簡易檢索 / 詳目顯示

研究生: 黃翊誌
Yi-Zhi Huang
論文名稱: 兩種1064奈米光纖雷射:設計與量測
Design and Measurement of Two Type-Fiber Lasers Operating at 1064 nm
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 吳文方
Wen-Fang Wu
游易霖
Yi-Lin Yu
徐世祥
Shih-Hsiang Hsu
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 86
中文關鍵詞: 摻鐿光纖雷射半導體光放大器環形雷射感測光源
外文關鍵詞: Yb-doped fiber laser, SOA, ring laser, sensing light source
相關次數: 點閱:208下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製兩個1064波段波長可調光纖雷射光源,達一定的輸出功率和訊雜比與窄3 dB頻寬的感測光源,利用自製的波長可調光纖光柵,製作波長可調雷射,並利用光纖光柵波長飄移特性做為感測系統,感測應力應變與水溫量測。本實驗選取38 cm摻鐿光纖與後向泵激架構組成環形摻鐿光纖雷射,其斜率效率為8.24%,閥值功率為43.58 mW,而在100 mW的泵激光源下,輸出功率為2.15 dBm。置於室溫六小時功率變動量為±0.095 dB,波長變動量為±0.007 nm,其波長可調性為11.24 nm,並以此光源作為應力應變與水溫量測的感測系統,應力應變將軸向應力平台移動0.5 mm,光纖光柵受到拉伸力之波長總飄移量為1.38 nm,線性度為0.9874;光纖光柵受到擠壓力之波長總飄移量為1.47 nm,線性度為0.9889,水溫感測範圍由25℃到50℃,波長總飄移量為0.16 nm,線性度為0.9973。
    其次,利用半導體光放大器為光源,建置與環形摻鐿光纖雷射相同波段的環形半導體光放大器光纖雷射,接著利用半導體光放大器取代摻鐿光纖,與環形摻鐿雷射作兩者間特性的比較,並量測其特性作為感測系統之光源,結果顯示置於室溫下六小時功率變動量為±0.115 dB,波長變動量為±0.006 nm。另外,利用波長可調光纖光柵,其波長可調性為10.68 nm,並以此光源作為應力應變與水溫量測的感測系統,應力應變將軸向應力平台移動0.5 mm,光纖光柵受到拉伸力之波長總飄移量為1.37 nm,線性度為0.9812;光纖光柵受到擠壓力之波長總飄移量為1.32 nm,線性度為0.9874,水溫感測範圍由25℃到50℃,波長總飄移量為0.15 nm,線性度為0.9953。由以上數據可得知,光纖光柵之波長飄移會隨著軸向應力變化與水溫變化呈線性趨勢,所以在這些感測方面我們可以利用波長飄移作為感測之依據,使其感測光源有多方面選擇。


    In this thesis, there are two kinds of tunable-wavelength fiber lasers with high output power, high signal-to-noise ratio, high slope efficiency and narrow 3 dB bandwidth. The fiber lasers have been developed to sense the changing of the water temperature and the strain by using the fiber Bragg grating. We chose the 38 centimeters long Ytterbium-doped fiber (YDF) as the gain medium to compose a 1064 nm fiber-ring laser with a backward pumping method. The results show that its slope efficiency and threshold power are 8.24% and 43.58 mW, respectively with a 100 mW pumping power, which could also generate 2.15 dBm output power. The changing of the power and wavelength are ±0.095 dB and ±0.007 nm after the laser has been placed under room temperature for six hours; while the wavelength-tuning range is 11.24 nm. It is observed that the total shift of the grating is 1.38 nm and 1.47 nm with a linearity of 0.9874 and 0.9889; while it is stretched and pressed by a platform. As to the changing temperature from 25℃ to 50℃, the shift of the wavelength is 0.16 nm with a linearity of 0.9973.
    In another part of this thesis, the semiconductor optical amplifier (SOA) is used as the light source to construct a 1064 nm ring cavity semiconductor optical amplifier fiber laser. We measure the characteristics and replace the YDFL with the SOA to sense the changing of the water temperature and the strain. The results indicate that the power variation is ±0.115 dB and the wavelength variation is ±0.006 nm after the SOA has been placed under room temperature for six hours; while wavelength-tuning range is 10.68 nm. It is observed that the total shift of the grating is 1.37 nm and 1.32 nm with a linearity of 0.9812 and 0.9874, while it’s stretched and pressed by a platform. As to the changing temperature from 25℃ to 50℃, the shift of the wavelength is 0.15 nm with a linearity of 0.9953. According to these results, the wavelength shift of the fiber Bragg grating is linear to the changing of the axis stress and the water temperature; therefore, there are many choices of the sensing light source.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖表索引 VII 符號表 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 4 第二章 文獻探討與光被動元件簡介 5 2.1 文獻探討 5 2.2 光被動元件簡介 9 2.2.1 布拉格光纖光柵介紹 9 2.2.2 布拉格光纖光柵製作 10 2.2.3 其他光被動元件 13 第三章 摻鐿光纖雷射介紹與設計 17 3.1 摻鐿光纖放大之介紹與量測 17 3.1.1 摻鐿光纖放大之介紹 17 3.1.2 摻鐿光纖放大器之增益量測 21 3.2 摻鐿光纖雷射原理及架構 22 3.2.1 摻鐿光纖雷射原理 22 3.2.2 環形摻鐿光纖雷射架構 26 3.3 環形摻鐿光纖雷射設計 27 3.3.1 不同長度摻鐿光纖對於前向泵激的量測 28 3.3.2 不同長度摻鐿光纖對於後向泵激的量測 30 3.3.3 前向泵激與後向泵激的結果比較 31 3.4 線形摻鐿光纖雷射 33 第四章 環形摻鐿光纖雷射為光源之感測系統 36 4.2 環形摻鐿光纖雷射特性量測 36 4.2.1 雷射光源長時間穩定性分析 36 4.2.2 雷射光源波長可調性 38 4.2.3 不同共振腔長度 38 4.3 以環形摻鐿光纖雷射作為光源之感測系統 40 4.2.3 應力感測系統 40 4.2.4 水溫感測系統 44 第五章 半導體光放大器介紹與量測 47 5.1 半導體光放大器介紹 47 5.1.1 半導體光放大器簡介 47 5.1.2 半導體光放大器工作原理 49 5.1.3 半導體光放大器參數特性 50 5.2 半導體光放大器量測 55 5.2.1 半導體光放大器之增益量測 57 5.2.2 MZI濾波器之原理介紹 58 5.2.3 MZI濾波器之多波長光纖雷射 60 第六章 環形半導體光放大器光纖雷射感測系統 65 6.1 環形半導體光放大器光纖雷射與特性量測 65 6.1.1 環形半導體光放大器光纖雷射架構 65 6.1.2 雷射光源長時間穩定性分析 67 6.1.3 雷射光源波長可調性 68 6.1.4 不同共振腔長度 69 6.2 以環形半導體光放大器光纖雷射作為光源之感測系統 71 6.2.1 應力感測系統 71 6.2.2 水溫感測系統 75 第七章 結論與未來展望 78 7.1 結論 78 7.2 未來展望 81 參考文獻 82

    [1] G. Keiser, “Optical Fiber Communications,” McGraw-Hill, 4 th ed., 2008.
    [2] 洪寬綸,“建構於光纖光柵之光纖雷射、光感測與光監控技術之研究”,台灣科技大學電子工程研究所碩士論文,2006。
    [3] W. Shi, Q. Fang, X. Zhu, R.A. Norwood, and N. Peyghambarian, “Fiber lasers and their applications,” Applied Optics, 53.28 (2014), 6554-6568.
    [4] R. Paschotta, J. Nilsson, P.R. Barber, J.E. Caplen, A.C. Tropper, D.C Hanna, “Lifetime quenching in Yb-doped fibres,” Optics Communications 136.5-6 (1997): 375-378.
    [5] M.C. Paul, S.W. Harun, M.R.A. Moghaddam, S. Das, R. Sen, A. Dhar, M. Pal, S.K. Bhadra, and H. Ahmad, “1028 nm Single Mode Ytterbium-Doped Fiber Laser,” Laser Phys, vol. 19, no. 5, 2009, pp. 1021-1025.
    [6] D. J. Stevenson, T. K. Lake, B. Agate, V. Garcés-Chávez, K. Dholakia, and F. Gunn-Moore, “Optically guided neuronal growth at near infrared wavelengths,” Optics express 14.21 (2006): 9786-9793.
    [7] A. Unterhuber, B. Považay, B. Hermann, H. Sattmann, A. Chavez-Pirson, and W. Drexler. “In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid,” Optics express, 13.9 (2005): 3252-3258.
    [8] M. Yamanari, Y. Lim, S. Makita, and Y. Yasuno, “Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1- μm probe,” Opt. Express, vol. 17, no. 15, 2009, pp. 12385-12396.
    [9] S. Yang, O. Akkus, D. Creasey, “1064-nm Raman: The Right Choice for Biological Samples?” Special Issues, Volume 32, Issue 6, pg 46–54, Jun 01, 2017.
    [10] S. Yves, T. Kuypers, and N. Gutknecht, “Laser application in dentistry: irradiation effects of Nd: YAG 1064 nm and diode 810 nm and 980 nm in infected root canals—a literature overview,” BioMed research international, 2016.
    [11] A. Hideur, T. Chartier, C. Özkul, and F. Sanchez, “All-fiber Tunable Ytterbium-Doped Double-Clad Fiber Ring Laser,” Optics letters, 26(14), 1054-1056, 2001.
    [12] J. Chen, Y. Zhao, Y. Zhu, S. Liu, and Y. Ju. “Narrow Line-width Ytterbium-doped Fiber Ring Laser Based on Saturated Absorber,” IEEE Photon. Technol. Lett. 29.5 (2017): 439-441.
    [13] Q. Chuan, and D. Yang. “Numerical Simulation of Ring Cavity Wavelength-Swept Laser Based on Semiconductor Optical Amplifier,” IEEE Journal of Quantum Electronics, 50(10), 1-9, 2014.
    [14] 高雪松,“光纖光柵在光通信領域中的應用”,2005。
    [15] W.H. Chung, S.Y. Liu, B.O. Guan, T.L. Chan, T.H.T. Chan and H.Y. Tam, “Structural. Monitoring of Tsing Ma Bridge using Fiber Bragg Grating Sensors,” IEEE Proceedings of the Sixth Chinese Optoelectronics Symposium, 2003.
    [16] 畢衛紅,張闖,“光纖Bragg光柵的反射特性研究”,傳感器技術,第22期,第8卷,2005。
    [17] K.O. Hill and M. Gerald, “Fiber Bragg grating technology fundamentals and overview,” IEEE/OSA Journal of Lightwave Technology, vol. 15, no. 8, pp. 1263-1276, 1997.
    [18] 黃立文,“光纖光柵製作與應用(二)”,光連雙月刊,第10 期,財團法人光電科技工業協進會,2008。
    [19] 安毓英、曾小東,“光纖感測與量測”,台北,五南圖書出版股份有限公司,初版,2004。
    [20] K.O. Hill, B. Malo, F. Bilodeau, D.C. Johnson, and J. Albert, “Bragg gratings fabricated in mono-mode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett., vol.62, no.10, pp. 1035-1037, 1993.
    [21] 劉學政,“光纖光柵研製及其於光網路模組之應用”,台灣科技大學電子工程研究所碩士論文,2002。
    [22] 張銘宏,“兼具增益之可重構光信號塞取多工器”,台灣科技大學電子工程研究所碩士論文,2005。
    [23] Jeff Hecht, “Understanding Fiber Optics 4th edit.,” Prentice Hall, 2002.
    [24] Dennis Derickson, “Fiber Optic Test and Measurement,” Prentice Hall, 1998.
    [25] 李銘淵,“光纖通信概論”,全華科技圖書股份有限公司,2008。
    [26] RP Photonics Encyclopedia
    https://www.rp-photonics.com/ytterbium_doped_gain_media.html
    [27] 廖協虹,“C+L-Band 摻鉺光纖放大器的研製與應用”,台灣科技大學電子工程研究所碩士論文,2004。
    [28] X.S. Zhu, G.W. Zhu, W. Shi, J. Zong, K. Wiersma, D. Nguyen, Robert A. Norwood, A. Chavez-Pirson, and N. Peyghambarian, “976 nm Single-polarization single-frequency Ytterbium-doped phosphate fiber amplifiers,” IEEE Photonics Technology Letters, 25.14: 1365-1368, 2013.
    [29] 游易霖,“光纖光柵之光纖模組研發及應用”,台灣科技大學電子工程研究所博士論文,2013。
    [30] P.C. Becker, N.A. Olsson, and J.R. Simpson, “Erbium-doped fiber amplifiers: fundamentals and technology,” San Diego, USA: Academic Press, 1999.
    [31] M. Ibsen, S.Y. Set, G.S. Goh, and K. Kikuchi, “Broad-band Continuously Tunable All Fiber DFB lasers,” IEEE Photonics Technology Letters, vol. 14, no. 1, 2002.
    [32] 葉東昆,“1.55μm寬頻半導體光放大器研製與分析”,國立中山大學電子工程研究所碩士論文,2004。
    [33] G. Eisenstein and L.W. Stulz, “Antireflection Coating on Semicondictor Laser Facets using Sputtered Lead Silicate Glass,” Journal of Lightwave Technology, vol. LT-4, no.9, pp. 1373-1375, 1986.
    [34] M.J. Connelly, “Semiconductor optical amplifiers,” Kluwer Academic Publishers, 2002.
    [35] M.J. O’Mahony, “Semiconductor laser optical amplifiers for use in future fiber systems,” Journal of Lightwave Technology, vol. 6, no. 4, pp. 531-544, 1998.
    [36] Y. Yamamoto, “Characteristics of AlGaAs Fabry-Perot cavity type laser amplifiers,” IEEE Journal of Quantum Electronics, vol. 16, no. 10, pp. 1047-1052, 1980.
    [37] D.K. Mynbaev and L.L. Scheiner, “Fibre Optic Communications Technology,” Prentice-Hall, 2000.
    [38] Y. Yamamoto, “Coherence Amplification and Quantum Effect in Semiconductor Lasers,” Wiley, 1991.
    [39] M.J. Connelly, “Semiconductor Optical Amplifiers,” Kluwer Academic Publishers, 2002.
    [40] Y. Yamamoto, “Characteristics of AlGaAs Fabry-Perot cavity type laser amplifiers,” IEEE Journal of Quantum Electronics, vol. 16, no. 10, pp. 1047-1052, Oct 1980.
    [41] 蔡承全,“以半導體光放大器為增益介質之線性共振腔多波長可調光纖雷射”,台灣科技大學電子工程研究所碩士論文,2011。
    [42] R. Ramaswami and K.N. Sivarajan, “Optiacl networks:A Practical Perspective,” Morgan Kaufmann, 2009.
    [43] H. Kishikawa, M. Okada, Kazuto. Takahashi, P.J. Chen, N. Goto, Y.L. Yu, and S.K. Liaw, “Multi-point temperature sensing using a linear-cavity lasing system,” Applied optics, 56(11), 3206-3212, 2017.
    [44] Z. Luo, W.D. Zhong, Z. Cai, C. Ye, and Y.J. Wen, “High-performance SOA-based multiwavelength fiber lasers incorporating a novel double-pass waveguide-based MZI,” Applied Physics B: Lasers and Optics, vol. 96, no. 1, pp. 29-38, May 2009.
    [45] X.C. Xu, Y. Yao, X.H. Zhao, and D.Y. Chen, “Multiple four-wave-mixing processes and their application to multiwavelength erbium-doped fiber lasers,” IEEE Journal of Lightwave Technology, vol. 27, no. 14, pp. 2876-2878, Aug 2009.

    無法下載圖示 全文公開日期 2023/10/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE