簡易檢索 / 詳目顯示

研究生: 劉昱廷
Yu-Ting Liu
論文名稱: 明膠海綿傷口敷料的開發與應用
The Development and Application of Gelatin Sponge-based Wound Dressing
指導教授: 白孟宜
Meng-Yi Bai
口試委員: 鄭詠馨
Yung-Hsin Cheng
王毓淇
Yu-Chi Wang
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 98
中文關鍵詞: 明膠海綿敷料傷口癒合生物相容性創傷實驗
外文關鍵詞: Gelatin, sponge dressing, wound healing, biocompatibility, wound experiment
相關次數: 點閱:733下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在開發明膠海綿敷料應用於醫療器材領域,以明膠為基底,透過發泡與冷凍乾燥的方式製備成敷料,此敷料提供良好的孔隙分佈,平均孔徑約為60~70 μm左右,可幫助吸收傷口滲出液,促進傷口恢復;並對3T3、L929、Hs68、CG1519四株細胞株進行細胞存活率分析,明膠海綿敷料釋出液對四株細胞株皆表現出良好的生物相容性。動物實驗方面,以BALB/cByJNarl品系的小鼠進行創傷癒合研究,對傷口癒合具有促進皮膚功能性組織修復再生的效果更換敷料時進行的傷口影像面積紀錄,在創傷部位癒合收口方面表現出與市售敷料相當的復原速度,明膠海綿敷料的組別有較穩定的收口速率表現。於病理切片中可觀察到傷口床的位置,具有再生的組織與表皮,表現了在傷口癒合的功效性,在肝腎切片中沒有發現中性球的存在,也沒有不正常的淋巴球瀰漫現象發生,顯示此敷料由細胞存活率與動物組織切片中的結果對實驗小鼠不具有顯著藥物毒性,證實此明膠海棉敷料對生物體具有良好的安全性,本研究成功開發明膠海綿結構於傷口敷料應用。


    The aim of this study was to develop a gelatin-based sponge dressing for application in the medical device field. Gelatin was used as the substrate, and the dressing was prepared through foaming and freeze-drying processes. This dressing exhibited favorable pore distribution, with an average pore size of approximately 60-70 μm, enabling efficient absorption of wound exudate and promoting wound healing. Cell viability analyses were conducted on four cell lines (3T3, L929, Hs68, CG1519) exposed to the released fluids from the gelatin sponge dressing, demonstrating excellent
    biocompatibility across all cell lines.
    In animal experiments, wound healing studies were carried out on BALB/cByJNarl mice. The gelatin sponge dressing exhibited a pronounced effect in promoting functional tissue regeneration and skin repair at the wound site. Comparative wound closure rate analysis, based on recorded wound area images during dressing changes, revealed a recovery speed comparable to that of commercially available dressings. The gelatin sponge dressing group consistently demonstrated a stable wound closure rate. Pathological sections of the wounds displayed regenerative tissues and epidermal layers, highlighting its wound healing efficacy. Liver and kidney sections showed no presence of neutrophils and lacked abnormal lymphocyte infiltration, indicating the absence of significant drug toxicity in experimental mice based on cell
    viability and tissue slice results.
    These findings collectively demonstrate the favorable safety profile of the gelatin sponge dressing within biological systems. In conclusion, this study successfully developed a gelatin sponge structure for wound dressing applications.

    中文摘要 1 ABSTRACT 2 誌謝 2 目錄 3 圖目錄 7 表目錄 7 第一章、緒論 8 1.1研究動機與目的 8 1.2實驗設計與規劃 9 第二章、文獻回顧 10 2.1皮膚與傷口 10 2.1.1皮膚構造與功能 10 2.1.2傷口修復癒合 12 2.2傷口敷料 14 2.2.1傷口敷料的型態與功能性表現 14 2.2.2傷口敷料的材料來源 17 2.2.3傷口敷料的結構與分層 17 2.3明膠傷口敷料 19 2.3.1明膠 19 2.3.2明膠對傷口癒合之影響 20 第三章、材料方法 21 3.1藥品及材料 21 3.2儀器設備 23 3.3明膠海綿敷料 25 3.3.1敷料製備 25 3.3.2電子顯微敷料海綿型態(Scanning Electron Microscope, SEM) 25 3.4細胞培養基本操作 27 3.4.1細胞解凍與活化 29 3.4.2細胞繼代 29 3.4.3細胞計數 30 3.4.4細胞凍存 31 3.5細胞毒性測試 (CYTOTOXICITY TEST.) 32 3.6細胞劃痕試驗(WOUND HEALING ASSAY)模擬傷口癒合 34 3.7活體動物試驗評估 (ANIMAL WOUND HEALING MODEL) 35 3.7.1實驗動物 36 3.7.2實驗敷料 37 3.7.3創傷手術 39 3.7.4傷口影像與體重紀錄 39 3.7.5實驗統計分析方法 40 第四章、實驗結果與討論 41 4.1電子顯微表面型態鑑定(SEM) 41 4.1.1敷料多孔性結構與其孔隙率統計 41 4.2敷料對纖維母細胞之測試 (MTT ASSAY/ WOUND HEALING ASSAY) 42 4.2.1小鼠成纖維母細胞 (Cell 3T3/ L929 MTT assay) 42 4.2.2人類成纖維母細胞 (Hs68、CG1519) 43 4.2.3敷料對成纖維母細胞之細胞遷移試驗 (Wound healing assay) 43 4.3活體創傷動物模式評估與其實驗結果與分析 44 4.3.1小鼠傷口面積紀錄 44 4.3.2小鼠體重紀錄 45 4.3.3動物實驗皮膚傷口病理切片分析 46 4.3.4肝腎器官病理切片分析 48 第五章、結論 49 參考文獻 51 附錄 56

    1. Venus, M., Waterman, J. & McNab, I. Basic physiology of the skin. Surgery (Oxford) 28, 469-472 (2010).
    2. Kamolz, L.-P. & Lumenta, D. B. Dermal replacements in general, burn, and plastic surgery. Tissue Engineering in Clinical Practice, 226 (2013).
    3. http://www.goodpsych.com/stress-psychology/.
    4. Marie E.N., M.J., Copyright © 2008 Pearson Education, Inc., publishing as Benjamin Cummings. 2008.
    5. Guyton, A. C. & Hall, J. E. Medical physiology. Gökhan N, Çavuşoğlu H (Çeviren) 3 (2006).
    6. Singer A.J,, C.R.A.F, Cutaneous wound healing.. New England Journal of Medicine., 1991. 341: p. 738-746.
    7. Wound dressing products: A translational investigation from the bench to the market
    8. 衛生福利部食品藥物管理署. 正確選用傷口敷料, <https://www.fda.gov.tw/TC/index.aspx> (2017).
    9. Lee, S.B., et al., Bio-artificial skin composed of gelatin and (1-->3), (1--> 6) -beta-glucan. Biomaterials, 2003. 24(14): p. 2503-11.
    10. Courts, F.J., Standardization and calibration in the evaluation of clinical performance. J Dent Educ, 1997. 61(12): p. 947-50.
    11. Choi, Y.S., et al., Studies on gelatin-containing artificial skin: I. Preparation and characterization of cross-linked gelatin-hyaluronate sponge. J Biomed Mater Res, 1999. 48(5): p. 631-9.
    12. Zhao, Y., et al., Tissue regeneration using macrophage migration inhibitory factor-impregnated gelatin microbeads in cutaneous wounds. Am J Pathol, 2005. 167(6): р. 1519-29.
    13. Miyoshi, M., et al., Effects of bFGF incorporated into a gelatin sheet on wound healing. J Biomater Sci Polym Ed, 2005. 16(7): p. 893-907.
    14. Gilaberte, Y., Prieto-Torres, L., Pastushenko, I. & Juarranz, Á. in Nanoscience in Dermatology 1-14 (2016).
    15. D'Orazio, J., Jarrett, S., Amaro-Ortiz, A. & Scott, T. UV radiation and the skin. International journal of molecular sciences 14, 12222- 12248 (2013).
    16. Pasparakis, M., Haase, I. & Nestle, F. O. Mechanisms regulating skin immunity and inflammation. Nature reviews immunology 14, 289-301 (2014).
    17. Järbrink, K. et al. Prevalence and incidence of chronic wounds and related complications: a protocol for a systematic review. Systematic reviews 5, 1-6 (2016).
    18. Dhivya, S., Padma, V. V. & Santhini, E. Wound dressings–a review. BioMedicine 5, 1-5 (2015).
    19. Sorg, H., Tilkorn, D. J., Hager, S., Hauser, J. & Mirastschijski, U. Skin wound healing: an update on the current knowledge and concepts. European Surgical Research 58, 81-94 (2017).
    20. Yi Sun, Jie Lin, LeiLei Li, Kai Jia, Wen Xia, Chao Deng, In vitro and in vivo study of magnesium containing bioactive glass nanoparticles modified gelatin scaffolds for bone repair, Biomedical Materials, 10.1088/1748-605X/ac5949, 17, 2, (025018), (2022).
    21. Xiaoling Liu, Er Zu, Xinyu Chang, Xiaowei Ma, Ziqi Wang, Xintong Song, Xiangru Li, Qing Yu, Ken-ichiro Kamei, Toshihiko Hayashi, Kazunori Mizuno, Shunji Hattori, Hitomi Fujisaki, Takashi Ikejima, Dan Ohtan Wang, Bi-phasic effect of gelatin in myogenesis and skeletal muscle regeneration, Disease Models & Mechanisms, 10.1242/dmm.049290, 14, 12, (2021).
    22. Jingzhe Sun, Dahye Ahn, Junseo Kim, Seongcheol Ahn, Jum Soo Hwang, Joo Youl Kwon, Jae Soo Lee, Jung Moon Oh, Kiyoung Nam, Jong-Jin Park, Surface-control enhanced crater-like electrode in a gelatin/polyvinyl alcohol/carbon composite for biodegradable multi-modal sensing systems with human-affinity, Journal of Materials Chemistry A, 10.1039/D1TA00453K, 9, 14, (9145-9156), (2021).
    23. Xiujuan He, Yan Lin, Yan Xue, Hongyan Wang, Qingwu Liu, Jia Chen, Huike Ma, Ping Li, Barley β-glucan gelatin sponge improves impaired wound healing in diabetic and immunosuppressed mice by regulating macrophage polarization, Materials Today Communications, 10.1016/j.mtcomm.2021.102744, 29, (102744), (2021).
    24. Kai Chen, Hao Pan, Zhifang Yan, Yunjian Li, Dongxu Ji, Kaiqing Yun, Yupei Su, Dandan Liu, Weisan Pan, A novel alginate/gelatin sponge combined with curcumin-loaded electrospun fibers for postoperative rapid hemostasis and prevention of tumor recurrence, International Journal of Biological Macromolecules, 10.1016/j.ijbiomac.2021.05.074, 182, (1339-1350), (2021).
    25. Gaspar-pintiliescu A., Stanciuc A., Craciunescu O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: A review. Int. J. Biol. Macromol. 2019;138:854–865. doi: 10.1016/j.ijbiomac.2019.07.155.
    26. Wiwatwongwana F., Surin P. In Vitro Degradation of Gelatin/Carboxymethylcellulose Scaffolds for Skin Tissue Regeneretion. Chem. Eng. Trans. 2019;74:1555–1560.
    27. Alven S., Nqoro X., Aderibigbe B.A. Polymer-Based Materials Loaded with Curcumin for wound healing application. Polymers. 2020;12:2286. doi: 10.3390/polym12102286.
    28. Han G., Ceilley R. Chronic Wound Healing: A Review of Current Management and Treatments. Adv. Ther. 2017;34:599–610. doi: 10.1007/s12325-017-0478-y.
    29. Rujitanaroj P., Pimpha N., Supaphol P. Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles. Polymers. 2008;49:4723–4732. doi: 10.1016/j.polymer.2008.08.021.
    30. Kang M.G., Lee M.Y., Cha J.M., Lee J.K., Lee S.C., Kim J., Hwang Y.S., Bae H. Nanogels derived from fish gelatin: Application to drug delivery system. Mar. Drugs. 2019;17:246. doi: 10.3390/md17040246.
    31. Naghibzadeh M., Firoozi S., Nodoushan F.S., Adabi M., Khoradmehr A., Fesahat F., Esnaashari S.S., Khosravani M., Adabi M., Tavakol S., et al. Application of eletrospun gelatin in tissue engineering. Biointerface Res. Appl. Chem. 2018;8:3048–3052.
    32. Rath G., Hussain T., Chauhan G., Garg T., Goyal A.K. Development and characterization of cefazolin loaded zinc oxide nanoparticles composite gelatin nano fi ber mats for postoperative surgical wounds. Mater. Sci. Eng. C. 2016;58:242–253. doi: 10.1016/j.msec.2015.08.050.
    33. Pham-Nguyen O.-V., Shin J.U., Yoo H.S. Biomaterials Science mesenchymal stem cells and gelatin nano fi bers for the treatment of full-thickness wounds. Biomater. Res. 2020;8:4535. doi: 10.1039/D0BM00910E.
    34. Schonauer C., Tessitore E., Barbagallo G., Albanese V., Moraci A. The use of local agents: Bone wax, gelatin, collagen, oxidized cellulose. Eur. Spine J. 2004;13:89–96. doi: 10.1007/s00586-004-0727-z.
    35. Seif-Naraghi, S. B., Salvatore, M. A., Schup-Magoffin, P. J., Hu, D. P., & Christman, K. L. (2010). Design and characterization of an injectable pericardial matrix gel: A potentially autologous scaffold for cardiac tissue engineering. Tissue Engineering. Part A, 16(6), 2017–2027.
    36. Kamoun E A, Kenawy E R S and Chen X 2017 A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings J. Adv. Res. 8 217−33
    37. Zeugolis D I, Khew S T, Yew E S Y, Ekaputra A K, Tong Y W, Yung L-Y L, Hutmacher D W, Sheppard C and Raghunath M 2008 Electro-spinning of pure collagen nano-fibres– Just an expensive way to make gelatin? Biomaterials 29 2293–305
    38. Yang G, Xiao Z, Long H, Ma K, Zhang J, Ren X and Zhang J 2018 Assessment of the characteristics and biocompatibility of gelatin sponge scafolds prepared by various crosslinking methods Sci. Rep. 8 1616
    39. Dhand C et al. 2017 Bio-inspired crosslinking and matrix-drug interactions for advanced wound dressings with long-term antimicrobial activity Biomaterials 138 153–68
    40. Fan L, Yang H, Yang J, Peng M and Hu J 2016 Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings Carbohydr. Polym. 146 427–34
    41. Costantini M, Colosi C, Jaroszewicz J, Tosato A, Święszkowski W, Dentini M, Garstecki P and Barbetta A 2015 Microfluidic foaming: a powerful tool for tailoring the morphological and permeability properties of sponge-like biopolymeric scaffolds ACS Appl. Mater. Interfaces 7 23660–71
    42. Boanini E, Rubini K, Panzavolta S and Bigi A 2010 Chemico-physical characterization of gelatin films modified with oxidized alginate Acta Biomater. 6 383–8
    43. Yang G, Xiao Z, Long H, Ma K, Zhang J, Ren X and Zhang J 2018 Assessment of the characteristics and biocompatibility of gelatin sponge scafolds prepared by various crosslinking methods Sci. Rep. 8 1616
    44. Pham-Nguyen, O.-V.; Shin, J.U.; Yoo, H.S. Biomaterials Science mesenchymal stem cells and gelatin nano fi bers for the treatment of full-thickness wounds. Biomater. Res. 2020, 8, 4535.
    45. Kamoun, E.A.; Kenawy, E.S.; Chen, X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 2017, 98, 217–233.
    46. Mao, Q.; Hoffmann, O.; Yu, K.; Lu, F.; Lan, G.; Dai, F.; Shang, S.; Xei, R. Self-contracting oxidized starch/gelatin hydrogel for noninvasive wound closure and wound healing. Mater. Des. 2020, 194, 108916.
    47. Dong, Y.; Sigen, A.; Rodrigues, M.; Li, X.; Kwon, S.H.; Kosaric, N.; Khong, S.; Gao, Y.; Wang, W.; Gurther, G.C. Injectable and tunable gelatin hydrogels enhance stem cell retention and improve cutaneous wound healing. Adv. Funct. Mater. 2017, 27, 1606619.
    48. Fan, L.; Yang, H.; Yang, J.; Peng, M.; Hu, J. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr. Polym. 2016, 146, 427–434.
    49. Singaravelu, S.; Ramanathan, G.; Raja, M.D.; Nagiah, N.; Padmapriya, P.; Kaveri, K.; Sivagnanam, U.T. Biomimetic interconnected porous keratin—Fibrin—Gelatin 3D sponge for tissue engineering application. Int. J. Biol. Macromol. 2016, 86, 810–819.
    50. Ye, S.; Jiang, L.; Su, C.; Zhu, Z.; Wen, Y.; Shao, W. Development of gelatin/bacterial cellulose composite sponges as potential natural wound dressings. Int. J. Biol. Macromol. 2019, 133, 148–155.

    無法下載圖示 全文公開日期 2033/09/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE