簡易檢索 / 詳目顯示

研究生: 時國昇
Kuo-sheng Shih
論文名稱: 直調式可調雙波長環型光纖雷射之研製與於注入FP-LD之應用
The Design of Directly Modulated Dual-Wavelength Fiber Ring Laser and its Application to Injection Locked FP-LD
指導教授: 徐世祥
Shih-hsiang Hsu
劉政光
Cheng-kuang Liu
口試委員: 周肇基
Jau-ji Jou
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 76
中文關鍵詞: 法布里-比洛雷射光纖環型雷射多波長雷射直接調變反射式半導體光放大器
外文關鍵詞: RSOA, FP-LD, fiber laser, multiwavelength laser, direct modulation
相關次數: 點閱:354下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文探討直調式可調雙波長環型光纖雷射之研製,架構中的主要組件為反射式半導體光放大器與兩個光濾波器。波長可調範圍包含C與L波段,寬度為45 nm(1535 nm~1580 nm),輸出光功率可達0 dBm。  
      首先,探討短距離直接調變傳輸,利用反射式半導體光放大器可直接調變訊號的特性,直調1.25Gbps、27-1虛擬隨機序列NRZ碼後進行傳輸測試,其背對背條件下的明滅比為7.61 dB,Q值為7.23。傳輸經1公里單模光纖後,明滅比為6.91 dB,Q值為6.94;傳輸1公里多模光纖後,明滅比為6.43 dB,Q值為6.12,雖傳輸距離短,但可供社區或山區應用。
      其次,本文以調變數位電視訊號加到環型雷射中作傳輸接收測試,所得訊號品質最高可達78%,訊號強度保持在74%,此結果可讓使用者正常收看。
      最後,為增加傳輸距離,我們採用注入鎖模技術,利用直調式可調雙波長環型雷射注入法布里-比洛雷射中,建立一個雙線雙向光網路。實驗中讓C波段的下行光注入法布里-比洛雷射進行鎖模,鎖模後的旁模抑制比可達42 dB,以直調1.25Gbps、27-1虛擬隨機序列NRZ碼同時進行上下行傳輸。L波段下行光經傳輸1公里單模光纖後,明滅比為6.82 dB、Q值為6.10、靈敏度為-30.62 dBm;C波段之法布里-比洛雷射上行光傳輸25公里後,明滅比為7.94 dB為8.12、靈敏度則為-29.38 dBm,上下行的功率補償皆小於1 dB。


    This thesis presents a directly-modulated dual wavelength tunable fiber ring laser using reflective semiconductor optical amplifier (RSOA) and two optical filters (OTF). The tunable wavelength range is over 45 nm, including C band and L band. It’s output power can reach 0 dBm.
    Firstly, a short-distance direct transmission is shown. When it is directly modulated with an 1.25Gbps NRZ signal through the RSOA, the extinction ratio (ER) and the Q values in a back-to-back transmission are 7.61 dB and 7.23, respectively. After transmitting over an 1-km single mode fiber(SMF), ER and Q values become 6.91 dB and 6.94,respectively. After transmitting over an 1-km multimode fiber (MMF), ER and Q values become 6.43 dB and 6.12, respectively.
    Next, our fiber ring laser is directly modulated with a digital video broadcasting-terrestrial (DVB-T) signal. In a back-to-back transmission, the signal quality and the signal intensity are good and can reach 78% and 74%, respectively.
    Finally, we apply our fiber ring laser to injection-locked Fabry- Perot laser diode (FP-LD) for a bidirectional transmission test. We use a C band laser source as the injection light source on the FP-LD for upstream transmission. After injection locking, the side mode suppression ratio (SMSR) can reach 42dB. Then, directly modulated 1.25Gbps NRZ signals are used in both RSOA and FP-LD for downstream and upstream transmissions. For the L-band downstream transmission over an 1-km SMF, the ER and Q values are 6.82 and 6.10, respectively. Its sensitivity is -30.62 dBm. For the C-band upstream transmission over a 25-km SMF, the ER and Q values are 7.94 and 8.12, respectively. Its sensitivity is -29.38 dBm. The power penalty is less than 1 dBm for both the downstream and upstream transmissions.

    摘要...........................................................................Ⅰ Abstract......................................................................III 誌謝...........................................................................Ⅴ 目錄...........................................................................VI 圖索引..........................................................................X 表索引........................................................................XIV 第一章 緒論....................................................................1 1.1 前言.....................................................................1 1.2 研究動機..................................................................3 1.3 論文架構..................................................................5 第二章 使用光電元件基本理論....................................................6 2.1 反射式半導體光放大器(Reflective Semiconductor Optical Amplifier, RSOA)..6 2.2 法布里-比洛雷射二極體(Fabry-Perot Laser Diode, FP-LD)...................7 2.3 光纖雷射(Fiber Laser)...................................................9 2.4 啾頻(Chirping).........................................................11 2.5 光纖色散(Dispersion)...................................................11 2.5.1模態色散(Intermodal Dispersion)......................................12 2.5.2材料色散(Material Dispersion)........................................12 2.5.3波導色散(Waveguide Dispersion).......................................12 2.6 數位電視簡介..............................................................13 2.6.1數位機上盒(Set Top Box)..............................................13 2.7 數位通訊量測參數..........................................................14 2.7.1眼形圖(Eye Diagram)..................................................15 2.7.2明滅比(Extinction Ratio, ER)........................................ 16 2.7.3抖動(Jitter).........................................................16 2.7.4訊雜比(Signal-to-Noise Ratio)........................................17 2.7.5誤碼率與靈敏度(Bit Error Rate and Sensitivity).......................18 第三章 直調式可調雙波長環型光纖雷射之架構實現.................................19 3.1 反射式半導體光放大器.....................................................19 3.1.1反射式半導體光放大器的基本特性.......................................19    3.1.2反射式半導體光放大器用於直調訊號的特性...............................23 3.1.3反射式半導體光放大器穩定旁模雜訊的特性...............................26  3.2 直調式可調雙波長環型光纖雷射............................................28 3.2.1架構簡介與基本特性...................................................28 3.2.2環型光纖雷射之波長可調範圍分析.......................................31    3.2.3環型光纖雷射傳輸不同光纖之分析.......................................37 3.3 直調數位電視訊號之特性...................................................41 3.3.1訊號品質與訊號強度之定義.............................................41 3.3.2驅動電流對電視訊號之影響.............................................41 3.4 環型光纖雷射之穩定性分析................................................44 3.5 本章結論.................................................................46 第四章 自製環型光纖雷射注入法布里-比洛雷射之應用..............................48 4.1 注入鎖模雷射之遠程傳輸...................................................48 4.2 本文架構簡介............................................................51 4.3 法布里-比洛雷射之特性量測...............................................52 4.4 注入鎖模技術簡介.........................................................56    4.4.1注入光功率對波長鎖模鎖模之探討.......................................57 4.5 雙波長環型光纖雷射注入法布里-比洛雷射之架構..............................59 4.6 量測結果與分析...........................................................62 4.6.1下行至用戶端部分.....................................................62 4.6.2上行至局端部分.......................................................63 4.6.3穩定性分析...........................................................65 4.7本章結論..................................................................69 第五章 結論...................................................................70 5.1 成果與討論..............................................................70 5.2 未來研究方向.............................................................71 參考文獻.......................................................................72 作者簡介.......................................................................76

    [1] L. Hutcheson, “FTTx: current status and the future,” IEEE Communications Magazine, vol. 46, no. 7, pp. 90-95 (2008).
    [2] S. Chanberland, “Global Access Network Evolution,” Networking,IEEE/ACM Transactions on, vol. 18, no. 1, pp. 136-149 (2010).
    [3] 林姿蓉,「多波長可調式環型光纖雷射與注入鎖模法布里-比洛雷射二極體於光纖網路之應用」,博士論文,國立台灣科技大學,台北 (2008)。
    [4] T. Y. Kim and S. K. Han, “Reflective SOA-based bidirectional WDM-PON sharing optical source for up/downlink data and broadcasting transmission,”
    IEEE Photon Technol. Lett, vol. 18, pp. 2350-2352, Nov. (2006).
    [5] P. P. Iannone, K. C. Reichmann, and N. J. Frigo, “Broadcast digital video delivered over WDM passive optical networks,” IEEE, Photonics Technology
    Letters, vol. 8, no. 7, pp. 930-932 (1996).
    [6] 國家通訊傳播委員會,無線電視數位轉換,http://hdtv.ncc.gov.tw/index.aspx
    [7] N. Cheng and L. G. Kazovsky, “Implications of injection current and optical input power on the performance of reflective semiconductor optical amplifiers,”
    Proc. SPIE, vol. 6468, pp. 64680V-12 (2007).
    [8] 謝廷霖,「基於反射式半導體光放大器的分波多工被動光網路之設計」,碩士論文,國立淡江大學,台北,(2009)。
    [9] 楊淳良、趙亮琳、李楊漢、許立根、譚昌文、洪鴻文、曹士林,光纖通訊網路,五南圖書出版股份有限公司,(2007)。
    [10] 司徒宇喆,「L波帶光纖雷射在光通訊上之應用」,碩士論文,國立台灣科技大學,台北,(2006)。
    [11] 李致昀,「多波長光纖雷射的模擬與研製」,碩士論文,國立台灣科技大學,台北,(2002)。
    [12] 原榮 編著、鄔文杰、陳積德、宋馭民、劉正瑜 編修,光纖通訊系統原理與應用,新聞京開發,(2004)。
    [13] 大通電子,高畫質數位電視接收機:DTV-6200,大通電子股份有限公司,(2007)。
    [14] S. M. Sze, Physics of semiconductor Device, second edition, Wiley and Sons, (2007).
    [15] D. Dennis, “Fiber Optic Test and Measurement,” Prentice Hall, (1998)
    [16] R. Ramaswami, K. N. Sivarajan, Optical Networks, second edition, Morgan Kaufmann Publishers, (2002).
    [17] S.Yamashita, “Widely tunable erbium-doped fiber ring laser covering both C-band and L-band,” IEEE, Journal of Selected Topics in Quantum Electronics,
    vol. 7, no. 1, pp. 706-708 (2006).
    [18] N. S. Ribeiro, A. L. R. Cavalcante, C. M. Gallep, and E. Conforti, “Data rewriting after carrier erasing by ultra-long SOA,” Optical Fiber
    Communication Conference and Exposition (OFC/NFOEC), 2011 and the National Fiber Optic Engineers Conference, 6-10 March, (2011).
    [19] H. Takesue, and T. Suigie, “Wavelength channel data rewrite using saturated SOA modulator for WDM networks with centralized light sources,” Lightwave
    Technology, Journal of, vol. 21, no. 11, pp. 2546-2556 (2003).
    [20] C. Peng, M. Yao, Q. Xu, H. Zhang, “Suppression of supermode competitions in SOA fiber mode-locked ring laser,” The 15th Annual Meeting of the IEEE
    LEOS, vol. 2, pp. 377-378, 10-14 Nov, (2002).
    [21] K. Sato, H. Toba, “Reduction of mode partition noise by using semiconductor optical amplifiers,” IEEE J. Selected Topics in Quantum Electron, vol. 7,
    pp.825-826 (2001)
    [22] 張毓竹,「直調環型雷射在光通訊之應用」,碩士論文,國立台灣科技大學,台北,(2010)。
    [23] 賴國傑,「電視廣播與高速雙向傳輸的低成本被動光網路」,碩士論文,國 立台灣科技大學,台北,(2009)。
    [24] H. D. Kim, S. G. Kang, and C. H. Lee, ”A low-cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon, Technol. Lett. 12(8),
    1067-1069, (2000).
    [25] Z. R. Lin, C. K. Liu, Y. J. Jhang, and G. Keiser, “Tunable directly modulated Fiber ring laser using a reflective semiconductor optical amplifier for WDM
    access networks,” Optics Express, vol.18, pp. 17610~17619, Aug. (2010).
    [26] Z. R. Lin, C. K. Liu, G. Keiser, S. L. Lee, K. C. Lai, H. C. Chang, C. L. Tseng, and J. J. Jou, “A Low-Cost Passive Optical Network For Television
    Broadcasting And High-Speed Bidirectional Communications In Intelligent Buildings,” Journal of the Chinese of Engineers, vol. 33, no. 5, pp. 707-716, (2010).
    [27] Z. R. Lin, C. K. Liu, G. Keiser, “Tunable dual-wavelength erbium-doped fiber ring laser covering both C-band and L-band for high speed communications,”
    Optik, vol. 123, no. 1, pp. 46-48, (2012).
    [28] F. Xiong, W. D. Zhomg, H. Kim, “A Broadcast-Capable WDM-PON Based on Polarization-Sensitive Weak-Resonant-Cavity Fabry–Perot Laser Diodes,”
    Journal of Lightwave Technology, vol. 30, issue. 3, pp. 355-361, Feb. 1, (2012).
    [29] L. Y. Chan, C. K. Chan, D. T. K. Tong, L. K. Chen, and F. Tong, “Upstream traffic transmitter using injection-locked Fabry-Perot laser diode as modulator
    for WDM access networks,” Electronics Letters, vol.38, no. 1, pp. 43-45, (2002).
    [30] W. Hung, C. K. Chan, L. K. Chen, F. Tong, “An optical network unit for WDM access networks with downstream DPSK and upstream remodulated OOK data
    using injection-locked FP laser,” IEEE Photonics Technology Letters, vol. 15, no. 10, Oct. (2003).
    [31] J. H. Lee, K. Lee, Y. G. Han, S. B. Lee, and C. H. Kim, “Single depolarized CW supercontinuum-based wavelength division multiplexed passive optical
    network architecture with C-band OLT, L-band ONU, and U-band monitoring,”Journal of lightwave Technology, vol. 25, no. 10, pp. 2891-2897, Oct. (2007).

    無法下載圖示 全文公開日期 2017/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE