簡易檢索 / 詳目顯示

研究生: 林宇謙
Yu-Chien Lin
論文名稱: 氧化石墨烯基生物活性玻璃之生物活性及抗菌性之研究
Investigation of Bioactive and Antibacterial Effects of Graphene Oxide Based Bioactive Glass
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 段維新
Wei-Hsing Tuan
林士剛
Shih-Kang Lin
鍾仁傑
Ren-Jei Chung
顏怡文
Yee-Wen Yen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 129
中文關鍵詞: 生物活性玻璃氧化石墨稀噴霧熱解法生物活性抗菌活性
外文關鍵詞: Bioactive glass, Graphene oxide, Spray pyrolysis, Bioactivity, Antibacterial activity
相關次數: 點閱:392下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生物活性玻璃(bioactive glass, BG)是一種作為骨頭移植的重要生醫材料,由於其具有優異的生物活性以及與骨頭進行化學鍵結的能力,然而生物活性玻璃不具有抗菌之能力。因此本研究為了克服其所在的應用困難,因此藉由摻雜氧化石墨稀(graphene oxide, GO)來達到其目的。
    於本研究當中,我們使用一階段噴霧熱解法(spray pyrolysis)製備氧化石墨稀摻雜生物活性玻璃,此外,GO使用不同的製備方法(modify Hummer’s methods)用於探討不同性質之材料對於摻雜後之影響。本研究對於GO,BG以及經GO摻雜BG之樣品對其性質之分析結果包含:相組成,形貌以及內部結構,比表面積,化學結構,抗菌測試,體內以及體外生物活性檢測。
    由結果顯示使用硝酸鈉(硝酸)作為二次酸所製備之GO (N-GO)具有最高的抗菌活性對於大腸桿菌大約98.2%之抗菌能力,由於二次酸在氧化反應期間提升之化學選擇性。同時於石墨稀摻雜生物活性玻璃結果方面指出,N-GO摻雜BG(N-GO-BG)之樣品展現出最高的氧化/結構混亂之程度,更進一步,N-GO-BG展現出最高的抗菌活性(82.7對於大腸桿菌和98.0%對於金黃色葡萄球菌),但是卻具有最低的生物活性。於活體實驗的結果顯示,我們的BG以及N-GO-BG樣品展現出良好的生物相容性,並且對於新生組織帶來好處,同時沒有明顯的發炎反應產生。最後,GO在本研究中對於抗菌性及生物活性之探討皆詳細於本研究中討論。


    Bioactive glasses (BGs) are important biomaterial as bone implant due to those excellent bioactivity and bone bonding ability; However, BGs lack of intrinsic antibacterial activity. In order to overcomes one of the remaining challenges to the application, doping BGs with graphene oxide (GO) to overcome this problem in this study.
    In the present work, we demonstrate that GO doped BG can be prepared with a one-step spray pyrolysis (SP) process, moreover, different treatment methods (modify Hummer’s methods) of GOs have been applied on this study as well. The phase composition, morphology, inner structure, specific surface area, chemical structure, antibacterial tests, in-vitro, and in-vivo bioactive tests of GO, BG, and GO doped BG samples were characterized in this study.
    The results suggest that use sodium nitrate (nitric acid) as second acid treated-GO (N-GO) has highest against E.coli activity to ~98.2% due to the second acids enhancing chemoselectivity during oxidation process. Following the GO doped BG results, N-GO doped BG (N-GO-BG) has highest degree of oxidation/ structural disorder; furthermore, the N-GO-BG demonstrates highest antibacterial activity (82.7% to E.coli and 98.0% to S. aureus) but lowest bioactive activity. In-vivo test results suggest that our BG and N-GO-BG samples with good biocompatibility and bring a benefit to the new tissues generation without observably inflammation reaction. Finally, the role of GO on the antibacterial and bioactive properties has been discussed in this study.

    摘要 I Abstract III Acknowledgements V Contents VI List of Tables X List of Figures XI Chapter 1. Introduction 1 1.1 Motivation of Developing of Antibacterial Bioactive glass 1 1.2 Aim of Work 3 Chapter 2. Literature Review 5 2.1 Bone and Tissue Engineering 5 2.1.1 Fundamentals of Bone 5 2.1.2 The Concept of Bone and Tissue Engineering 8 2.2 Bioceramics 13 2.2.1 Type of Bioceramics 13 2.2.2 Bone Bonding Mechanism of Bioactive Glass 16 2.2.3 Application of Bioactive Blass 18 2.3 Bacterial 22 2.3.1 Gram-Bacteria 25 2.3.2 Pathological Response 29 2.4 Antibacterial Agents 38 2.4.1 Antibiotics and Resistance 39 2.4.2 Other Antibacterial Methods 42 2.4.3 Antibacterial Activity of Graphene Materials 46 2.5 Biomedical Test 56 2.5.1 Antibacterial Test 56 2.5.2 In-vitro Bioactive Test 58 2.5.1 In-vivo Test 59 Chapter 3. Materials and experimental procedure 62 3.1 Materials 62 3.1.1 Experimental Materials 63 3.1.2 Experimental Instrument 64 3.2 Experimental Procedure 65 3.2.1 Synthesis of Bioactive Glass 65 3.2.2 Synthesis of GOs 66 3.2.3 Synthesis of GO Doped BG 67 3.2.4 Bulk Samples preparation 68 3.3 Characterization of the Materials 69 3.3.1 X-Ray Diffractometer (XRD) 69 3.3.2 Scanning Electron Microscope (SEM) 69 3.3.3 Transmission Electron Microscope (TEM) 70 3.3.4 Brunaeur Emmet Teller (BET) 71 3.3.5 Microscope Raman Spectrometer 71 3.4 In-Vitro Bioactive Tests 72 3.5 In-Vitro Antibacterial Tests 72 3.6 In-Vivo Tests 73 Chapter 4. Results 75 4.1 Graphene Oxide 75 4.1.1 Crystal Structure Analysis of GO 76 4.1.2 Morphologies and particle sizes of GO 77 4.1.3 Chemical Structure of GO 79 4.1.4 Antibacterial Test of GOs 80 4.2 Graphene Oxide doped Bioactive Glass 82 4.2.1 Phase composition of BG and GO doped BG 82 4.2.2 Morphology of BG and GO doped BG 83 4.2.3 Inner Structure of BG and GO doped BG 87 4.2.4 Chemical Structure of BG and GO doped BG 91 4.2.5 In-Vitro Bioactivity of BG and GO doped BG 92 4.2.6 Antibacterial Test of BG and GO doped BG 94 4.2.7 In-Vivo Test of BG and N-GO-BG 98 Chapter 5. Discussion 103 5.1 The different of GO 103 5.2 Identification of GO doped BG 107 Chapter 6. Conclusions 118 Chapter 7. Future Works 119 References 120

    1. Hench, L.L.; Splinter, R.J.; Allen, W.C.; Greenlee, T.K. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 1971, 5, 117-141.
    2. Hench, L.L. Bioactive ceramics. Ann Ny Acad Sci 1988, 523, 54-71.
    3. Otsuka, M.; Matsuda, Y.; Kokubo, T.; Yoshihara, S.; Nakamura, T.; Yamamuro, T. Drug release from a novel self-setting bioactive glass bone cement containing cephalexin and its physicochemical properties. J Biomed Mater Res 1995, 29, 33-38.
    4. Li, R.; Clark, A.E.; Hench, L.L. An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater 1991, 2, 231-239.
    5. Vallet-Regi, M.; Ramila, A.; del Real, R.P.; Perez-Pariente, J. A new property of mcm-41: Drug delivery system. Chem Mater 2001, 13, 308-311.
    6. Tommila, M.; Jokinen, J.; Wilson, T.; Forsback, A.P.; Saukko, P.; Penttinen, R.; Ekholm, E. Bioactive glass-derived hydroxyapatite-coating promotes granulation tissue growth in subcutaneous cellulose implants in rats. Acat Biomater 2008, 4, 354-361.
    7. Matsumoto, T.; Kuroda, R.; Mifune, Y.; Kawamoto, A.; Shoji, T.; Miwa, M.; Asahara, T.; Kurosaka, M. Circulating endothelial/skeletal progenitor cells for bone regeneration and healing. Bone 2008, 43, 434-439.
    8. Stoor, P.; Kirstila, V.; Soderling, E.; Kangasniemi, I.; Herbst, K.; YliUrpo, A. Interactions between bioactive glass and periodontal pathogens. Microb Ecol Health D 1996, 9, 109-114.
    9. El-Kady, A.M.; Ali, A.F.; Rizk, R.A.; Ahmed, M.M. Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceram Int 2012, 38, 177-188.
    10. Shih, S.-J.; Tzeng, W.-L.; Jatnika, R.; Shih, C.-J.; Borisenko, K.B. Control of ag nanoparticle distribution influencing bioactive and antibacterial properties of ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis. J Biomed Mater Res B 2015, 103, 899-907.
    11. Wu, C.; Zhou, Y.; Xu, M.; Han, P.; Chen, L.; Chang, J.; Xiao, Y. Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 2013, 34, 422-433.
    12. Kim, T.N.; Feng, Q.L.; Kim, J.O.; Wu, J.; Wang, H.; Chen, G.C.; Cui, F.Z. Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J mater Sci-Mater M 1998, 9, 129-134.
    13. Ewald, A.; Käppel, C.; Vorndran, E.; Moseke, C.; Gelinsky, M.; Gbureck, U. The effect of cu(ii)-loaded brushite scaffolds on growth and activity of osteoblastic cells. J Biomed Mater Res A 2012, 100A, 2392-2400.
    14. Sen, C.K.; Khanna, S.; Venojarvi, M.; Trikha, P.; Ellison, E.C.; Hunt, T.K.; Roy, S. Copper-induced vascular endothelial growth factor expression and wound healing. 2002; Vol. 282, p H1821-H1827.
    15. Sterritt, R.M.; Lester, J.N. Interactions of heavy metals with bacteria. Sci Total Environ 1980, 14, 5-17.
    16. Ueda, K.; Morita, J.; Yamashita, K.; Komano, T. Inactivation of bacteriophage x174 by mitomycin c in the presence of sodium hydrosulfite and cupric ions. Chem-Biol Interact 1980, 29, 145-158.
    17. Hutchinson, D.W. Metal chelators as potential antiviral agents. Antivir Res 1985, 5, 193-205.
    18. Michels, H.; Wilks, S.; Noyce, J.; Keevil, C. Copper alloys for human infectious disease control. MS&T Conf. 2005.
    19. Schäfer, B.; Brocke, J.; Epp, A.; Götz, M.; Herzberg, F.; Kneuer, C.; Sommer, Y.; Tentschert, J.; Noll, M.; Günther, I., et al. State of the art in human risk assessment of silver compounds in consumer products: A conference report on silver and nanosilver held at the bfr in 2012. Arch Toxicol 2013, 87, 2249-2262.
    20. Lenza, R.F.S.; Jones, J.R.; Vasconcelos, W.L.; Hench, L.L. In vitro release kinetics of proteins from bioactive foams. J Biomed Mater Res A 2003, 67A, 121-129.
    21. Hench, L.L.; Polak, J.M. Third-generation biomedical materials. Science 2002, 295, 1014-1017.
    22. Ivey, K.N.; Muth, A.; Arnold, J.; King, F.W.; Yeh, R.F.; Fish, J.E.; Hsiao, E.C.; Schwartz, R.J.; Conklin, B.R.; Bernstein, H.S., et al. Microrna regulation of cell lineages in mouse and human embryonic stem cells. Cell Stem Cell 2008, 2, 219-229.
    23. Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS nano 2011, 5, 6971-6980.
    24. Lee, W.C.; Lim, C.H.; Shi, H.; Tang, L.A.; Wang, Y.; Lim, C.T.; Loh, K.P. Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS nano 2011, 5, 7334-7341.
    25. Akhavan, O.; Ghaderi, E. Differentiation of human neural stem cells into neural networks on graphene nanogrids. J Mater Chem B 2013, 1, 6291-6301.
    26. Shih, S.-J.; Chien, I.C. Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis. Powder Technol 2013, 237, 436-441.
    27. Smrke, D.; Rozman, P.; MatjazVeselko, B.G. Treatment of bone defects-allogenic platelet gel and autologous bone technique. Regenerative Medicine and Tissue Engineering, Prof. Jose A. Andrades (Ed.), InTech 2013.
    28. Lin, Y.C.; Cao, Y.; Jang, J.H.; Shu, C.M.; Webb, C.; Pan, W.P. The synthesis and characterization of graphene oxides based on a modified approach. J Therm Anal Calorim 2014, 116, 1249-1255.
    29. Higginbotham, A.L.; Kosynkin, D.V.; Sinitskii, A.; Sun, Z.; Tour, J.M. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes. ACS nano 2010, 4, 2059-2069.
    30. Mays, S. The archaeology of human bones. Taylor & Francis: 1998.
    31. London, R.C.o.P.o. In Osteoporosis: Clinical guidelines for prevention and treatment, 1999; Royal College of Physicians.
    32. Kaplan, F.; Hayes, W.; Keaveny, T.; Boskey, A.; Einhorn, T.; Iannotti, J. Form and function of bone. Orthopaedic Basic Science 1994, 127-185.
    33. Martin, R.B.; Burr, D.B. Structure, function, and adaptation of compact bone. Raven Pr: 1989.
    34. Hollister, S.J.; Kikuchi, N. Homogenization theory and digital imaging: A basis for studying the mechanics and design principles of bone tissue. 1994.
    35. Weiner, S.; Traub, W. Bone structure: From angstroms to microns. The Faseb journal 1992, 6, 879-885.
    36. Fu, Q.; Saiz, E.; Rahaman, M.N.; Tomsia, A.P. Bioactive glass scaffolds for bone tissue engineering: State of the art and future perspectives. Mater Sci Eng C 2011, 31, 1245-1256.
    37. Bianco, P.; Robey, P.G. Stem cells in tissue engineering. Nature 2001, 414, 118-121.
    38. Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone tissue engineering: Recent advances and challenges. Crit Rev Biomed Eng 2012, 40.
    39. Serre, C.M.; Papillard, M.; Chavassieux, P.; Boivin, G. In vitro induction of a calcifying matrix by biomaterials constituted of collagen and/or hydroxyapatite: An ultrastructural comparison of three types of biomaterials. Biomaterials 1993, 14, 97-106.
    40. Hansen, D.C. Metal corrosion in the human body: The ultimate bio-corrosion scenario. T Electrochem Soc Int 2008, 17, 31.
    41. Hench, L.L. The story of bioglass®. J Mater Sci-Mater M 2006, 17, 967-978.
    42. Hench, L.L.; Wilson, J. An introduction to bioceramics. World Scientific: 1993; Vol. 1.
    43. Hench, L.L. Bioceramics: From concept to clinic. J Am Ceram Soc 1991, 74, 1487-1510.
    44. Capello, W.N.; D'Antonio, J.A.; Feinberg, J.R.; Manley, M.T.; Naughton, M. Ceramic-on-ceramic total hip arthroplasty: Update. J Arthrthroplasty 2008, 23, 39-43.
    45. Oonishi, H.; Clarke, I.C.; Good, V.; Amino, H.; Ueno, M. Alumina hip joints characterized by run‐in wear and steady‐state wear to 14 million cycles in hip‐simulator model. J Biomed Mater Res A 2004, 70, 523-532.
    46. Fidancevska, E.; Ruseska, G.; Bossert, J.; Lin, Y.-M.; Boccaccini, A.R. Fabrication and characterization of porous bioceramic composites based on hydroxyapatite and titania. Mater Chem Phys 2007, 103, 95-100.
    47. Hench, L.L.; Paschall, H. Direct chemical bond of bioactive glass‐ceramic materials to bone and muscle. J Biomed Mater Res 1973, 7, 25-42.
    48. Fu, Q.; Rahaman, M.N.; Fu, H.; Liu, X. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. J Biomed Mater Res A 2010, 95, 164-171.
    49. Yuan, H.; de Bruijn, J.D.; Zhang, X.; van Blitterswijk, C.A.; de Groot, K. Bone induction by porous glass ceramic made from bioglass®(45s5). J Biomed Mater Res 2001, 58, 270-276.
    50. Al Ruhaimi, K.A. Bone graft substitutes: A comparative qualitative histologic review of current osteoconductive grafting materials. Int J Oral Max Impl 2001, 16.
    51. Gunawidjaja, P.N.; Mathew, R.; Lo, A.Y.; Izquierdo-Barba, I.; García, A.; Arcos, D.; Vallet-Regí, M.; Edén, M. Local structures of mesoporous bioactive glasses and their surface alterations in vitro: Inferences from solid-state nuclear magnetic resonance. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 2012, 370, 1376-1399.
    52. Clark, A.; Pantano, C.; Hench, L. Auger spectroscopic analysis of bioglass corrosion films. J Am Ceram Soc 1976, 59, 37-39.
    53. Le Guéhennec, L.; Layrolle, P.; Daculsi, G. A review of bioceramics and fibrin sealant. Eur Cell Mater 2004, 8, 1e11.
    54. Jones, J.R. Reprint of: Review of bioactive glass: From hench to hybrids. Acta Biomater 2015, 23, S53-S82.
    55. Jayaswal, G.P.; Dange, S.; Khalikar, A. Bioceramic in dental implants: A review. The Journal of Indian Prosthodontic Society 2010, 10, 8-12.
    56. Chen, W.-C.; Kung, J.-C.; Chen, C.-H.; Hsiao, Y.-C.; Shih, C.-J.; Chien, C.-S. Effects of bioactive glass with and without mesoporous structures on desensitization in dentinal tubule occlusion. Appl Surf Sci 2013, 283, 833-842.
    57. Lopez-Esteban, S.; Saiz, E.; Fujino, S.; Oku, T.; Suganuma, K.; Tomsia, A.P. Bioactive glass coatings for orthopedic metallic implants. J Eur Ceram Soc 2003, 23, 2921-2930.
    58. Ducheyne, P. Bioglass coatings and bioglass composites as implant materials. J Biomed Mater Res 1985, 19, 273-291.
    59. Domingues, Z.R.; Cortés, M.E.; Gomes, T.A.; Diniz, H.F.; Freitas, C.S.; Gomes, J.B.; Faria, A.M.C.; Sinisterra, R.D. Bioactive glass as a drug delivery system of tetracycline and tetracycline associated with β-cyclodextrin. Biomaterials 2004, 25, 327-333.
    60. Allan, I.; Newman, H.; Wilson, M. Antibacterial activity of particulate bioglass® against supra-and subgingival bacteria. Biomaterials 2001, 22, 1683-1687.
    61. Gristina, A.G. Biomaterial-centered infection: Microbial adhesion versus tissue integration. Science 1987, 237, 1588-1595.
    62. Zamet, J.; Darbar, U.; Griffiths, G.; Bulman, J.; Brägger, U.; Bürgin, W.; Newman, H. Particulate bioglass® as a grafting material in the treatment of periodontal intrabony defects. J Clin Periodontol 1997, 24, 410-418.
    63. Earl, J.; Leary, R.; Muller, K.; Langford, R.; Greenspan, D. Physical and chemical characterization of dentin surface following treatment with novamin technology. J Clin Dent 2010, 22, 62-67.
    64. Zhang, D.; Munukka, E.; Hupa, L.; Ylänen, H.O.; Viljanen, M.K.; Hupa, M. In Factors controlling antibacterial properties of bioactive glasses, Key Engineering Materials, 2007; Trans Tech Publ: pp 173-176.
    65. Gorriti, M.F.; López, J.M.P.; Boccaccini, A.R.; Audisio, C.; Gorustovich, A.A. In vitro study of the antibacterial activity of bioactive glass‐ceramic scaffolds. Adv Eng Mater 2009, 11, B67-B70.
    66. Li, R.; Clark, A.; Hench, L. An investigation of bioactive glass powders by sol‐gel processing. J Appl Biomater 1991, 2, 231-239.
    67. Goh, Y.-F.; Alshemary, A.Z.; Akram, M.; Kadir, M.R.A.; Hussain, R. In-vitro characterization of antibacterial bioactive glass containing ceria. Ceramics International 2014, 40, 729-737.
    68. Zhu, H.; Hu, C.; Zhang, F.; Feng, X.; Li, J.; Liu, T.; Chen, J.; Zhang, J. Preparation and antibacterial property of silver-containing mesoporous 58s bioactive glass. Materials Science and Engineering: C 2014, 42, 22-30.
    69. Waltimo, T.; Brunner, T.; Vollenweider, M.; Stark, W.; Zehnder, M. Antimicrobial effect of nanometric bioactive glass 45s5. Journal of Dental Research 2007, 86, 754-757.
    70. Different size, shape and arrangement of bacterial cells, http://www.microbiologyinfo.com/different-size-shape-and-arrangement-of-bacterial-cells/.
    71. Birge, E.A. Bacterial and bacteriophage genetics. Springer Science & Business Media: 2013.
    72. Prokaryotes vs eukaryotes, http://www.slideshare.net/mgsonline/prokaryotes-vs-eukaryotes.
    73. Gram staining, http://www.medical-labs.net/gram-staining-1099/.
    74. Manning, S.D. Escherichia coli infections. Infobase Publishing: 2010.
    75. Zuber, B.; Haenni, M.; Ribeiro, T.; Minnig, K.; Lopes, F.; Moreillon, P.; Dubochet, J. Granular layer in the periplasmic space of gram-positive bacteria and fine structures of enterococcus gallinarum and streptococcus gordonii septa revealed by cryo-electron microscopy of vitreous sections. Journal of bacteriology 2006, 188, 6652-6660.
    76. Knox, K.; Wicken, A. Immunological properties of teichoic acids. Bacteriological reviews 1973, 37, 215.
    77. Cot, M.; Ray, A.; Gilleron, M.; Vercellone, A.; Larrouy-Maumus, G.; Armau, E.; Gauthier, S.; Tiraby, G.; Puzo, G.; Nigou, J.m. Lipoteichoic acid in streptomyces hygroscopicus: Structural model and immunomodulatory activities. Plos One 2011, 6, e26316.
    78. Anderson, R.; Groundwater, P.; Todd, A.; Worsley, A. Antibacterial agents: Chemistry, mode of action, mechanisms of resistance and clinical applications. John Wiley & Sons: 2012.
    79. Topographical images of colonies of e. Coli o157:H7 strains (a) 43895ow (curli non-producing) and (b) 43895or (curli producing) grown on agar for 48 h at 28°c.
    80. Guerrant, R.L.; Van Gilder, T.; Steiner, T.S.; Thielman, N.M.; Slutsker, L.; Tauxe, R.V.; Hennessy, T.; Griffin, P.M.; DuPont, H.; Sack, R.B. Practice guidelines for the management of infectious diarrhea. Clinical Infectious Diseases 2001, 32, 331-351.
    81. Escherichia coli bacteria, http://artsonearth.com/2011/05/e-coli-bacterium-under-microscope.html.
    82. Vial, P.A.; Robins-Browne, R.; Lior, H.; Prado, V.; Kaper, J.B.; Nataro, J.P.; Maneval, D.; Levine, M.M. Characterization of enteroadherent-aggregative escherichia coli, a putative agent of diarrheal disease. Journal of Infectious Diseases 1988, 158, 70-79.
    83. Fratamico, P.M.; Smith, J.L. Escherichia coli infections. Foodborne Infections and Intoxications 2006, 205-208.
    84. Persson, S.; Olsen, K.E.; Ethelberg, S.; Scheutz, F. Subtyping method for escherichia coli shiga toxin (verocytotoxin) 2 variants and correlations to clinical manifestations. Journal of Clinical Microbiology 2007, 45, 2020-2024.
    85. Stenström, T.-A.; Kjelleberg, S. Fimbriae mediated nonspecific adhesion of salmonella typhimurium to mineral particles. Arch Microbiol 1985, 143, 6-10.
    86. Freeman-Cook, L.; Freeman-Cook, K.D.; Alcamo, I.E.; Heymann, D.L. Staphylococcus aureus infections. Infobase Publishing: 2006.
    87. Schwartz, B. In The paradox of choice, 2004; Ecco New York.
    88. Kim, T.; Feng, Q.; Kim, J.; Wu, J.; Wang, H.; Chen, G.; Cui, F. Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. Journal of Materials Science: Materials in Medicine 1998, 9, 129-134.
    89. Stoor, P.; Kirstilä, V.; Söderling, E.; Kangasniemi, I.; Herbst, K.; Yli-Urpo, A. Interactions between bioactive glass and periodontal pathogens. Microbial Ecology in Health and Disease 1996, 9, 109-114.
    90. Shih, S.-J.; Chien, I.-C. Preparation and characterization of nanostructured silver particles by one-step spray pyrolysis. Powder Technology 2013, 237, 436-441.
    91. Shih, S.J.; Tzeng, W.L.; Jatnika, R.; Shih, C.J.; Borisenko, K.B. Control of ag nanoparticle distribution influencing bioactive and antibacterial properties of ag‐doped mesoporous bioactive glass particles prepared by spray pyrolysis. J Biomed Mater Res B 2015, 103, 899-907.
    92. Li, W.-R.; Xie, X.-B.; Shi, Q.-S.; Zeng, H.-Y.; You-Sheng, O.-Y.; Chen, Y.-B. Antibacterial activity and mechanism of silver nanoparticles on escherichia coli. Applied Microbiology and Biotechnology 2010, 85, 1115-1122.
    93. Feng, Q.; Wu, J.; Chen, G.; Cui, F.; Kim, T.; Kim, J. A mechanistic study of the antibacterial effect of silver ions on escherichia coli and staphylococcus aureus. Journal of Biomedical Materials Research 2000, 52, 662-668.
    94. Schäfer, B.; Vom Brocke, J.; Epp, A.; Götz, M.; Herzberg, F.; Kneuer, C.; Sommer, Y.; Tentschert, J.; Noll, M.; Günther, I. State of the art in human risk assessment of silver compounds in consumer products: A conference report on silver and nanosilver held at the bfr in 2012. Archives of Toxicology 2013, 87, 2249-2262.
    95. Honda, M.; Kawanobe, Y.; Ishii, K.; Konishi, T.; Mizumoto, M.; Kanzawa, N.; Matsumoto, M.; Aizawa, M. In vitro and in vivo antimicrobial properties of silver-containing hydroxyapatite prepared via ultrasonic spray pyrolysis route. Materials Science and Engineering: C 2013, 33, 5008-5018.
    96. Paul, T.; Miller, P.L.; Strathmann, T.J. Visible-light-mediated tio2 photocatalysis of fluoroquinolone antibacterial agents. Environmental Science & Technology 2007, 41, 4720-4727.
    97. Geim, A.K. Graphene: Status and prospects. Science 2009, 324, 1530-1534.
    98. Novoselov, K.S.; Geim, A.K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.a.; Grigorieva, I.; Firsov, A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.
    99. Geim, A.K.; Novoselov, K.S. The rise of graphene. Nature Materials 2007, 6, 183-191.
    100. Li, J.; Wang, G.; Zhu, H.; Zhang, M.; Zheng, X.; Di, Z.; Liu, X.; Wang, X. Antibacterial activity of large-area monolayer graphene film manipulated by charge transfer. Scientific Reports 2014, 4.
    101. Perreault, F.; de Faria, A.F.; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chemical Society Reviews 2015, 44, 5861-5896.
    102. Brock, T.D. Milestones in microbiology. Academic Medicine 1961, 36, 847.
    103. Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. Graphene-based antibacterial paper. ACS nano 2010, 4, 4317-4323.
    104. Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS nano 2011, 5, 6971-6980.
    105. Chen, J.; Peng, H.; Wang, X.; Shao, F.; Yuan, Z.; Han, H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 2014, 6, 1879-1889.
    106. Liu, S.; Hu, M.; Zeng, T.H.; Wu, R.; Jiang, R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Langmuir 2012, 28, 12364-12372.
    107. Qi, X.; Wang, T.; Long, Y.; Ni, J. Synergetic antibacterial activity of reduced graphene oxide and boron doped diamond anode in three dimensional electrochemical oxidation system. Scientific Reports 2015, 5.
    108. Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H. Destructive extraction of phospholipids from escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 2013, 8, 594-601.
    109. Mao, J.; Guo, R.; Yan, L.-T. Simulation and analysis of cellular internalization pathways and membrane perturbation for graphene nanosheets. Biomaterials 2014, 35, 6069-6077.
    110. Lyon, D.Y.; Alvarez, P.J. Fullerene water suspension (nc60) exerts antibacterial effects via ros-independent protein oxidation. Environmental Science & Technology 2008, 42, 8127-8132.
    111. Garza, K.M.; Soto, K.F.; Murr, L.E. Cytotoxicity and reactive oxygen species generation from aggregated carbon and carbonaceous nanoparticulate materials. International Journal of Nanomedicine 2008, 3, 83.
    112. Krishnamoorthy, K.; Umasuthan, N.; Mohan, R.; Lee, J.; Kim, S.-J. Antibacterial activity of graphene oxide nanosheets. Sci Adv Mat 2012, 4, 1111-1117.
    113. Park, S.; Ruoff, R.S. Chemical methods for the production of graphenes. Nature Nanotechnology 2009, 4, 217-224.
    114. Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373-399.
    115. Gurunathan, S.; Han, J.W.; Dayem, A.A.; Eppakayala, V.; Park, M.-R.; Kwon, D.-N.; Kim, J.-H. Antibacterial activity of dithiothreitol reduced graphene oxide. J Ind Eng Chem 2013, 19, 1280-1288.
    116. Sheet, I.; Holail, H.; Olama, Z.; Kabbani, A.; Hines, M. The antibacterial activity of graphite oxide, silver, impregnated graphite oxide with silver and go-coated sand nanoparticles against waterborne pathogenic e. Coli bl21. Int J Curr Microbiol App Sci 2013, 2, 1-11.
    117. Badiei, E.; Sangpour, P.; Bagheri, M.; Pazouki, M. Graphene oxide antibacterial sheets: Synthesis and characterization (research note). Int J Eng-Tran C 2014, 27, 1803.
    118. Mazaheri, M.; Akhavan, O.; Simchi, A. Flexible bactericidal graphene oxide–chitosan layers for stem cell proliferation. Appl Surf Sci 2014, 301, 456-462.
    119. Badiei, E.; Sangpour, P.; Bagheri, M.; Pazouki, M. Graphene oxide antibacterial sheets: Synthesis and characterization. International Journal of Engineering-Transactions C: Aspects 2014, 27, 1803.
    120. Sanchez, V.C.; Jachak, A.; Hurt, R.H.; Kane, A.B. Biological interactions of graphene-family nanomaterials: An interdisciplinary review. Chem Res Toxicol 2011, 25, 15-34.
    121. Schulz, H.; Harder, V.; Ibald-Mulli, A.; Khandoga, A.; Koenig, W.; Krombach, F.; Radykewicz, R.; Stampfl, A.; Thorand, B.; Peters, A. Cardiovascular effects of fine and ultrafine particles. Journal of Aerosol Medicine 2005, 18, 1-22.
    122. Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters 2010, 10, 3318-3323.
    123. Yan, L.; Zhao, F.; Li, S.; Hu, Z.; Zhao, Y. Low-toxic and safe nanomaterials by surface-chemical design, carbon nanotubes, fullerenes, metallofullerenes, and graphenes. Nanoscale 2011, 3, 362-382.
    124. Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Research 2008, 1, 203-212.
    125. Xia, W.; Chang, J. Well-ordered mesoporous bioactive glasses (mbg): A promising bioactive drug delivery system. Journal of Controlled Release 2006, 110, 522-530.
    126. Gilchrist, J.; Campbell, J.; Donnelly, C.; Peeler, J.; Delaney, J. Spiral plate method for bacterial determination. Applied Microbiology 1973, 25, 244-252.
    127. Reed, R.; Reed, G. " Drop plate" method of counting viable bacteria. Canadian Journal of Research 1948, 26, 317-326.
    128. Kokubo, T. Bioactive glass ceramics: Properties and applications. Biomaterials 1991, 12, 155-163.
    129. Kokubo, T.; Takadama, H. How useful is sbf in predicting in vivo bone bioactivity? Biomaterials 2006, 27, 2907-2915.
    130. Oonishi, H.; Hench, L.; Wilson, J.; Sugihara, F.; Tsuji, E.; Matsuura, M.; Kin, S.; Yamamoto, T.; Mizokawa, S. Quantitative comparison of bone growth behavior in granules of bioglass, a-w glass-ceramic, and hydroxyapatite. Journal of Biomedical Materials Research 2000, 51, 37-46.
    131. Bal, B.S.; Rahaman, M.N.; Jayabalan, P.; Kuroki, K.; Cockrell, M.K.; Yao, J.Q.; Cook, J.L. In vivo outcomes of tissue‐engineered osteochondral grafts. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2010, 93, 164-174.
    132. Tommila, M.; Jokinen, J.; Wilson, T.; Forsback, A.-P.; Saukko, P.; Penttinen, R.; Ekholm, E. Bioactive glass-derived hydroxyapatite-coating promotes granulation tissue growth in subcutaneous cellulose implants in rats. Acta Biomaterialia 2008, 4, 354-361.
    133. Kokubo, T.; Kushitani, H.; Sakka, S.; Kitsugi, T.; Yamamuro, T. Solutions able to reproduce in vivo surface‐structure changes in bioactive glass‐ceramic a‐w3. Journal of Biomedical Materials Research 1990, 24, 721-734.
    134. Lin, Y.-C.; Cao, Y.; Jang, J.-H.; Shu, C.-M.; Webb, C.; Pan, W.-P. The synthesis and characterization of graphene oxides based on a modified approach. J Therm Anal Calorim 2014, 116, 1249-1255.
    135. Ordikhani, F.; Farani, M.R.; Dehghani, M.; Tamjid, E.; Simchi, A. Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity. Carbon 2015, 84, 91-102.
    136. Venezuela, P.; Lazzeri, M.; Mauri, F. Theory of double-resonant raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands. Physical Review B 2011, 84, 035433.
    137. Boutchich, M.; Jaffré, A.; Alamarguy, D.; Alvarez, J.; Barras, A.; Tanizawa, Y.; Tero, R.; Okada, H.; Thu, T.; Kleider, J.-P. In Characterization of graphene oxide reduced through chemical and biological processes, Journal of Physics: Conference Series, 2013; IOP Publishing: p 012001.
    138. Kurita, S.; Yoshimura, A.; Kawamoto, H.; Uchida, T.; Kojima, K.; Tachibana, M.; Molina-Morales, P.; Nakai, H. Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition. Journal of Applied Physics 2005, 97, 104320-104320.
    139. Ferrari, A.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S. Raman spectrum of graphene and graphene layers. Physical Review Letters 2006, 97, 187401.
    140. Gaskell, P. Vibrational spectra of simple silicate glasses. Discussions of the Faraday Society 1970, 50, 82-93.
    141. Fowler, B. Infrared studies of apatites. I. Vibrational assignments for calcium, strontium, and barium hydroxyapatites utilizing isotopic substitution. Inorganic Chemistry 1974, 13, 194-207.
    142. Shih, S.-J.; Lin, Y.-C.; Valentino Posma Panjaitan, L.; Rahayu Meyla Sari, D. The correlation of surfactant concentrations on the properties of mesoporous bioactive glass. Materials 2016, 9, 58.
    143. Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved synthesis of graphene oxide. ACS nano 2010, 4, 4806-4814.
    144. Hong, Y.; Wang, Z.; Jin, X. Sulfuric acid intercalated graphite oxide for graphene preparation. Sci Rep 2013, 3.
    145. Chowdhury, D.R.; Singh, C.; Paul, A. Role of graphite precursor and sodium nitrate in graphite oxide synthesis. RSC Advances 2014, 4, 15138-15145.
    146. David, L.; Singh, G. Reduced graphene oxide paper electrode: Opposing effect of thermal annealing on li and na cyclability. J Phys Chem C 2014, 118, 28401-28408.
    147. Messing, G.L.; Zhang, S.C.; Jayanthi, G.V. Ceramic powder synthesis by spray pyrolysis. J Am Ceram Soc 1993, 76, 2707-2726.
    148. Shih, S.-J.; Chou, Y.-J.; Chen, C.-Y.; Lin, C.-K. One-step synthesis and characterization of nanosized bioactive glass. J. Med. Biol. Eng 2014, 34, 18-23.
    149. Sharma, B. Industrial chemistry. Krishna Prakashan Media: 1991.
    150. Seidell, A. Solubilities of inorganic and organic compounds: A compilation of quantitative solubility data from the periodical literature. D. Van Nostrand Company: 1919.
    151. Hontoria-Lucas, C.; Lopez-Peinado, A.; López-González, J.d.D.; Rojas-Cervantes, M.; Martin-Aranda, R. Study of oxygen-containing groups in a series of graphite oxides: Physical and chemical characterization. Carbon 1995, 33, 1585-1592.
    152. Shalaby, A.; Nihtianova, D.; Markov, P.; Staneva, A.; Iordanova, R.; Dimitriev, Y. Structural analysis of reduced graphene oxide by transmission electron microscopy. 2015.
    153. Zhang, L.; Liu, W.; Yue, C.; Zhang, T.; Li, P.; Xing, Z.; Chen, Y. A tough graphene nanosheet/hydroxyapatite composite with improved in vitro biocompatibility. Carbon 2013, 61, 105-115.
    154. Gurunathan, S.; Han, J.W.; Dayem, A.A.; Eppakayala, V.; Kim, J.-H. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in pseudomonas aeruginosa. Int J Nanomedicine 2012, 7, e14.
    155. Kanayama, I.; Miyaji, H.; Takita, H.; Nishida, E.; Tsuji, M.; Fugetsu, B.; Sun, L.; Inoue, K.; Ibara, A.; Akasaka, T. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide. International Journal of Nanomedicine 2014, 9, 3363.
    156. Wang, K.; Ruan, J.; Song, H.; Zhang, J.; Wo, Y.; Guo, S.; Cui, D. Biocompatibility of graphene oxide. Nanoscale Res Lett 2011, 6, 1.

    無法下載圖示 全文公開日期 2021/07/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE