簡易檢索 / 詳目顯示

研究生: 陳建鵬
Hartanto - Tanadi
論文名稱: 混摻幾丁聚醣之聚乳酸的靜電紡絲及其抗菌性
Electrospinning process and antibacterial activity of chitosan-blended poly(lactic acid) nanofibers
指導教授: 楊銘乾
Ming-Chien Yang
口試委員: 郭俞麟
Yu-Lin Kuo
陳建中
Chien-Chung Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 105
中文關鍵詞: 聚乳酸幾丁聚醣電紡奈米纖維收物相容性抗菌性
外文關鍵詞: PLA, chitosan, nanofibers, biocompatibility, antibacterial ability
相關次數: 點閱:268下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係將分別含有幾丁聚醣(chitosan, CS)及聚乳酸(polylactic acid, PLA)之溶液以不同比例混合,經由電紡法製成奈米纖維。特別的是,該紡液的溶劑組成為氯仿、乙醇、乙酸、水。所得奈米纖維的形態係以SEM檢視之,而細胞毒性則以纖維組織母細胞評估之。幾丁聚醣在奈米纖維中的存在則以染色法及光譜儀測定之。該奈米纖維之抗菌性則以大腸桿菌檢測。SEM影像顯示CS-PLA奈米纖維的直徑係在奈米等級。而隨著CS的比例增加,珠狀物的數目亦隨之增加。酸性染料Orange II的染著證實該CS-PLA奈米纖維中含有幾丁聚醣。另外L929纖維組織母細胞在CS-PLA奈米纖維上生長率良好,顯示無生物毒性。此外,CS-PLA具有對大腸桿菌(E. coli)之抗菌性。由於CS-PLA奈米纖維具有高抗菌性及生物相容性,顯示CS-PLA具有作為創傷敷材的潛力。


    In this thesis, nanofibers of poly(lactic acid) (PLA) blended with chitosan (CS) were fabricated via the electrospinning from solutions containing CS and PLA in various ratios. In particular, the solvent of the solution was a mixture of chloroform, ethanol, acetic acid and water. The morphological characteristics of nanofibers was examined using scanning electron microscope (SEM). The cytotoxicity of nanofibers was evaluated based on the proliferation of fibroblasts. The presence of chitosan in CS-PLA nanofibers were characterized using UV-Visible spectrophotometer. The antibacterial activity of these CS-PLA nanofibers was determined against Escherichia coli (E. coli).
    SEM images showed that average diameter of Chitosan-PLA nanofibers were nanometer length of scale. In addition, the number of beads increased with the increase of chitosan content in the Chitosan-PLA nanofibers. The uptake of an acidic dye (orange II sodium salt) indicated the presence of chitosan in the nanofibers. By culturing with L929 fibroblasts, CS-PLA nanofibers showed good cell viability, indicating non-cytotoxicity. Furthermore, CS-PLA nanofibers exhibited antibacterial activity against E. coli.
    The high antibacterial activity and biocompatibility suggests that these CS-PLA nanofibers have a potential in biomedical fields, especially for wound dressing applications.

    摘要 I Abstract II Acknowledgment III Contents IV Figure List VII Scheme List XI Chapter 1. Introduction 1 Chapter 2. Literature Review 4 2.1. Introduction to Nanofibers 4 2.2. Electrospinning 5 2.2.1. Introduction to Electrospinning process 5 2.2.2. Parameters Affecting Electrospinning Process 7 2.2.3. Polymeric Electrospun Material for Biomedical Applications 9 2.2.4. Electrospun Nanofibers on Biomedical Applications 10 2.3. Chitosan 12 2.3.1 Characterization of chitosan 14 2.3.1.1 Degree of deacetylation 14 2.3.1.2. Solubility of chitosan 15 2.3.1.3. Chitosan in tissue engineering applications 16 2.4. Poly (Lactic Acid) (PLA) 16 2.4.1. Physical and chemical properties of PLA 18 2.4.2. Synthesis of PLA 19 2.4.2.1. Direct polymerization 19 2.4.2.1.1. Solution polycondestion 20 2.4.2.1.2. Melt polycondestion 20 2.4.2.2. Ring-opening polymerization 20 2.4.2.3. New approaches 21 2.4.3. Modification of PLA 22 2.4.3.1. Bulk modification 23 2.4.3.1.1. Physical modification 23 2.4.3.1.2. Chemical modification 24 2.4.3.2. Surface modification 25 2.4.3.2.1. Physical methods 25 2.4.3.2.2. Chemical modification 27 2.4.4. Applications of PLA in biomedical field 27 2.4.4.1. Tissue Engineering 28 2.4.4.2. Delivery systems 28 2.4.4.3. Membrane applications (wound dressing) 29 2.5. Antibacterial 30 2.5.1. Natural antibacterial 30 2.5.2. Antibacterial activity of chitosan 31 2.5.3. Factors affecting the antibacterial activity 32 2.5.3.1 Intrinsic factors 33 2.5.3.2. Extrinsic factors 33 2.5.4. Antibacterial mode of action 34 2.5.5. Method to detect antibacterial activity of chitosan 35 2.5.5.1. Disk diffusion 35 2.5.5.2. Agar dilution 36 2.5.5.3. Broth microdilution 36 2.5.5.4. Serial dilution 37 2.5.6. Microbiology 39 2.5.6.1 Escherichia coli bacteria [145] 39 2.5.6.2. The requirements for microbial growth [147, 148]. 41 2.5.6.2.1. Temperature 41 2.5.6.2.2. pH 43 2.5.6.2.3. Osmotic pressure 43 2.5.6.2.4. The major elements 44 2.5.6.2.5. Trace elements 46 2.5.6.2.6. Vitamins 46 2.5.6.2.7. Oxygen 46 2.6. Electrospinning of chitosan- PLA and their antibacterial activity. 47 2.7. Wound healing and wound dressing [150] 47 2.7.1. Wound 47 2.7.2. Healing 48 2.7.3. Treatment 49 2.7.4. Dressing 50 Chapter 3. Material and Experimental Procedure 51 3.1. Chemicals and materials. 51 3.2. Experimental apparatus 52 3.3. Preparation and electrospinning of chitosan-PLA nanofibers 53 3.4. Characterization 54 3.4.1. UV-Visible Spectrophotometer 54 3.4.2. Scanning electron microscopy (SEM) 55 3.5. Antibacterial activity test 56 3.5.1.Bacteri culture 56 3.5.2. Antibacterial test 57 3.6. Biocompatibility analysis 61 3.6.1. Cells type 61 3.6.2. Cell Culture 62 3.6.3.Cell Counting 62 3.6.4. MTT Assay 64 Chapter 4. Results and Discussion 66 4.1 Electrospinning of chitosan nanofibers 66 4.2. UV-Visible Characterization 70 4.3. Scanning Electron Microscopy (SEM) 71 4.4. Antibacterial activity test 79 4.5. Biocompatibility analysis. 83 Chapter 5. Conclusion 85 Reference 86

    [1] Leung V., Ko F., "Biomedical Applications of Nanofibers," Polymer advanced technologies, vol. 22, pp. 350-365, 2010.
    [2] Teo W.E., He W., Ramakrishna S., "Electrospun scaffold tailored for tissue-specific extracellular matrix," Biotechnol J, vol. 1, pp. 918-929, 2006.
    [3] Rho K.S., Jeong L., Lee G., Seo B.M., Park Y.J., Hong S.D., "Electrospinning of collagen nanofibers: effects on the behavior of normal human keratinoxytes and early-stage wound healing," Biomaterials, vol. 27, pp. 1452-1461, 2006.
    [4] Meechaisue C., Dubin R., Supaphol P., Hoven V.P., Kohn J., "Electrospun mat of tyrosine-derived polycarbonate fibers for potential use as tissue scaffolding material," J Biomater Sci Polym Ed, vol. 17, pp. 1039-1056, 2006.
    [5] Ondarcuhu T., Joachim C., "Drawing a single nanofibre over hundreds of microns," Europhys. Lett., vol. 42, pp. 215, 1998.
    [6] Feng L., Huanjun L., Jin Z., Yanlin S., Jiang L., Daoben Z., "Super-Hydrophobic Surface of Aligned Polyacrylonitrile Nanofibers," Angewandte Chemie International Edition, vol. 41, pp. 1221-1223, 2002.
    [7] Guojun L., Lijie Q., Andrew G., Boeis D., James T.G., Hashimoto T., Saijo K., "Polystyrene-block-poly(2-cinnamoylethyl methacrylate) Nanofibers- Preparation, Characterization and Liquid Crystalline Properties," Chemistry- A European Journal, vol. 5, pp. 2740-2749, 1999.
    [8] Deitzel J.M., Kleinmeyer J.D., Hirvonen J.K., Beck Tan N.C., "Controlled deposition of electrospun poly(ethylene oxide) fibers," Polymer, vol. 42, p. 8163, 2001.
    [9] Formhals A., "Process and apparatus for preparing artifical threads," United States Patent 1975504, October 2, 1934.
    [10] Lee K.Y., Jeong L., Kang Y.O., Lee S.J., Park W.H., "Electrospinning of polysaccharides for regenerative medicine " Advanced Drug Delivery Reviews, vol. 61, pp. 1020-1032, 2009.
    [11] Kumar M.R., "A review of Chitin and Chitosan applications," React Funct Polym, vol. 46, pp. 1-27, 2000.
    [12] Jayakumar R., Prabaharan M., Sudheesh Kumar P.T., Nair S.V., Tamura H., "Biomaterials based on chitin and chitosan in wound dressing applications," Biotechnology advanced, vol. 3, pp. 322-337, 2011.
    [13] Pillai C.K.S., Paul W., Sharma C.P., " Chitin and chitosan polymers: Chemistry, solubility and fiber formation," Progress in Polymer Science, vol. 34, pp. 641-678, 2009.
    [14] Min B.M., Lee S.W., Lim J.N., You Y., Lee T.S., Kang P.H., "Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers " Polymer, vol. 45, pp. 7137-7142, 2004.
    [15] Bhattarai N., Edmondson D., Veiseh O., Matsen F.A., Zhang M., "Electrospun chitosan-based nanofibers and their cellular compatibility," Biomaterials, vol. 26, pp. 6176-6184, 2005.
    [16] Zhang J.F. and Sun X., "Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride," Biomacromolecules ,Vol. 5, pp. 1446-51, 2004.

    [17] Xu J., Zhang J.H., Gao W.Q., Liang H.W., Wang H.Y., Li J.F., “Preparation of chitosan/PLA blend micro/nanofibers by electrospinning,” Materials Letters, 63(8), 658-660 (2009)
    [18] Huang J.C., Shetty A. S. and Wang M. S., Biodegradable plastics: a review, Advances in Polymer Technology, vol. 10, pp. 23-30, 1990.
    [19] Amnat J., Yutaka T., "Degradation of Poly(L-lactide) by a Fungus," Macromolecular Bioscience, vol. 1, pp. 136-140, 2001.
    [20] Erwin T.H. Vinka E.T.H., Rabagob K.R., Glassnerb D.A., Gruberb P.R., "Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production," Polymer Degradation and Stability 80 (2003) 403–419
    [21] Geng X., Kwon O.H., Jang J. "Electrospinning of chitosan in concentrated acetic acid solution," Biomaterials, vol. 26, p. 5427, 2005.
    [22] Suyatma N.E., Copinet A., Tighzert L., Coma V., "Mechanical and barrier properties of biodegradable films made from chitosan and poly(lactic acid) blends", Journal of Polymers and the Environment, Vol. 12, No. 1, January 2004 pp 1-6.
    [23] Chirkov S. N., "The antiviral activity of chitosan," Appl. Biochem. Microbiol, vol. 38, pp. 1-8, 2002.
    [24] Muzzarelli RAA, Tarsi R., Filippini O., Giovanetti E., Biagini G., Varaldo P.E., "Antimicrobial properties of N-carboxybutyl chitosan," Antimicrob. Agents Chemother, vol. 34, pp. 2019-2023, 1990.
    [25] Rabea E. I., Badawy M.E.T., Stevens C.V., Smagghe G., Steurbaut W., "Chitosan as antimicrobial agent: applications and mode of action," Biomacromolecules, vol. 4, pp. 1457-1465, 2003.
    [26] Helander I.M., Nurmiaho-Lassila E.L., Ahvenainen R., Rhoades J., Roller S., "Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria", Int. J. Food Microbiol, vol. 71, pp. 235-244, 2001.
    [27] Je J.Y., and Kim S.K., "Chitosan derivatives killed bacteria by disrupting the outer and inner membrane," J. Agric. Food Chem, vol. 54, pp. 6629-6633, 2006.
    [28] Zakrzewska A., Boorsma A., Brul S., Hellingwerf K.J., and Klis F.M., "Transcriptional response of Saccharomyces cerevisiae to the plasma membrane-perturbing compound chitosan," Eukaryot. Cell, vol. 4, pp. 703-715, 2005.
    [29] Barnes C.P., Sell S.A., Boland E.D., Simpson D.G., Bowlin G.L., "Nanofiber technology: Designing the next generation of tissue engineering scaffolds," Advanced Drug Delivery Reviews, vol. 59, pp. 1413-1433, 2007.
    [30] Nishida T, Yasumoto K, Otori T, Desaki J. "The network structure of corneal fibroblast in the rat as revealed by scanning electron microscopy," Investigative Ophthamology and Visual Science, vol. 29, pp. 1887-1890, 1988.
    [31] Pham Q.P., Sharma U., Mikos A.G., "Electrospinning of polymeric nanofibers for tissue engineering applications: A review," Tissue Engineering, vol. 12, pp. 1197-1211, 2006.
    [32] Reneker D.H., and Chun I., "Nanometre diamter fibers of polymers produced by electrospinning," Nanotechnology, vol. 7, pp. 216, 1996.
    [33] Moses H., Gregory R., Michael P., "Electrospinning and electrically forced jets. Instability theory," Physics of Fluids, vol. 13, 2001.
    [34] Ohkawa K., Cha D., Kim H., Nishida A. and Yamamoto H., "Electrospinning of Chitosan," Macromolecular Rapid Communications, vol. 25, pp. 1600, 2004.
    [35] Nandgaonkar A.G., "Electrospinning of chitosan and its correlation with degree of deacetylation and rheological property," North Carolina State University, 2011.
    [36] Sill T.J., Recum V.H.A., "Electrospinning: Applications in drug delivery and tissue engineering," Biomaterials, vol. 29, pp. 1989-2006, 2008.
    [37] Yuan X.Y., Zhang Y.Y., Dong C.H., Sheng J., "Morphology of ultrafine polysulfone fibers prepared by electrospinning," Polym. Inter., vol. 53, pp. 1704-1710, 2004.
    [38] Lee J.S., Choi K.H., Ghim H.D., Kim S.S., Chun D.H., Kim H.Y., "Role of molecular weight of a tactic PVA in the structure and properties of PVA nanofabric prepared by electrospinning," Journal of Applied Polymer Science, vol. 93, pp. 1638-1646, 2005.
    [39] Bhardwaj N., Kundu S.C., "Electrospinning: A fascinating fiber fabrication technique," Biotechnology Advances, vol. 28, pp. 325-347, 2010.
    [40] Haghi A.K., Akbari M., "Trends in electrospinning of natural nanofibers," Phys Status Solidi, vol. 204, pp. 1830-1834, 2007.
    [41] Mit-uppatham C., Nithitanakul M., Supaphol P., "Ultrafine electrospun polyamide-6 fibes: effect of solution conditions on morphology and average fiber diameter," Macromol Chem Phys, vol. 205, pp. 2327-2338, 2004.
    [42] Li D., Xia Y., "Electrospinning of nanofibers: reinventing the wheel," Adv Mater, vol. 16, pp. 1151-1170, 2004.
    [43] Li M., Mondrinos M.J., Gandhi M.R., Ko F.K., Weiss A.S., Lelkes P.O, "Electrospun protein fibers as matrices for tissue engineering," Biomaterials, vol. 26, pp. 5999-6008, 2005.
    [44] Wang H.S., Fu G.D., Li X.S., "Functional polymeric nanofibers from electrospinning," Nanotechnology, vol. 3, pp. 21-31, 2009.
    [45] Muzzarelli R.A.A, "Chitin and its derivatives: New trends of applied research," Carbohydrate Polymer, Vol. 3, Issue 1, 1983, Pages 53–75.
    [46] Greiner A., Joachim H., "Electrospinning: A fascinating method for the preparation of ultrathin fibers," Angewandte Chemie International Edition, vol. 46, pp. 5670-5703, 2007.
    [47] Huang Z., Zhang Y., Kotaki M., Ramakrishna S., "A review on polymer nanofibers by electrospinning and their applications in nanocomposites," Composites Science and Technology, vol. 63, pp. 2223-2253, 2003.
    [48] Ko F.K., Gandhi M., "Producing nanofibers structures by electrospinning for tissue engineering," Woodhead Publishing, 2007.
    [49] Agarwal S., Wndorff J.H. and Grenier A., "Use of electrospinning technique for biomedical applications," Polymer, vol. 49, pp. 5603-5621, 2008.
    [50] Khan N., "Applications of electrospun nanofibers in the biomedical field," Studies by Undergraduate Researchers at Guelph, vol. 5, pp. 63-73, 2012.
    [51] Aranaz I., Harris R. and Heras A., "Chitosan amphiphilic derivatives. Chemistry and Applications," Current Organic Chemistry, vol. 14, pp. 308-330, 2010
    [52] Zou H., Luo Q., Zhou D., "Affinity membrane chromatography for the analysis and purification of proteins," J Biochem Biophys Methods, vol. 49, pp. 199-240, 2001.
    [53] Rinaudo M., "Non-covalent interactions in polysaccharides systems," Macromol Biosci, vol. 6, pp. 590-610, 2006.
    [54] Berth G., Dautzenberg H., Peter M.G., "Physico-chemical characterization of chitosans varying in degree of acetylation," Carbohydrate Polymers, vol. 36, pp. 205-216, 1998.
    [55] Dutta P.K., Dutta J., Tripathi V.S., "Chitin and chitosan: chemistry, properties and applications," Journal of Scientific & Industrial Research, vol. 63, pp. 20-31, 2004.
    [56] He P.D., Illum L., "In vitro evaluation of the mucoadhesive properties of chitosan microspheres," International Journal of Pharmaceutics, vol. 166, pp. 75-88, 1998.
    [57] Chatelet C., Damour O., Domard A., "Influence of the degree of acetylation on some biological properties of chitosan film," Biomaterials, vol. 22, pp. 261-268, 2001
    [58] Sudardsha N.R., Hoover D.G., Knorr D., "Antibacterial action of chitosan," Food Biotechnology, vol. 6, pp. 257-272, 1992.
    [59] Fang S.W., Li C.F., Shih D.Y.C., "Antifungal activity of chitosan and its preservative effect on low-sugar candied kumquat," Food Protect, vol. 56, pp. 136-140, 1994.
    [60] Helander I.M., Lassila E.L., Ahvenainen R., Rhoades J., Roller S., "Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria," International Journal, vol. 71, pp. 235-244, 2002.
    [61] Ahmad K.T., Khiang K.P., Hung S.C., "Reporting degree of deacetylation values of chitosan: the influence of analytical methods," J Pharm Pharmaceut Sci, vol. 5, pp. 205-212, 2002.
    [62] Areias A.C., Ribeiro C., Sencadas V., Giralt N., Perez A., Ribelles J.L., Mendez S., "Influence of crystalinity and fiber orientation on hydrophobicity and biological response of poly (L-lactide) electrospun mats," Soft Matter, vol. 8, pp. 5118-5825, 2012.
    [63] Ignatious F, "Electrospun amorphous pharmaceutical compositions," United States Patent 20060013869, 2003.
    [64] Schipper N. G. M., Varum, K., Artusson, P, "Chitosans as absorption enhancers for poorly absorbable drugs. 1: influence of molecular weight and degree of acetylation on drug transport across human intestinal epithelial (Caco-2) cells," Pharm Res, vol. 13, pp. 1686-1692, 1996.
    [65] Wiegand C., Winter D., Hipler U.C, "Molecular-Weight-Dependent toxic effects of chitosans on the human keratinocyte cell line HaCaT," Skin Pharmacol Physiol, vol. 23, pp. 164-170, 2010.
    [66] Rinaudo M., Pavlov G., Desbrieres J., "Solubilization of chitosan in strong acid medium," Int J Polym Anal Charact, vol. 5, pp. 267-276, 1999.
    [67] Aiba S., "Evidence for the presence of random and block copolymer structures in partially N-acetylated chitosan," Int J Biol Macromol, vol. 13, pp. 40-44, 1991.
    [68] Van der Schueren L., Steyaert I., Schoenmaker B.D., De Clerk K., "Polycaprolactone/chitosan blend nanofibers electrospun from an acetic acid/formic acid solvent system," Carbohydrate Polymers, vol. 88, pp. 1221-1226, 2012.
    [69] Wang X., Yan Y. and Zhang R., "A comparison of Chitosan and Collagen sponges as hemostatic dressings," Journal of Bioactive and Compatible Polymers, vol. 21, pp. 39, 2006.
    [70] Denkbas E.B., Ozturk E., Ozdemir N., Kececi K. and Agalar C., "Norfloxacin-loaded Chitosan Sponges as Wound Dressing Materia," Journal of Biomaterials Applications, vol. 18, pp. 291, 2004.
    [71] Denkbas E.B., and Odabasi M., "Chitosan Microspheres and Sponges: Preparation and Characterization," Journal of Applied Polymer Science, vol. 76, pp. 1637-1643, 2000.
    [72] Zhang Y., Zhang M., "Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants," J Biomed Mater Res, vol. 61, pp. 1-8, 2002.
    [73] Smith J.K., Moshref A.R., Jennings J.A., Courtney H.S. Haggard W.O., "Chitosan Sponges for Local Synergistic Infection Therapy: A Pilot Study.," Musculoskeletal Infection Society, 2013.
    [74] Muzzarelli RAA, "Stimulatory effect on bone formation ex- erted by a modified chitosan," Biomaterials, vol. 15, p. 1075, 1994.
    [75] VandeVor P.J., Matther H.W.T., DeSilva S.P., Mayton L., Wu B., Wooley P.H., Evaluation of the biocompatibility of a chitosan scaffold in mice. United States: John Wiley & Sons, Inc., 2001.
    [76] De Castro G.P., "Determination of efficacy of novel modified chitosan sponge dressing in a lethal arterial injury model in swine," J Trauma, vol. 72, pp. 899-907, 2011.
    [77] Dvir T., Tsur-Gang O., Cohen S., "Designer" scaffolds for tissue engineering and regeneration," Isr J Chem, vol. 45, pp. 487-494, 2005.
    [78] Di Martino A., Sittinger M., Risbud M.V., "Chitosan: A versatile biopolymer for orthopaedic tissue-engineering," Biomaterials, vol. 26, pp. 5983-5990, 2005.
    [79] Madihally S.V., Matthew H.W.T., "Porous chitosan scaffolds for tissue engineering," Biomaterials, vol. 20, pp. 1133-1142, 1999.
    [80] Rasal R. M., Janorkar A. V., Hirt D. E., "Poly(lactic acid) modifications," Progress in Polymer Science, Vol. 35, No. 3, pp. 338-356, 2010.
    [81] Rhim JW, Mohanty AK, Singh SP, Ng PKW, "Effect of the processing methods on the performance of polylactide films: Thermocompression versus solvent casting," Journal of Applied Polymer Science, Vol. 101, No. 6, pp. 3736-3742, 2006.
    [82] Garlotta D. "A literature review of poly(lactic acid)," Journal of Polymers and the Environment, Vol. 9, No. 2, pp. 63-84, 2001.
    [83] Ohta M., Obuchi S. , Yoshida Y., "Preparation process of polyhydroxycarboxylic acid," US Patent, 5,444,143, 1995.
    [84] Ichikawa F. Itoh H, Kobayashi M, Obuchi S, Ohta M, Yoshida Y, "Process for preparing polyhydroxycarboxylic acid," US Patent 5, 440, 008, 1995.
    [85] Gao QW, Lan P, Shao HL, Hu XC. "Direct synthesis with melt polycondensation and microstructure analysis of poly(L-lactic acid-co-glycolic acid)," Polymer Journal, Vol. 34, No. 11, pp. 786-793, 2002.
    [86] Moon SI, Lee CW, Miyamoto M, Kimura Y, "Melt polycondensation of L-lactic acid with Sn(II) catalysts activated by various proton acids: A direct manufacturing route to high molecular weight Poly(L-lactic acid)," Journal of Polymer Science Part A: Polymer Chemistry, Vol. 3, No. 89, pp. 1673-1679, 2000.
    [87] Lunt J., "Large-scale production, properties and commercial applications of polylactic acid polymers," Polymer Degradation and Stability, Vol. 59, No. 1, pp. 145-152, 1998.
    [88] Penczek S, Duda A, Szymanski R, Biela T. "What we have learned in general from cyclic esters polymerization," Macromolecular Symposia, Vol. 153, No. 1, pp. 1-15, 2000.
    [89] Lassalle V. L., Ferreira M. L., "Lipase-catalyzed synthesis of polylactic acid: An overview of the experimental aspects," Journal of Chemical Technology and Biotechnology, Vol. 83, No. 11, pp. 1493-1502, 2008.
    [90] Wu JC, Huang BH, Hsueh ML, Lai SL, Lin CC. "Ring-opening polymerization of lactide initiated by magnesium and zinc alkoxides," Polymer, Vol. 46, No. 23, pp. 9784-9792, 2005.
    [91] Zhong ZY, Schneiderbauer S, Dijkstra PJ, Westerhausen M, Feijen J. "Single-site calcium initiators for the controlled ring-opening polymerization of lactides and lactones," Polymer Bulletin, Vol. 51, No. 3, pp. 175-182, 2003.
    [92] Sarazin Y., Schormann M., Bochmann, M. "Novel zinc and magnesium alkyl and amido cations for ring-opening polymerization reactions," Organometallics, Vol.23, No.13, pp. 3296-3302, 2004.
    [93] Chisholm MH, Lin CC, Gallucci JC, Ko BT. "Binolate complexes of lithium, zinc, aluminium, and titanium; preparations, structures, and studies of lactide polymerization," Dalton Transactions, No. 3, pp. 406-412, 2003.
    [94] Nomura N, Ishii R, Akakura M, Aoi K. "Stereoselective ring-opening polymerization of racemic lactide using aluminum-achiral ligand complexes: Exploration of a chain-end control mechanism," Journal of the American Chemical Society, Vol. 124, No. 21, pp. 5938-5939, 2002.
    [95] Deng XM, Yuan ML, Li XH, Xiong CD. "Polymerization of lactides and lactones VII. Ring-opening polymerization of lactide by rare earth phenyl compounds," European Polymer Journal, Vol. 36, No. 6, pp. 1151-1156, 2000.
    [96] Ejfler J, Kobyłka M, Jerzykiewicz JB, Sobota P. "Highly efficient magnesium initiators for lactide polymerization," Dalton Transactions, No. 11, pp. 2047-2050, 2005.
    [97] Xiao L, Wang B, Yang G, Gauthier M. "Poly(Lactic Acid)-Based Biomaterials: Synthesis, Modification and Applications," in Biomedical Science, Engineering, and Technology, ed. D. N. Ghista, 247-282, 2012.
    [98] Peesan M., Supaphol P., Rujiravanit R., "Preparation and characterization of hexanoyl chitosan/polylactide blend films. Carbohydrate Polymers, Vol. 60, No. 3, pp. 343-350, 2005.
    [99] Martin O., Averous L., "Poly(lactic acid): Plasticization and properties of biodegradable multiphase systems," Polymer, Vol. 42, No. 14, pp. 6209-6219, 2001.
    [100] Wan YZ., Wang YL, Li QY, Dong XH. "Influence of surface treatment of carbon fibers on interfacial adhesion strength and mechanical properties of PLA-based composites," Journal of Applied Polymer Science, Vol. 80, pp. 367-376, 2001.
    [101] Mathew A. P., Oksman K., Sain M., "Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC)," Journal of applied polymer science, Vol. 97, No. 5, pp. 2014-2025, 2005.
    [102] Metters AT, Anseth KS, Bowman CN. "Fundamental studies of a novel,biodegradable PEG-b-PLA hydrogel," Polymer, Vol. 41, No. 11, pp. 3993-4004, 2000.
    [103] Quynh TM, Mitomo H, Nagasawa N, Wada Y, Yoshii F, Tamada M. "Properties of crosslinked polylactides (PLLA & PDLA) by radiation and its biodegradability," European Polymer Journal, Vol. 43, No. 5, pp. 1779-1785, 2007.
    [104] Phong L, Han ESC, Xiong XJ, Pan J, Loo SCJ. "Properties and hydrolysis of PLGA and PLLA cross-linked with electron beam radiation," Polymer Degradation and Stability, Vol. 95, No. 5, pp. 771-777, 2010.
    [105] Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. "Biodegradable long-circulating polymeric nanospheres," Science, Vol. 263, No. 5153, pp. 1600-1603, 1994.
    [106] Ma WJ, Yuan XB, Kang CS, Su T, Yuan XY, Pu PY Sheng J. "Evaluation of blood circulation of polysaccharide surface-decoratedPLA nanoparticles," Carbohydrate Polymers, Vol. 72, No. 1, pp. 75-81, 2008.
    [107] Lu JW, Li Q, Qi QL, Guo ZX, Yu J. "Surface engineering of poly(D, L‐lactic acid) by entrapment of soluble egg shell membrane protein," Journal of Biomedical Materials Research Part A, Vol.91A, No.3, (December 2009), pp. 701-707, 2009.
    [108] Zhu H, Ji J, Shen J. "Surface engineering of poly(DL-lactic acid) by entrapment of biomacromolecules," Macromolecular Rapid Communications, Vol. 23, No. 14, pp. 819-823, 2002.
    [109] Chu PK, Chen JY, Wang LP, Huang N."Plasma-surface modification of biomaterials," Materials Science and Engineering: R: Reports, Vol. 36, No. 5-6, pp. 143-206, 2002.
    [110] Favia P, d'Agostino R. "Plasma treatments and plasma deposition of polymers forbiomedical applications," Surface and coatings Technology, Vol. 98, No.1, pp. 1102-1106, 1988.
    [111] Stupack DG, Puente XS, Boutsaboualoy S, Storgard CM, Cheresh DA. "Apoptosis of adherent cells by recruitment of caspase-8 to unligated integrins," The Journal of Cell Biology, Vol. 155, No. 3, pp. 459-470, 2001.
    [112] Shim IK, Jung MR, Kim KH, Seol YJ, Park YJ, Park WH, Lee SJ. "Novel three-dimensional scaffolds of poly(L-lactic acid) microfibers using electrospinning and mechanical expansion: Fabrication and bone regeneration," Journal of Biomedical Materials Research B: Applied Biomaterials, Vol.95B, pp.150-160, 2010.
    [113] Torchilin VP. "Multifunctional nanocarriers," Advanced Drug Delivery Reviews, Vol. 58, pp. 1532–1555, 2006.
    [114] Ghosh D, Kuchroo P, Shenoy S, Rangaswamy V, Venkata Rama KrishnaS. "Interactive wound cover," US Patent 20070258958, 2007.
    [115] Robinson T. M., Kieswetter K., McNulty A. ,"System and method for healing a wound at a tissue site." US Patent 0,216,170, 2009.
    [116] Rujitanaroj P., Pimpha N., Supaphol P., "Wound-dressing materials with antibacterial activity from electrospun gelatin fiber mats containing silver nanoparticles," Polymer, Vol.49, No.21, pp. 4723-4732, 2008.
    [117] Ignatova M, Manolova N, Markova N, Rashkov I. "Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications," Macromolecular Bioscience, Vol. 9, No. 1, pp. 102-111, 2009.
    [118] Massilia, RMR, Melgar JM, Fortuny RS, Belloso OM. "Control of pathogenic and spoilage microorganisms in fresh-cut fruits and fruit juices by traditional and alternative natural antimicrobials." Comprehensive reviews in food science and food safety , vol. 8, pp. 157-180, 2009.
    [119] Tiwari B. K., Valdramidis V. P., O'Donnell C. P., Muthukumarappan K., Bourke P., Cullen P. J. "Application of natural antimicrobials for food preservation." J Agric Food Chem, vol. 57, pp. 5987-6000, 2009.
    [120] No H. K., Meyers S. P., Prinyawiwatkul W., Xu Z, "Applications of chitosan for improvement of quality and shelf life of foods: a review," J Food Sci ,Vol. 72, pp. 87-100, 2007.
    [121] Touch V., Hayakawa S., Yamada S., Kaneko S, "Effects of a lactoperoxidase-thiocyanate-hydrogen peroxide system on Salmonella enteritidis in animal or vegetable foods." Int J Food Microbiol , Vol. 93, pp. 175-183, 2004.
    [122] Van Opstal I., Bagamboula C. F., Theys T., Vanmuysen S. C., Michiels, C. W, "Inactivation of Escherichia coli and Shigella in acidic fruit and vegetable juices by peroxidase systems," J Appl Microbiol . Vol. 101, pp. 242-250, 2006.
    [123] Liang Z., Mittal G. S., Griffiths M. W., "Inactivation of Salmonella Typhimurium in orange juice containing antimicrobial agents by pulsed electric field," J Food Prot , Vol. 65, pp. 1081-1087, 2002.
    [124] Massilia RMR, Melgar JM, Fortuny RS, Martin-Belloso O. "Control of pathogenic and spoilage microorganisms in fresh-cut fruits and fruit juices by traditional and alternative natural antimicrobials," Comprehensive reviews in food science and food safety Vol. 8, pp. 157-180, 2009.
    [125] Friedman M., Henika P. R., Levin C. E., Mandrell R. E. , "Antibacterial activities of plant essential oils and their components against Escherichia coli O157:H7 and Salmonella enterica in apple juice," J Agric Food Chem , Vol. 52, pp. 6042-6048, 2004.
    [126] Wang G, "Inhibition and inactivation of five species of foodborne pathogens by Chitosan," Journal of Food Protection ,Vol. 55, pp. 916-919, 1992.
    [127] Shahidi F, Arachchi JKV, Jeon YJ. "Food applications of chitin and chitosans," Food Science & Technology Vol. 10, pp. 37-51, 1996.
    [128] Simpson B. K., Gagne N., Ashie I. N., Noroozi E., "Utilization of chitosan for preservation of raw shrimp," Food Biotechnology Vol. 11,pp. 25-44, 1997.
    [129] Darmadji P., Izumimoto M.,"Effect of chitosan in meat preservation," Meat Science ,Vol. 32, pp. 243-254, 1994.
    [130] Chhabra P., Huang Y. W., Frank J. F., Chmielewski R., Gates K. , "Fate of Staphylococcus aureus, Salmonella enterica serovar typhimurium, and vibrio vulnificus in raw oysters treated with chitosan." Journal of Food Protection , Vol. 69, pp. 1600-1604, 2006.
    [131] Helander I. M., Nurmiaho-Lassila E. L., Ahvenainen R., Rhoades J., Roller S. , "Chitosan disrupts the barrier properties of the outer membrane of Gram-negative bacteria." Journal of food Microbiology , Vol. 71, pp. 235-244, 2001.
    [132] Raafat D, Sahl HG. "Chitosan and its antimicrobial potential – a critical literature survey." Microbial Biotechnology Vol. 2, pp. 186-201, 2009.
    [133] Shigemasa Y, Minami S. "Applications of chitin and chitosan for biomaterials." Biotechnol Genet Eng Rev , Vol. 13, pp. 383-420, 1995.
    [134] Liu X. F, Guan YL, Yang DZ, Li Z, Yao KD. "Antibacterial action of chitosan and carboxymethylated chitosan." Journal of Applied Polymer Science, Vol. 79, pp. 1324-1335, 2001.
    [135] Liu N., Chen X. G., Park H. J., Liu C. G., Liu C. S., Meng X. H., Yu L. J. , "Effect of MW and concentration of chitosan on antibacterial activity of Escherichia coli." Carbohydrate Polymers , Vol. 64, pp. 60-65, 2006.
    [136] Papineau A. M., Hoover D. G., Knorr D., Farkas D. F. ,"Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure." Food Biotechnology ,Vol. 5, pp. 45-57, 1991.
    [137] Sudharshan N. R., Hoover D. G., Knorr D., "Antibacterial action of chitosan." Food Biotechnology ,Vol. 6, pp. 257-272, 1992.
    [138] Chung Y. C., Wang H. L., Chen Y. M., Li, S. L., "Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens." Bioresour Technol , Vol. 88, pp. 179-184, 2003.
    [139] Muzzarelli RAA, Tarsi R., Filippini O., Giovanetti E., Biagini G., Varaldo P. E. , "Antimicrobial properties of N-carboxybutyl chitosan." Antimicrob. Agents Chemother , Vol. 34, pp. 2019-2023, 1990.
    [140] Raafat D., Bargen K. V., Haas A., Sahl H. G. ,"Insights into the mode of action of chitosan as an antibacterial compound." Applied and Environmental Microbiology 74: 3764-3773, 2008.
    [141] Kong M., Chen X. G., Xing K., Park H. J. ,"Antimicrobial properties of chitosan and mode of action: a state of the art review." Int J Food Microbiol 144: 51-63, 2010.
    [142] Valgas C., Souza S.M.d., Smania E.F.A., Jr. A. S. n. ,"Screening methods to determine antibacterial activity of natural producs." Brazilian Journal of Microbiology, Vol. 38, pp. 369-380, 2007.
    [143] Wilkins TD, Thiel T. "Modified broth-disk method for testing the antibiotic susceptibility of anaerobic bacteria." American Society for Microbiology, Vol. 3, pp. 350-356, 1973.
    [144] Dickert H., Machka K., Braveny I. , "The uses and limitations of disc diffusion in the antibiotic sensitivity testing of bacteria " Infection, Vol. 9, pp. 18-24, 1981.
    [145] Kenneth Todar University of Wisconsin-Madison Department of Bacteriology. Todar’s Online Textbook of Bacteoriology. Available online at http://textbookofbacteriology.net/e.coli.html.
    [146] Escherichia coli. Available online at http://en.wikipedia.org/wiki/Escherichia_coli
    [147] Willey J., Sherwood L., Woolverton C., Prescott, Harley and Klein's Microbiology, Fifth edition, The McGraw-Hill Companies Inc., 2003.
    [148] Tortora G.J., Funke B.R., Case C.L., Microbiology an introduction. Eighth edition. San Francisco, U.S.A : Pearson Education, Inc., 2004.
    [149] Kenneth Todar University of Wisconsin-Madison Department of Bacteriology, Todar’s Online Textbook of Bacteoriology, Available online at http://textbookofbacteriology.net/ nutritionandgrowthof bacteria.html
    [150] Panboon S., "Electrospinning of poly(vinyl alcohol)/chitosan fibers for wound dressing applications," MS thesis, Department of Industrial Chemistry, King Mongkut's Institute Technology of Bangkok, Thailand, 2005.
    [151] Bastidas O., "Cell counting with neubauer chamber, basic hemocytometer usage," Celeromics, 2013.
    [152] Sun K, Li ZH. "Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning," Express Polymer Letters, Vol. 5, pp. 342-361, 2011.
    [153] Pessan M., Rujiravanit R., Supaphol P., “Electrospinning of hexanoyl chitosan/polylactide blends,” J Biomater Sci Polym Ed, Vol. 17(5), pp. 547-65, 2006.
    [154] Hirsjarvi S., ”Preparation and Characterization of Poly(Lactic Acid) Nanoparticles for Pharmaceutical Use,” Bioscientiarum Molecularium, Vol. 2, pp. 43, 2008.
    [155] Deitzel J.M., Kleinmeyer J., Harris D., Tan B.N.C.,” The effect of processing variables on the morphology of electrospun nanofibers and textiles,” Polymer, Vol 42, Issue 1, pp 261–272, 2001.
    [156] Tayler GI. Proceedings of the Royal Society of London, Series A 1964.
    [157] Fong H., Chun I., Reneker D.H., "Beaded nanofibers formed during electrospinning," Polymer, Vol. 40, pp. 4585-92, 1999.
    [158] Hu S.G., Jou C.H., Yang M.C., “Surface Grafting of Polyester Fiber with Chitosan and the Antibacterial Activity of Pathogenic Bacteria,” Journal of Applied Polymer Science, Vol. 86, Issue 12, pp. 2977–2983, 13 December 2002.
    [159] Sharma P., Singh L., Dilbaghi N., “Biodegradation of Orange II dye by Phanerocharete chrysosporium in simulated wastewater,” Journal of Scientific and Industrial Research, pp. 157-161, February 2009.
    [160] Li Y., Chen F., Nie J., Yang D., ” Electrospun poly(lactic acid)/chitosan core–shell structure nanofibers from homogeneous solution,” Carbohydrate Polymers, Vol. 90, Issue 4, pp. 1445–1451, November 2012.
    [161] Terada D., Kobayashi H., Zhang K., Tiwari A., Yoshikawa C., Hanagata N., ”Transient charge-masking effect of applied voltage on electrospinning of pure chitosan nanofibers from aqueous solutions,” Sci. Technol. Adv. Mater., Vol. 13, 2 February 2012.
    [162] Nguyen T.T.T., Chung H., Park J.S., “Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity”, Carbohydrate Polymers, Vol. 86, Issue 4, pp. 1799–1806, October 2011.
    [163] Ramakrishna S., Fujihara K., Teo W.E., Lim T.C., Ma Z., "An introduction to electrospinning and nanofibers," World Scientific, New Jersey 2005.
    [164] Lin J.,”Comparison of Disk Diffusion, Agar Dilution, and Broth Microdilution for Antimicrobial Susceptibility Testing of Five Chitosans,” Louisiana State University, 2011.
    [165] Kim S.H, Ha H.J, Ko Y.K., Yoon S.J., Rhee J.M., Kim M.S., Lee H.B., Khang G., "Correlation of proliferation, morphology and biological responses of fibroblast on LDPE with different surface wettability," J. Biomater. Sci. Polymer Edn, Vol. 18, pp. 609-622, 2007.
    [166] Quiran J., Narendra R., Yiqi Y., "Cytocompatible cross-linking of electrospun zein fibers for development of water-stable tissue engineering scaffolds," Acta Biomaterial., Vol. 6(10), pp. 4042-51, October 2010.
    [167] Mosmann T., "Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays," J. Immunol. Methods, Vol. 65, pp. 55-63, 1983.

    無法下載圖示 全文公開日期 2019/01/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE