簡易檢索 / 詳目顯示

研究生: 蘇宥齊
Yu-Chi Su
論文名稱: 製備用於三維列印之生物相容光固化樹脂
Preparation of Biocompatible Photopolymers for Three-Dimensional Printing
指導教授: 何明樺
Ming-Hua Ho
口試委員: 陳崇賢
Chorng-Shyan Chern
鄭逸琳
Yih-Lin Cheng
董崇民
Trong-Ming Don
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 128
中文關鍵詞: 光固化快速成型生物相容性三維列印
外文關鍵詞: UV-curing, rapid prototyping, biocompatibility, 3-dimensional printing
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在快速成型程序中,利用光聚合反應能賦予產品高解析度、高機械強度以及高穩定性,高解析度更有利於快速成型產品在生物醫學領域的應用,而能被光聚合的寡聚物與單體在這些製程中扮演著重要的角色。然而,現今大部分光聚合的材料生物相容性不佳、難以在臨床上被應用。在此論文中,我們開發新型快速成型且具有良好生物相容性的紫外光固化聚合物系統,採用臨床常用的高生物相容性寡聚物進行末端改質,經過末端酯化的寡聚物呈現光反應型的官能基碳碳雙鍵(C=C),並具有可調控的碳碳雙鍵官能基數目。


    The UV-induced polymerization process used in rapid prototyping results in excellent resolution, mechanical strength and stability of products. High resolution has more conducive to product with rapid prototyping applications in the biomedical field. However, the oligomers used in this process must be UV-curable, which was difficult for most of polymers used clinically nowadays. In this study, a series of novel, biocompatible and UV-curable oligomers were developed for rapid prototyping by modifying polymers, commonly be used in clinical high biocompatible oligomer. After the esterification on the ends of oiligomers, appearing photoreactive functional group with carbon-carbon double bond (C = C), the number of reactive functional group, carbon-carbon double bond could be controlled in one oligomer.

    摘要 I Abstract II 致謝 IV 目錄 VI 圖目錄 XII 表目錄 XXII 方程式目錄 XXIV 專有名詞及縮寫 XXV 第一章 緒論 1 第二章 文獻回顧 3 2.1 3D列印的發展現況及生醫應用 3 2.1.1 未來與隱憂 4 2.2 硬化型樹脂之種類 4 2.2.1 乙烯基類反應性樹脂 5 2.3 光硬化樹脂的主要成分 6 2.3.1 寡聚物 6 2.3.2 單體 7 2.3.3 光起始劑 10 2.4 影響硬化之因素 12 2.4.1 UV燈源之強度、波長 12 2.4.2 熱 12 2.4.3 氧阻聚 12 2.4.4 層膜之厚度 13 2.4.5 寡聚物本身的性質 14 2.4.6 光起始劑之含量 14 2.5 生物相容光固化樹脂的應用 14 2.6 樹脂比例和成分對機械性質的影響 15 2.7 3D列印醫療應用的回顧 16 第三章 實驗材料與方法 18 3.1 實驗藥品 18 3.2 實驗儀器 20 3.3 實驗材料與流程 22 3.3.1 寡聚物合成 22 3.3.2 樹脂配方及混合方式 22 3.4 材料鑑定與性質檢測 26 3.4.1 傅立葉轉換紅外線光譜儀(FTIR)分析 26 3.4.2 拉伸試驗 26 3.4.1 黏度測試 29 3.4.2 降解測試 30 3.4.3 熱重量分析測試(TGA) 30 3.4.4 熱示差掃描分析儀(DSC) 31 3.4.5 接觸角量測 31 3.5 體外細胞實驗 32 3.5.1 實驗操作 32 3.5.2 光固化材料試片製作 33 3.5.3 細胞來源 35 3.5.4 細胞培養 35 3.5.5 細胞冷凍保存 36 3.5.6 細胞解凍及培養 37 3.5.7 細胞計數 37 3.5.8 粒線體活性測試 39 3.5.9 細胞骨架染色(Cytoskeleton immunostaining) 41 3.5.1 細胞的毒性測試(Annexin V-FITC/PI試劑雙染) 41 第四章 結果與討論 43 4.1 傅立葉轉換紅外線光譜儀(FTIR)分析 43 4.1.1 藉由FTIR 分析量測光固化材料的轉化率 43 4.2 反應型稀釋單體濃度對黏度的影響 48 4.3 不同溫度對黏度的影響 57 4.4 稀釋單體和寡聚物比例對光固化材料的機械性質影響 62 4.5 交聯劑對機械性質之影響 66 4.6 不同稀釋單體對材料機械性質影響 69 4.7 不同寡聚體對材料機械性質的影響 72 4.8 牙科應用在3D列印之光固化材料開發 74 4.9 重量損失量測 83 4.10 材料熱性質分析 85 4.11 接觸角量測 90 4.12 骨母細胞在光固化材料上的活性表現 93 4.13 骨母細胞在含有交聯劑的光固化材料上之活性表現 96 4.14 骨母細胞在混合不同稀釋單體的光固化材料上之活性表現 98 4.15 肌動蛋白骨架及細胞核染色 100 4.16 光固化材料的毒性測試(Annexin V-FITC/PI 試劑雙染) 105 4.17 以光固化材料製備臨床醫療裝置 113 第五章 結論 115 參考文獻 118

    1. Shi, D., J. Yang, Z. Yao, Y. Wang, H. Huang, W. Jing, J. Yin, and G. Costa, Functionalization of isotactic polypropylene with maleic anhydride by reactive extrusion: mechanism of melt grafting. Polymer, 2001. 42(13): p. 5549-5557.
    2. Chapin, E.C., G.E. Ham, and C.L. Mills, Copolymerization. VII. Relative rates of addition of various monomers in copolymerization. Journal of Polymer Science, 1949. 4(5): p. 597-604.
    3. Smets, G., N. Deval, and P. Hous, Cyclopolymerization. V. Copolymerization of acrylic and methacrylic anhydrides with vinyl monomers. Journal of Polymer Science Part A: General Papers, 1964. 2(11): p. 4835-4844.
    4. Peutzfeldt, A., Resin composites in dentistry: the monomer systems. European Journal of Oral Sciences, 1997. 105(2): p. 97-116.
    5. Park, Y.-J., D-H. Lim, H-J. Kim, D-S. Park, and I-K. Sung, UV- and thermal-curing behaviors of dual-curable adhesives based on epoxy acrylate oligomers. International Journal of Adhesion and Adhesives, 2009. 29(7): p. 710-717.
    6. Kayaman-Apohan, N., A. Amanoel, N. Arsu, and A. Güngör, Synthesis and characterization of UV-curable vinyl ether functionalized urethane oligomers. Progress in Organic Coatings, 2004. 49(1): p. 23-32.
    7. Schwalm, R., CHAPTER 5 - Formulations, in UV Coatings. 2007, Elsevier: Amsterdam. p. 140-159.
    8. Kim, H.K., H.T. Ju, and J.W. Hong, Characterization of UV-cured polyester acrylate films containing acrylate functional polydimethylsiloxane. European Polymer Journal, 2003. 39(11): p. 2235-2241.
    9. Schwalm, R., CHAPTER 6 - Structure–Property Relationships, in UV Coatings. 2007, Elsevier: Amsterdam. p. 160-178.
    10. Lovell, L.G., J.W. Stansbury, D.C. Syrpes, and C.N. Bowman, Effects of Composition and Reactivity on the Reaction Kinetics of Dimethacrylate/Dimethacrylate Copolymerizations. Macromolecules, 1999. 32(12): p. 3913-3921.
    11. Arcı́s, R.W., A. López-Macipe, M. Toledano, E. Osorio, R. Rodrı́guez-Clemente, J. Murtra, M.A. Fanovich, and C.D. Pascual, Mechanical properties of visible light-cured resins reinforced with hydroxyapatite for dental restoration. Dental Materials, 2002. 18(1): p. 49-57.
    12. Roffey, C.G., Photopolymerization of Surface Coating. John Wiley & Sons, 1982: p. 161.
    13. Yoshii, E., Cytotoxic effects of acrylates and methacrylates: Relationships of monomer structures and cytotoxicity. Journal of Biomedical Materials Research, 1997. 37(4): p. 517-524.
    14. Wang, F., J.Q. Hu, and W.P. Tu, Study on microstructure of UV-curable polyurethane acrylate films. Progress in Organic Coatings, 2008. 62(3): p. 245-250.
    15. Yu, Y., S. Jiang, and F. Sun, Synthesis and Properties of a Photopolymerizable Carbene-Mediated Poly Phosphinate Flame Retardant by Carbene Polymerization. Industrial & Engineering Chemistry Research, 2014. 53(42): p. 16135-16142.
    16. Imazato, S., H. Tarumi, N. Ebi, and S. Ebisu, Cytotoxic effects of composite restorations employing self-etching primers or experimental antibacterial primers. Journal of Dentistry, 2000. 28(1): p. 61-67.
    17. Schuster, M., C. Turecek, B. Kaiser, J. Stampfl, R. Liska, and F. Varga, Evaluation of Biocompatible Photopolymers I: Photoreactivity and Mechanical Properties of Reactive Diluents. Journal of Macromolecular Science, Part A, 2007. 44(5): p. 547-557.
    18. Jiang, M., K. Wang, G. Ma, L. Jian, X. Juan, Q. Yu, and J. Nie, Ultraviolet photopolymerization induced by a triazine derivative. Journal of Applied Polymer Science, 2011. 121(4): p. 2013-2017.
    19. Owen, R., C. Sherborne, T. Paterson, N.H. Green, N.H. Reilly, and F. Claeyssens, Emulsion templated scaffolds with tunable mechanical properties for bone tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 2016. 54: p. 159-172.
    20. Dae Su Kim, W.H.S., Ultraviolet-Curing Behavior and Mechanical Properties of a Polyester Acrylate Resin. Applied Polymer Science, 2003. 92, 3921–3928 (2004).
    21. Khan, M.A., S. Shehrzade, M. Sarwar, U. Chowdhury, and M.M. Rahman, Effect of Pretreatment with UV Radiation on Physical and Mechanical Properties of Photocured Jute Yarn with 1,6-Hexanediol Diacrylate (HDDA). Journal of Polymers and the Environment, 2001. 9(3): p. 115-124.
    22. Kim, D.S. and W.H. Seo, Ultraviolet‐curing behavior and mechanical properties of a polyester acrylate resin. Journal of Applied Polymer Science, 2004. 92(6): p. 3921-3928.
    23. Schwalm, R., L. Häußling, W. Reich, E. Beck, P. Enenkel, and K. Menzel, Tuning the mechanical properties of UV coatings towards hard and flexible systems. Progress in Organic Coatings, 1997. 32(1–4): p. 191-196.
    24. Monroe, B.M. and G.C. Weed, Photoinitiators for free-radical-initiated photoimaging systems. Chemical Reviews, 1993. 93(1): p. 435-448.
    25. Kumar, R.N., C.K. Woo, and A. Abusamah, UV curing of surface coating system consisting of cycloaliphatic diepoxide‐ENR‐glycidyl methacrylate by cationic photoinitiators—characterization of the cured film by FTIR spectroscopy. Journal of Applied Polymer Science, 1999. 73(8): p. 1569-1577.
    26. Masson, F., C. Decker, S. Andre, and X. Andrieu, UV-curable formulations for UV-transparent optical fiber coatings: I. Acrylic resins. Progress in Organic Coatings, 2004. 49(1): p. 1-12.
    27. Chung, C.M., J.G. Kim, M.S. Kim, K.M. Kim, and K.N. Kim, Development of a new photocurable composite resin with reduced curing shrinkage. Dental Materials, 2002. 18(2): p. 174-178.
    28. Jung, K.H. and B.S. Bae, Synthesis and characterization of photopatternable epoxy hybrid materials for the fabrication of thick and thermally stable microstructures with a high aspect ratio. Journal of Applied Polymer Science, 2008. 108(5): p. 3169-3176.
    29. Lee, T.Y., T.M. Roper, E.S. Jonsson, I. Kudyakov, K. Viswanathan, C. Nason, C.A. Guymon, and C.E. Hoyle, The kinetics of vinyl acrylate photopolymerization. Polymer, 2003. 44(10): p. 2859-2865.
    30. Scaiano, J.C., T.J. Connolly, N. Mohtat, and C.N. Pliva, Exploratory study of the quenching of photosensitizers by initiators of free radical "living" polymerization. Canadian Journal of Chemistry, 1997. 75(1): p. 92-97.
    31. Keller, L., C. Decker, K. Zahouily, S. Benfarhi, J. M. Le Meins, and J. Miehe-Brendle, Synthesis of polymer nanocomposites by UV-curing of organoclay–acrylic resins. Polymer, 2004. 45(22): p. 7437-7447.
    32. J. Kindernay, A.B., J. Rudá, V. Janˇcoviˇcová, Z. Jakub´ıková, Effect of UV light source intensity and spectral distribution on the photopolymerisation reactions of a multifunctional acrylated monomer. Journal of Photochemistry and Photobiology A, 2002,. 151: p. 229–236.
    33. Trujillo, M., S.M. Newman, and J.W. Stansbury, Use of near-IR to monitor the influence of external heating on dental composite photopolymerization. Dent Mater, 2004. 20(8): p. 766-777.
    34. Lovell, L.G., H. Lu, J.E. Elliott, J.W. Stansbury, and C.N. Bowman, The effect of cure rate on the mechanical properties of dental resins. Dental Materials, 2001. 17(6): p. 504-511.
    35. Schwalm, R., CHAPTER 2 - The UV Curing Process, in UV Coatings. 2007, Elsevier: Amsterdam. p. 19-61.
    36. J. H. Moon, Y.G.S., H. S. Han, S. Y. Hong, Y. S. Choib, and H. T. Kim, International Journal of Adhesion & Adhesives. 2005. 25: p. 301.
    37. Melchels, F.P.W., J. Feijen, and D.W. Grijpma, A poly(d,l-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials, 2009. 30(23–24): p. 3801-3809.
    38. Finnes, T., High Definition 3D Printing –Comparing SLA and FDM Printing Technologies. Journal of Undergraduate Research, 2015. 13: p. 10-26.
    39. Liska, R., M. Schuster, R. Inführ, C.Turecek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl, Photopolymers for rapid prototyping. Journal of Coatings Technology and Research, 2007. 4(4): p. 505-510.
    40. Gross, B.C., J.L. Erkal, S.Y. Lockwood, C. Chen, and D.M. Spence, Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences. Analytical Chemistry, 2014. 86(7): p. 3240-3253.
    41. Cooke, M.N., J.P. Fisher, D. Dean, C. Rimnac, and A.G. Mikos, Use of stereolithography to manufacture critical‐sized 3D biodegradable scaffolds for bone ingrowth. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2003. 64B(2): p. 65-69.
    42. Seung Hwan, K., C. Jaewon, H. Nico, N. Koo Hyun, and P.G. Costas, Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication. Journal of Micromechanics and Microengineering, 2010. 20(12): p. 125010.
    43. Li, G.Z., L. Wang, H. Toghiani, T.L. Daulton, K. Koyama, and C.U. Pittman, Viscoelastic and Mechanical Properties of Epoxy/Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites and Epoxy/Ladderlike Polyphenylsilsesquioxane Blends. Macromolecules, 2001. 34(25): p. 8686-8693.
    44. Jacobsen, S. and H.G. Fritz, Plasticizing polylactide—the effect of different plasticizers on the mechanical properties. Polymer Engineering & Science, 1999. 39(7): p. 1303-1310.
    45. Peutzfeldt, A. and E. Asmussen, Influence of Aldehydes on Selected Mechanical Properties of Resin Composites. Journal of Dental Research, 1992. 71(8): p. 1522-1524.
    46. Aylvin A. Dias, J.F.G.A.J.a.M.D., Amide Acrylate versus Urethane Acrylate Monomers in Radiation Curing Formulations. 2001.
    47. Zhao, L., P.K. Patel, and M. Cohen, Application of Virtual Surgical Planning with Computer Assisted Design and Manufacturing Technology to Cranio-Maxillofacial Surgery. Arch Plast Surg, 2012. 39(4): p. 309-316.
    48. Sodian, R., M. Loebe, A. Hein, D.P. Martin, S.P. Hoerstrup, E.V. Potapov, H. Hausmann, T. Lueth, and R. Hetzer, Application of Stereolithography for Scaffold Fabrication for Tissue Engineered Heart Valves. ASAIO Journal, 2002. 48(1): p. 12-16.
    49. Pereira, I.H.L., E. Ayres, P.S. Patrício, A.M. Góes, V.S. Gomide, E.P. Junior, and R.L. Oréfice, Photopolymerizable and injectable polyurethanes for biomedical applications: Synthesis and biocompatibility. Acta Biomaterialia, 2010. 6(8): p. 3056-3066.
    50. Kouhei MASUKI1, Y.N., Ujjal Kumar BHAWAL2, Masahiko SAWAJIRI3, Isao HIRATA1,Yukinori NAHARA4 and Masayuki OKAZAKI1, Apoptotic and Necrotic Influence of Dental Resin Polymerization Initiators in Human Gingival Fibroblast Cultures. Dental Materials, 2007. 26: p. 861-869.
    51. Wild, L., R. Ranganath, and D.C. Knobeloch, Influence of long‐chain branching on the viscoelastic properties of low‐density polyethylenes. Polymer Engineering & Science, 1976. 16(12): p. 811-816.
    52. Patchett, S., S. B, E. L, C. K and C. O, Helicobacter pylori and duodenal ulcer recurrence. Am J Gastroenterol, 1992. 87: p. 24-27.
    53. Suzuki, A., M. Masuko, and K. Wakisaka, Pressure-dependence of dielectric relaxation time in poly(propylene glycol) and its application to high-pressure viscosity estimation. Tribology International, 2002. 35(1): p. 55-63.
    54. Kelley, F.N. and F. Bueche, Viscosity and glass temperature relations for polymer‐diluent systems. Journal of Polymer Science, 1961. 50(154): p. 549-556.
    55. Ferry, J.D. and R.A. Stratton, The free volume interpretation of the dependence of viscosities and viscoelastic relaxation times on concentration, pressure, and tensile strain. Kolloid-Zeitschrift, 1960. 171(2): p. 107-111.
    56. Abu Bakar, M.S., M. H. W. Cheng, S. M. Tang, S. C. Yu, K. Liao, C. T. Tan, K. A. Khor, and P. Cheang, Tensile properties, tension–tension fatigue and biological response of polyetheretherketone–hydroxyapatite composites for load-bearing orthopedic implants. Biomaterials, 2003. 24(13): p. 2245-2250.
    57. Petrie, S.E.B., R.S. Moore, and J.R. Flick, Influence of diluent mobility on the plasticization of polymers. Journal of Applied Physics, 1972. 43(11): p. 4318-4326.
    58. Bergquist, P., Y. Zhu, A.A. Jones, and P.T. Inglefield, Plasticization and Antiplasticization in Polycarbonates:  The Role of Diluent Motion. Macromolecules, 1999. 32(23): p. 7925-7931.
    59. Yan, D., W.J. Wang, and S. Zhu, Effect of long chain branching on rheological properties of metallocene polyethylene. Polymer, 1999. 40(7): p. 1737-1744.
    60. Nielsen, L.E., Cross-Linking–Effect on Physical Properties of Polymers. Journal of Macromolecular Science, Part C, 1969. 3(1): p. 69-103.
    61. Chattopadhyay, D.K., S.S. Panda, and K.V.S.N. Raju, Thermal and mechanical properties of epoxy acrylate/methacrylates UV cured coatings. Progress in Organic Coatings, 2005. 54(1): p. 10-19.
    62. Huang, H.-H., G.L. Wilkes, and J.G. Carlson, Structure-property behaviour of hybrid materials incorporating tetraethoxysilane with multifunctional poly(tetramethylene oxide). Polymer, 1989. 30(11): p. 2001-2012.
    63. Visco, A.M., L. Calabrese, and P. Cianciafara, Modification of polyester resin based composites induced by seawater absorption. Composites Part A: Applied Science and Manufacturing, 2008. 39(5): p. 805-814.
    64. Huang, H.-L., J-T. Hsu, L-J. Fuh, D-J. Lin, and M. Y. C. Chen, Biomechanical simulation of various surface roughnesses and geometric designs on an immediately loaded dental implant. Computers in Biology and Medicine, 2010. 40(5): p. 525-532.
    65. Chang, C.-C., T-Y. Oyang, F-H. Hwang, C-C. Chen, and L-P. Cheng, Preparation of polymer/silica hybrid hard coatings with enhanced hydrophobicity on plastic substrates. Journal of Non-Crystalline Solids, 2012. 358(1): p. 72-76.
    66. Dershem, S.M. and J.A. Osuna, Low viscosity acrylate monomers formulations containing same and uses therefor. 2001, Google Patents.
    67. Choi, J.-W., R.Wicker, S-H. Lee, K-H. Choi, C-S. Ha, and I. Chung, Fabrication of 3D biocompatible/biodegradable micro-scaffolds using dynamic mask projection microstereolithography. Journal of Materials Processing Technology, 2009. 209(15–16): p. 5494-5503.
    68. Lee, K.Y., K.H. Bouhadir, and D.J. Mooney, Controlled degradation of hydrogels using multi-functional cross-linking molecules. Biomaterials, 2004. 25(13): p. 2461-2466.
    69. Bittner, B., C. Witt, K. Mäder, and T. Kissel, Degradation and protein release properties of microspheres prepared from biodegradable poly(lactide-co-glycolide) and ABA triblock copolymers: influence of buffer media on polymer erosion and bovine serum albumin release. Journal of Controlled Release, 1999. 60(2–3): p. 297-309.
    70. Sharifi, S., S. B. G. Blanquer, T.G. van Kooten, and D.W. Grijpma, Biodegradable nanocomposite hydrogel structures with enhanced mechanical properties prepared by photo-crosslinking solutions of poly(trimethylene carbonate)–poly(ethylene glycol)–poly(trimethylene carbonate) macromonomers and nanoclay particles. Acta Biomaterialia, 2012. 8(12): p. 4233-4243.
    71. Stutz, H., The glass temperature of dendritic polymers. Journal of Polymer Science Part B: Polymer Physics, 1995. 33(3): p. 333-340.
    72. Clapper, J.D. and C.A. Guymon, Compatibilization of Immiscible Polymer Networks Through Photopolymerization in a Lyotropic Liquid Crystal. Advanced Materials, 2006. 18(12): p. 1575-1580.
    73. Halahmi, I., P. Solel, and I. Baruchi, Concentrating photovoltaic module. 2011, Google Patents.
    74. Schellekens, M., D. Twene, and A. van der Waals, Block copolymers for waterborne coatings—A novel eco-friendly approach for improved coating adhesion to untreated polypropylene based plastics. Progress in Organic Coatings, 2011. 72(1–2): p. 138-143.
    75. Yves Gnanou, M.F., Chemistry of Polymers. Wiley, 2008: p. 410-412.
    76. Tomuta, A., F. Ferrando, À. Serra, and X. Ramis, New aromatic–aliphatic hyperbranched polyesters with vinylic end groups of different length as modifiers of epoxy/anhydride thermosets. Reactive and Functional Polymers, 2012. 72(9): p. 556-563.
    77. Guo, K. and C.C. Chu, Synthesis and characterization of novel biodegradable unsaturated poly(ester amide)/poly(ethylene glycol) diacrylate hydrogels. Journal of Polymer Science Part A: Polymer Chemistry, 2005. 43(17): p. 3932-3944.
    78. Sideridou, I., V. Tserki, and G. Papanastasiou, Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials, 2002. 23(8): p. 1819-1829.
    79. Myers, D., Surfaces,Interfaces,and Colloids. 1999: p. 270-280.
    80. Cheluget, E.L., S. Gelinas, J.H. Vera, and M.E. Weber, Liquid-liquid equilibrium of aqueous mixtures of poly(propylene glycol) with sodium chloride. Journal of Chemical & Engineering Data, 1994. 39(1): p. 127-130.
    81. Rana, D., T. Matsuura, and R.M. Narbaitz, Novel hydrophilic surface modifying macromolecules for polymeric membranes: Polyurethane ends capped by hydroxy group. Journal of Membrane Science, 2006. 282(1–2): p. 205-216.
    82. Lim, J.Y., M.C. Shaughnessy, Z. Zhou, H. Noh, E.A. Vogler, and H. J. Donahue, Surface energy effects on osteoblast spatial growth and mineralization. Biomaterials, 2008. 29(12): p. 1776-1784.
    83. Prauzner-Bechcicki, S., J. Raczkowska, E. Madej, J. Pabijan, J. Lukes, J. Sepitka, J. Rysz, K. Awsiuk, A. Bernasik, A. Budkowski, and M. Lekka, PDMS substrate stiffness affects the morphology and growth profiles of cancerous prostate and melanoma cells. Journal of the Mechanical Behavior of Biomedical Materials, 2015. 41: p. 13-22.
    84. Horigome, K., K. Ebe, and S.-i. Kuroda, UV curable pressure-sensitive adhesives for fabricating semiconductors. II. The effect of functionality of acrylate monomers on the adhesive properties. Journal of Applied Polymer Science, 2004. 93(6): p. 2889-2895.
    85. Bongiovanni, R., G. Malucelli, and A. Priola, Modification of Surface Properties of UV-Cured Films in the Presence of Long Chain Acrylic Monomers. Journal of Colloid and Interface Science, 1995. 171(2): p. 283-287.
    86. Fuard, D., T. Tzvetkova-Chevolleau, S. Decossas, and a.P.S. P. Tracqui, Optimization of poly-di-methyl-siloxane (PDMS) substrates for studying cellular adhesion and motility. Microelectronic Engineering, 2008. 85(5–6): p. 1289-1293.
    87. Mehta, G., M. J. Kiel, J. W. Lee, N. Kotov, J. J. Linderman, and S. Takayama, Polyelectrolyte-Clay-Protein Layer Films on Microfluidic PDMS Bioreactor Surfaces for Primary Murine Bone Marrow Culture. Advanced Functional Materials, 2007. 17(15): p. 2701-2709.
    88. de Silva, M.N., R. desai, and D.J. Odde, Micro-Patterning of Animal Cells on PDMS Substrates in the Presence of Serum without Use of Adhesion Inhibitors. Biomedical Microdevices, 2004. 6(3): p. 219-222.
    89. Bumgardner, J.D., R. Wiser, S.H. Elder, R. Jouett, Y. Yang, and J.L. Ong, Contact angle, protein adsorption and osteoblast precursor cell attachment to chitosan coatings bonded to titanium. Journal of Biomaterials Science, Polymer Edition, 2003. 14(12): p. 1401-1409.
    90. Beaulieu, I., M. Geissler, and J. Mauzeroll, Oxygen Plasma Treatment of Polystyrene and Zeonor: Substrates for Adhesion of Patterned Cells. Langmuir, 2009. 25(12): p. 7169-7176.

    無法下載圖示 全文公開日期 2021/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE