] X. Xu, Y. Y. Xinhui, Z. D. Chen, and Shenzhen, “Multiple four-wave-mixing processes and their application to multiwavelength erbium-doped fiber lasers,” IEEE Journal of Lightwave Technology, vol. 27, no. 14, pp. 2876-2878, Aug. 2009.
    [33] Z. Sun, D. Liu, H. Liu, and Q. Sun, “The design of SOA-based multiwavelength fiber ring laser for fiber sensing network,” Computer and Information Science, vol. 3, no. 2, May 2010.
    [34] H. Chen, “Multiwavelength fiber ring lasing by use of a semiconductor optical amplifier”, Optics Letters, vol. 30, no. 6, pp. 619-621, Mar. 2005.
    [35] D. Liu, N. Q. Ngo, H. Liu, D. Liu, “Stable multiwavelength fiber ring laser with equalized power spectrum based on a semiconductor optical amplifier,” Optics communications, vol. 282, no. 8, pp. 1598-1601, Apr. 2009.
    [36] D. M. Liang, X. F. Xu, Y. Li, J. H. Pei, Y. Jiang, Z. H. Kang, and J. Y. Gao, “Multiwavelength fiber laser based on a high-birefringence fiber loop mirror,” Laser Physics. Letters., vol. 4, no. 1, pp. 57-60, Jan. 2007.
    [37] Z. Luo, W.-D. Zhong, Z. Cai, C. Ye, Y. J. Wen, “High-performance SOA-based multiwavelength fiber lasers incorporating a novel double-pass waveguide-based MZI,” Applied Physics B: Lasers and Optics, vol. 96, no. 1, pp. 29-38, May 2009.
    [38] M. A. Mirza and G. Stewart, “Theory and design of a simple tunable Sagnac loop filter for multi-wavelength fibre lasers,” Applied Optics, Vol. 47, no. 29, pp. 5242-5252, Oct. 2008.
    [39] D. Chen, H. Ou, H. Fu, S. Qin, and S. Gao, “Wavelength-spacing tunable multi-wavelength erbium-doped fiber laser incorporating a semiconductor optical amplifier,” Laser Physics Letters, vol. 4, no. 4, pp. 287-290, Dec. 2006.
    [40] D. N. Wang, F. W. Tong, X. Fang, W. Jin, P. K. A. Wai, and J. M. Gong, “Multiwavelength erbium doped fiber ring laser source with a hybrid gain medium,” Optics Communications, vol. 228, no. 4-6, pp. 295-301, Sep. 2003.

    QR CODE