簡易檢索 / 詳目顯示

研究生: 李易倫
YI-LUN LEE
論文名稱: 利用半導體光放大器抑制寬頻譜光源雜訊之10 Gb/s對稱傳輸遠端泵激分波多工被動光網路架構
Noise Suppression of ASE Source Using a Gain-Saturated Cascaded SOA Method for Symmetric 10 Gb/s Remotely Pumped WDM PON Systems
指導教授: 李三良
San-Liang Lee
口試委員: 廖顯奎
Shien-Kuei Liaw
曹恆偉
Hen-Wai Tsao
吳靜雄
Jing-Shown Wu
楊淳良
Chun-Liang Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 85
中文關鍵詞: 非同調光源分波多工被動光網路半導體光放大器過強度雜訊抑制寬頻譜光源自發性拍差雜訊
外文關鍵詞: incoherent light, excess intensity noise suppression, broadband source
相關次數: 點閱:164下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一整合自發放射光源與半導體光放大器且利用遠端泵激之分波多工被動光網路系統,實現上下行10 Gb/s對稱傳輸。吾人將寬頻譜光源放置於局端利用分波多工器將自發放射光源做頻譜分配,經由半導體光放大器抑制寬頻譜光源過強度雜訊,可有效改善寬頻譜光源訊號雜訊比限制,且利用大有效面積光纖降低色散效應對系統的影響,以達到25公里傳輸距離。此外用戶端透過交互作種架構與利用反射式調變器提供上行光源與訊號調變,可充分利用降雜訊的寬頻譜光源作為上行傳輸使用。
    為補償上下行被動元件及調變造成之功率損耗,利用遠端泵激架構,在遠端補償光路損失,以提升上下行光訊號強度,並實現上下行各32通道之被動光網路架構。實驗結果顯示,利用自發放射光源作經分波多工器做頻譜分配,利用遠端泵激架構可達共計320 Gb/s之雙向傳輸。


    We propose and demonstrate a remotely pumped WDM-PON architecture to achieve 10 Gb/s symmetrical transmission. In this scheme, a wideband amplified spontaneous emission (ASE) from an optical amplifier is sliced into multiple channels by an arrayed waveguide grating (AWG) and used as multi-channel optical sources for WDM-PON system. Each channel is noise suppressed by using a gain-saturated cascaded semiconductor optical amplifer (SOA) and then modulated at 10.7 Gb/s, assuming forward error correction (FEC) with 7% overheads. We also propose a cross-seeding scheme to provide uplink seeding light and use a reflected electro-absorption modulator (REAM) to encode the upstream signals. In order to achieve a transmission up to 25 km distance, we use a larger effective area fiber (LEAF) to reduce the dispersion effect. To compensate the loss by passive components and modulation, we employ a remotely pumped erbium-doped fiber amplifier (RP-EDFA) to provide extra gain for both downstream and upstream signals. The experimental results show that the downstream and upstream transmission can provide 10 Gb/s data rate over 25 km for 32 channels, which corresponds to a total capacity of 320 Gb/s, on each direction.

    大綱1 Abstract2 致謝3 目錄4 圖目錄7 表目錄10 第一章 導論11 1.1 前言 11 1.2 被動光網路簡介12 1.2.1 分波多工被動光網路 12 1.2.2 ASE光源頻譜分割技術13 1.3 研究動機15 1.4 論文架構16 第二章 寬頻譜光源技術與文獻探討17 2.1 前言 17 2.2 文獻探討17 2.2.1 寬頻譜光源外調技術演進18 2.2.2 寬頻譜頻譜分割技術10 Gb/s傳輸系統探討20 2.3 系統架構設計概念22 第三章 元件特性與理論25 3.1 前言 25 3.2 寬頻譜光源頻譜分割在傳輸系統之問題及原理25 3.2.1 影響寬頻譜光源之訊號品質因素25 3.2.2 色散原理介紹27 3.3 半導體光放大器抑制EIN原理28 3.3.1 半導體光放大器工作原理29 3.3.2 半導體光放大器雜訊抑制原理分析31 3.3.3 系統濾波器對 RIN影響36 3.3.4 光纖色散對RIN的影響40 3.4 前向錯誤更正碼簡介41 第四章 系統量測結果與分析44 4.1 前言 44 4.2 系統設計分析 44 4.2.1 非同調光源線寬與色散對訊雜比之影響分析44 4.2.2 交互作種系統架構47 4.3 半導體光放大器EIN抑制49 4.3.1 入射線寬對RIN抑制比較49 4.3.2 入射功率與操作電流對RIN抑制比較51 4.3.3 單一SOA與串接SOA之RIN量測比較55 4.3.4 波長對SOA抑制效果影響57 4.3.5 濾波器與光纖對RIN值影響60 4.3.6 遠端泵激對RIN值影響64 4.4 系統功率預算 65 4.4.1 功率損耗分析與遠端泵激光源分析65 4.4.2 傳輸通道數目實測結果67 4.5 傳輸系統誤碼率量測70 4.5.1 下行10 Gb/s量測結果70 4.5.2 上行10 Gb/s量測結果72 4.6 多波長下行傳輸討論75 第五章 結論78 5.1 研究成果討論 78 5.2 未來發展方向 79 參考文獻 80

    [1]Joseph C. Palais, Fiber optic Communications, Pearson/Prentice Hall, 2005.
    [2]張勝雄,楊慶忠,光解多工器濾波技術之介紹,遠東學報第二十卷第三期民國九十二年六月。
    [3]M. H. Reeve, A. R. Hunwicks, W. Zhao, S. G. Methley, L. Bickers, and S. Hornung, “ LED spectral slicing for single- mode local Loop application,” Electron. Lett., Vol. 24, pp. 389-390, 1988.
    [4]T. E. Chapuran, S. S. Wagner, R. C. Menendez, H. E. Tohme, and L. A. Wang, “Broadband multichannel WDM transmission with superluminescent diodes and LEDs,” Globecom., Vol. 1, pp. 613-618, 1991.
    [5]朱肇易,利用自發性放射光源之雙向傳輸遠端泵激分波多工被動光網路架構,國立台灣科技大學電子工程所碩士論文,2013年。
    [6]J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier Light source for multichannel WDM applications,” IEEE Photo. Technol. Lett., Vol. 5, No. 12, pp. 1458-1461, 1993.
    [7]A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise suppression of incoherent light using a gain-saturated SOA: Implications for spectrum-sliced WDM systems,” IEEE J. Lightw. Technol., Vol. 23, No. 8, pp. 2399–2409, Aug. 2005.
    [8]H. H. Lee, S. H. Cho, J. H. Lee, E. S. Jung, J. H. Yu, B. W. Kim, S. S. Lee, S. H. Lee, J. S. Koh, B. H. Sung, S. J. Kang, J. H. Kim, and K. T. Jeong, “First Commercial Service of a Colorless Gigabit WDM/TDM Hybrid PON System,” Proceeding OSA/OFC/NFOEC, pp. 1-3, Mar. 2009.
    [9]J. H. Yu, K. Nam, and W. K. Byoung, “Remodulation schemes with reflective SOA for Colorless DWDM PON,” J. of Optical Networking, Vol. 6, No. 8, pp. 1041-1054, 2007.
    [10]S. Kobayashi, J. Yamada, S. Machida, and T. Kimura, “Single-mode operation of 500 Mbit/s moducated AlGaAs semiconductor laser by injection locking,” Electron. Lett., Vol. 16, No. 19, pp.746-748, 1980.
    [11]H. D. Kim, S. Kang, and C. Lee, “A Low-Cost WDM source with an ASE injected Fabry-Perot semiconductor laser,” IEEE Photon. Technol. Lett., Vol.12, No. 8. pp. 1067-1069, 2000.
    [12]C. H. Kim, J. H. Lee, D. K. Jung, Y. G. Han, and S. B. Lee, “Performance Comparison of directly-modulated, wavelength Locked Fabry-Pérot laser diode and EAM-modulated, spectrum-sliced ASE source for 1.25 Gb/s WDM-PON,” Proceeding OFC/NFOEC, Mar. 2007.
    [13]J. H. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, “Raman amplification- based WDM-PON architecture with centralized Raman pump-driven, spectrum-sliced erbium ASE and polariation-insensitive EAMs,” Optics Express, Vol. 14, No. 20, pp. 9036-9041, 2006.
    [14]H. D. Kim, S.-G. Kang, and C. H. Lee, “A Low-Cost WDM Source with an ASE Injected Fabry-Perot Semiconductor Laser,” IEEE Photon. Technol. Lett., Vol. 12, No. 8, pp. 1067-1069, 2000.
    [15]林昶佑,基於自發放射光源與遠端泵浦光放大的分波多工被動光網路架構,國立台灣科技大學電子工程所碩士論文,2012年。
    [16]D. J. Shin, D. K. Jung, H. S. Shin, J. W. Kwon, S. Hwang, Y. Oh, and C. Shim, “Hybrid WDM/TDM-PON with wavelength selection free transmitters,” J. Lightw. Technol., Vol. 23, No. 1, pp. 187-195, 2005.
    [17]J. H. Lee, C. H. Kim, Y.-G. Han, and S. B. Lee, “WDM-based passive optical network upstream transmission at 1.25 Gb/s using Fabry-Perot laser diodes injected with spectrum-sliced, depolarized, continuous-wave supercontinuum source,” IEEE Photon. Technol. Lett., Vol. 18, No. 20, pp. 2108-2110, 2006.
    [18]H. H. Lee, S.-H. Cho, and S. S. Lee, “Efficient excess intensity noise suppression of 100-GHz spectrum-sliced WDM-PON with a narrow bandwidth seed light source,” IEEE Photon. Technol. Lett., Vol. 22, No. 20, pp. 1542-1544, 2010.
    [19]S.-H. Cho, J. H. Lee, J. H. Lee, E.-G. Lee, H.-H. Lee, E.-S. Jung, and S. S. Lee, “Improving transmission performance in EIN limited 2.5-Gb/s spectral slicing loopback WDM-PON based on RSOA employing the dispersion management,” in Proc. International Conference on Optical Internet (COIN), 2010.
    [20]S. Kaneko, J.-I. Kani, K. Iwatsuki, A. Ohki, M. Sugo, and S. Kamei, “Scalability of spectrum-sliced DWDM transmission and its expansion using forward error correction,” J. Lightw. Technol., Vol. 24, No. 3, pp. 1295-1301, 2006.
    [21]W. Mathlouthi, F. Vacondio, and L. A. Rusch, “High-bit-rate dense SS- WDM PON using SOA-based noise reduction with a novel balanced detection,” J. Lightw. Technol., Vol. 27, No. 22, pp. 5045-5055, 2009.
    [22]Z. Al-Qazwini and H. Kim, “Ultranarrow Spectrum-Sliced Incoherent Light Source for 10-Gb/s WDM PON,” J. Lightw. Technol., Vol. 30, No. 3, Oct. 2012.
    [23]J. Y. Kim, S. H. Yoo, S. R. Moon, D. C. Kim, and C. H. Lee, “400Gb/s (40 × 10 Gb/s) ASE injection seeded WDM-PON based on SOA- REAM,” in Proc. Optical Fiber Communication Conference (OFC), paper OWD 4.4, 2013.
    [24]J. S. Lee, Y. C. Chung, and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier Light source for multichannel WDM applications,” IEEE Photon. Technol. Lett., Vol. 5, No. 12, pp. 1458-1461, 1993.
    [25]原榮,鄔文杰,陳積德,宋馭民,劉正瑜,光纖通訊系統-原理與應用,新文京開發出版股份有限公司,民國93年。
    [26]G. P. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron., Vol. 25, pp. 2297–2306, 1989.
    [27]K. Sato and H. Toba, “Reduction of Mode Partition Noise by Using Semiconductor Optical Amplifiers” IEEE J. Quantum Electron., Vol. 7, No. 2, Mar./Apr. 2001.
    [28]G. V. Agrawal and N. A. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron., Vol. 25, No. 11, pp. 2297–2306, Nov. 1989.
    [29]M. Shtaif and G. Eisenstein, “Noise characteristics of nonlinear semiconductor optical amplifiers in the Gaussian limit,” IEEE J. Quantum Electron., Vol. 32, pp. 1801–1809, Oct. 1996.
    [30]A. D. McCoy, P. Horak, B. C. Thomsen, M. Ibsen, and D. J. Richardson, “Noise suppression of incoherent light using a gain-saturated SOA: Implications for spectrum-sliced WDM systems,” IEEE J. Lightw. Technol., Vol. 23, No. 8, pp. 2399–2409, Aug. 2005.
    [31]H. Kim, S. Kim, S. Hwang, and Y. Oh, “Impact of Dispersion, PMD, and PDL on the Light Sources Using Gain-Saturated Semiconductor Optical Amplifiers” IEEE J. Lightw. Technol., Vol. 24, No. 2, Feb. 2006.
    [32]K. Seki, K. Mikami, A. Katayama, S. Suzuki, N. Shinohara, and M. Nakabayashi, “Single-chip FEC codec using a concatenated BCH code for 10Gbps LH optical transmission systems,” in Proc. IEEE Custom Integr. Circuits Conf. pp. 279–282, 2003.
    [33]A. Tychopoulos, O. Koufopavlou, and I. Tomkos, “FEC in optical communications,” IEEE Circuits Dev. Mag., Vol. 22, No. 6, pp. 79–86, Nov./Dec. 2006.
    [34]J. S. Lee, Y. C. Chung and D. J. DiGiovanni, “Spectrum-sliced fiber amplifier Light source for multichannel WDM applications,” IEEE Photon. Technol. Lett., Vol. 5, No. 12, pp. 1458-1461, 1993.

    QR CODE