簡易檢索 / 詳目顯示

研究生: 黃裕程
Yu-Cheng Huang
論文名稱: 氧化石墨烯複合式拋光液於單晶碳化矽晶圓化學機械拋光之研究
Study on Graphene Oxide Hybrid Slurry in Chemical Mechanical Polishing of Monocrystalline Silicon Carbide Wafer
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 左培倫
Pei-Lum Tso
楊棋銘
Chi-Ming Yang
劉顯光
Shien-Kuang Liu
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 184
中文關鍵詞: 單晶4H碳化矽氧化石墨烯複合式拋光液化學機械拋光
外文關鍵詞: 4H SiC substrate, Graphene oxide, Hybrid slurry, CMP
相關次數: 點閱:300下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單晶碳化矽晶圓(SiC)為一高崩潰電壓及低阻抗的材料,因此在高功率元件市場上有較大之需求,然而因單晶碳化矽晶圓之高硬度、高抗化學性等性質,使其在製造過程有加工時間繁長及成本高等問題。本研究主要針對單晶4H碳化矽晶圓之化學機械拋光(Chemical Mechanical Polishing, CMP),並以降低其製程時間為目標進行研究。本研究建構一加入氧化石墨烯之複合式拋光液化學機械拋光(Hybrid-Slurry Chemical Mechanical Polishing, HSCMP),此方法為在碳化矽之拋光液中加入適量之氧化石墨烯,增加拋光液中之OH鍵及COOH鍵,使其與碳化矽晶圓表面之鈍化層生成反應加速,達到提高製程效率的目標。研究方法先進行複合式拋光液之調配,再由橢圓偏光儀、奈米壓痕試驗機及XPS來驗證其反應之生成,發現加入氧化石墨烯之複合式拋光液,其SiO2鍵結及厚度均較普通拋光液來得厚約30 nm(92.37 %),硬度可降低至19.08 GPa(25.36 %)。應用於兩吋碳化矽晶圓之拋光製程中,其移除率(222 nm/hr)相較於普通CMP(246 nm/hr)雖為較低之結果,但在表面粗糙度方面則有較佳之表現,以Sa < 1 nm、Ra < 0.1 nm為製程終止之條件下,HSCMP相較於CMP可達到減少30~50%之製程時間,可有效地降低碳化矽晶圓加工時間冗長之問題。


    Monocrystalline Silicon Carbide (SiC) substrate has high breakdown voltage and low resistivity electrical properties, which means a great potential for applying in high power devices. However, manufacturing process of SiC wafer take very long processing time and high cost due to its ultrahigh hardness and excellent chemical stability. This study aims to improve the process time in Chemical Mechanical Polishing (CMP) of 4H SiC wafer and maintain related wafer quality. A Hybrid-Slurry Chemical Mechanical Polishing (HSCMP) has been developed with an appropriate amount of Graphene Oxide (GO) in the slurry, to activate more OH and COOH bonding. That can react with SiC wafer to generate more passivation layer on SiC wafer surface. Research method includes the preparation of hybrid slurry, and then the formation of the reaction has been confirmed by Ellipsometer, Nano Indentation and XPS. It has been found that the substrates dipping in the hybrid slurry has more SiO2 bond and reaction layer thickness of SiC wafer surface about 30 nm or increasing 92.37% than that in original slurry. The hardness also reduces to 19.08 GPa or decresing 25.36%. In CMP process of two-inch SiC wafer, the material removal rate (MRR) is lower than that of conventional CMP, but the surface roughness has better performance on Sa < 1 nm and Ra < 0.1 nm. The HSCMP can be verified to reduce the process time of 30 ~ 50% relative to CMP effectively. Results of this study can be further applied on developing new slurry for smoothing SiC wafer.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XV 符號表 XVI 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 2 1.3 論文架構 3 第二章 文獻回顧 6 2.1 碳化矽晶圓材料特性相關文獻 6 2.2 碳化矽晶圓材料移除製程及拋光液相關文獻 11 2.2.1 碳化矽晶圓材料移除製程 11 2.2.2 碳化矽晶圓之拋光液 22 2.3 石墨烯/氧化石墨烯相關文獻 31 2.3.1 性質介紹 31 2.3.2 製作方式 32 2.3.3 應用 33 2.4 文獻回顧總結 36 第三章 複合式拋光液CMP製程介紹 38 3.1 複合式拋光液(Hybrid slurry) 38 3.2 HSCMP平坦化製程模型分析 41 3.3 單晶4H碳化矽晶圓材料移除機制 43 3.4 反應層之硬度分析理論 49 第四章 實驗設備與規劃 53 4.1 實驗設備 53 4.2 實驗耗材 55 4.2.1 研光盤 55 4.2.2 拋光墊 56 4.2.3 研光液 57 4.2.4 拋光液 59 4.2.5 單晶4H碳化矽晶圓 63 4.2.6 氧化石墨烯粉末 64 4.2.7 化學溶液 65 4.3 實驗量測設備 67 4.4 實驗規劃 68 4.4.1 複合式拋光液與碳化矽晶圓影響分析(實驗A) 69 4.4.2 濃度及溫度變化對碳化矽之影響(實驗B) 70 4.4.3 兩吋碳化矽晶圓HSCMP製程分析(實驗C) 71 第五章 實驗結果與討論 72 5.1 複合式拋光液與碳化矽晶圓影響分析(實驗A) 73 5.1.1 不同成分之複合式拋光液調配 73 5.1.2 碳化矽晶圓浸泡結果 75 5.1.3 浸泡後之表面分析 79 5.1.4 小結 83 5.2 氧化石墨烯濃度及溫度變化對碳化矽之影響(實驗B) 84 5.2.1 不同濃度之氧化石墨烯 84 5.2.2 不同溫度之複合式拋光液 97 5.2.3 小結 98 5.3 兩吋碳化矽晶圓複合式拋光液拋光製程分析(實驗C) 99 5.3.1 製程參數探討 99 5.3.2 CMP及HSCMP製程分析 100 5.3.3 材料移除率及表面粗糙度之差異推論 107 5.4 綜合結果與討論 108 第六章 結論與建議 111 6.1 結論 111 6.2 建議 112 參考文獻 113 附錄A 碳化矽量測結果及數據 119 A-1 奈米壓痕硬度結果、接觸角量測結果 119 A-2 XPS量測結果 132 A-3 表面粗糙度結果 142 附錄B 量測設備圖 154 附錄C DIW為基底之拋光製程比較 159

    [1] T. Hamagucherohm, "The Next Generation of Power Conversion Systems Enabled by SiC Power Devices," ROHM Semiconductor, 2014
    [2] Sang Kwon Lee. "Processing and characterization of silicon carbide (6H-SiC and 4H-SiC) contacts for high power and high temperature device applications." Diss. Mikroelektronik och informationsteknik, 2002.
    [3] 張士宸, "氣液輔助化學機械拋光應用於單晶碳化矽晶圓之平坦化製程分析研究," 碩士學位論文, 國立臺灣科技大學, 2016.
    [4] Yan Zhou, Guoshun Pan, Xiaolei Shi, Suman Zhang, Hua Gong, Guihai Luo. "Effects of ultra-smooth surface atomic step morphology on chemical mechanical polishing (CMP) performances of sapphire and SiC wafers." Tribology International 87 (2015): 145-150.
    [5] 陳炤彰, “晶圓平坦化加工技術特論,” 國立臺灣科技大學, 2016
    [6] Xichun Luo, Saurav Goel, and Robert L. Reuben. "A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide." Journal of the European Ceramic Society 32.12 (2012): 3423-3434.
    [7] 陳鼎鈞, "單晶碳化矽晶圓之鑽石研光與化學機械拋光平坦化製程研究," 碩士學位論文, 國立臺灣科技大學, 2014
    [8] Osamu Ohnishi, Toshiro Doi, Syuhei Kurokawa, Tsutomu Yamazaki, Michio Uneda, Tao Yin, Isamu Koshiyama, Koichiro Ichikawa, and Hideo Aida. "Effects of Atmosphere and Ultraviolet Light Irradiation on Chemical Mechanical Polishing Characteristics of SiC Wafers." Japanese Journal of Applied Physics, vol. 51, p. 05EF05, 2012
    [9] H. Deng, and K. Yamamura. "Atomic-scale flattening mechanism of 4H-SiC (0001) in plasma assisted polishing." CIRP Annals-Manufacturing Technology 62.1 (2013): 575-578.
    [10] Toshiro K. Doi, Yasuhisa Sano, Syuhei Kurokawa, Hideo Aida, Osamu Ohnishi, Michio Ueda, Koki Oyama. "Novel Chemical Mechanical Polishing/Plasma-Chemical Vaporization Machining (CMP/P-CVM) Combined Processing of Hard-to-Process Crystals Based on Innovative Concepts", Sensors and Materials, vol. 26, no. 6, pp. 403-415, 2014.
    [11] 楊竣凱, "複合式能量化學機械拋光於單晶碳化矽晶圓平坦化製程之研究," 碩士學位論文, 國立台灣科技大學, 2013.
    [12] Hui Deng, Kenji Hosoya, Yusuke Imanishi, Katsuyoshi Endo, Kazuya Yamamura. "Electro-chemical mechanical polishing of single-crystal SiC using CeO 2 slurry." Electrochemistry Communications 52 (2015): 5-8.
    [13] M. Y. Tsai, S. M. Wang, C. C. Tsai, T. S. Yeh. "Investigation of increased removal rate during polishing of single-crystal silicon carbide." International Journal of Advanced Manufacturing Technology 81 (2015).
    [14] Toshiro K. Doi, Kiyoshi Seshimo, Tsutomu Yamazaki, Masanori Ohtsubo, Daizo Ichikawa, Tadakazu Miyashita, Masataka Takagi, Taku Saeki, and Hideo Aidad. "Smart Polishing of Hard-to-Machine Materials with an Innovative Dilatancy Pad under High-Pressure, High-Speed, Immersed Condition." ECS Journal of Solid State Science and Technology 5.10 (2016): P598-P607.
    [15] Chengwu Wang, Syuhei Kurokawa, Toshiro Doi, Julong Yuan, Yasuhisa Sano, Hideo Aida Kehua Zhang, and Qianfa Deng. "The Polishing Effect of SiC Substrates in Femtosecond Laser Irradiation Assisted Chemical Mechanical Polishing (CMP)." ECS Journal of Solid State Science and Technology 6.4 (2017): P105-P112.
    [16] J. Lua, Q.F. Luo, X.Y. Mao, X.P. Xua, Y.H. Wang, H. Guo,. "Fabrication of a resin-bonded ultra-fine diamond abrasive polishing tool by electrophoretic co-deposition for SiC processing." Precision Engineering 47 (2017): 353-361.
    [17] Murata, Junji, Koushi Yodogawa, and Kazuma Ban. "Polishing-pad-free electrochemical mechanical polishing of single-crystalline SiC surfaces using polyurethane–CeO 2 core–shell particles." International Journal of Machine Tools and Manufacture 114 (2017): 1-7.
    [18] H.S. Lee, D.I. Kim, J.H. An, H.J. Lee, K.H. Kim, H. Jeong. "Hybrid polishing mechanism of single crystal SiC using mixed abrasive slurry (MAS)." CIRP Annals-Manufacturing Technology 59.1 (2010): 333-336.
    [19] Hiroshi Nitta, Akira Isobe, Park Jae Hong and Takashi Hirao. "Research on reaction method of high removal rate chemical mechanical polishing slurry for 4H-SiC substrate." Japanese Journal of Applied Physics 50.4R (2011): 046501.
    [20] Hideo Aida, Toshiro Doi, Hidetoshi Takeda, Haruji Katakura, Seong-Woo Kim, Koji Koyama, Tsutomu Yamazaki, Michio Uneda. "Ultraprecision CMP for sapphire, GaN, and SiC for advanced optoelectronics materials." Current Applied Physics 12 (2012): S41-S46.
    [21] Tao Yin, Toshiro Doi, Syuhei Kurokawa, Osamu Ohnishi, Tsutomu Yamazaki, Zhida Wang and Zhe Tan. "Processing Properties of Strong Oxidizing Slurry and effect of processing atmosphere in sic-cmp." Planarization/CMP Technology (ICPT 2012), International Conference on. VDE, 2012.
    [22] Uma Rames Krishna Lagudu and S. V. Babu. "Effect of Transition Metal Compounds on Amorphous SiC Removal Rates." ECS Journal of Solid State Science and Technology 3.6 (2014): P219-P225.
    [23] Yan Zhou, Guoshun Pan, Xiaolei Shi, Li Xu, Chunli Zou, Hua Gong, Guihai Luo. "XPS, UV–vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP)." Applied Surface Science 316 (2014): 643-648.
    [24] Yan Zhou, Guoshun Pan, Xiaolei Shi, Hua Gong, Guihai Luo, Zhonghua Gu. "Chemical mechanical planarization (CMP) of on-axis Si-face SiC wafer using catalyst nanoparticles in slurry." Surface and Coatings Technology 251 (2014): 48-55.
    [25] Robert J. Young, Ian A. Kinloch, Lei Gong, Kostya S. Novoselov. "The mechanics of graphene nanocomposites: a review." Composites Science and Technology 72.12 (2012): 1459-1476.
    [26] 蘇清源. "石墨烯量產技術與產業應用." 光連: 光電產業與技術情報 108 (2013): 61-71.
    [27] Hsien-Kuang Liu, Chao-Chang A. Chen, and Wei-Chung Chen. "Diamond Lapping of Sapphire Wafer with Addition of Graphene in Slurry." Procedia Engineering 184 (2017): 156-162.
    [28] Emiliano Platero, Maria Emilia Fernandez, Pablo Ricardo Bonelli, Ana Lea Cukierman. "Graphene oxide/alginate beads as adsorbents: Influence of the load and the drying method on their physicochemical-mechanical properties and adsorptive performance." Journal of Colloid and Interface Science 491 (2017): 1-12.
    [29] Yaser Acikbas, Salih Zeki Bas, Mustafa Ozmen, Rifat Capan, and Matem Erdogan. "Optical Properties and Swelling Behavior of Fe3O4 Functionalized Graphene Oxide Composite Thin Film." IEEE Sensors Journal (2016).
    [30] Deng Hui, Katsuyoshi Endo, and Kazuya Yamamura. "Competition between surface modification and abrasive polishing: a method of controlling the surface atomic structure of 4H-SiC (0001)." Scientific reports 5 (2015).
    [31] 楊永崗, 陳成猛, 溫月芳, 楊全紅, 王茂章. "氧化石墨烯及其與聚合物的複合." 新型炭材料 23.3 (2008): 193-200.
    [32] 楊少卿, 徐瑞坤, 謝健. "矽奈米草陣列的表觀楊氏係數量測及量測誤差分析". Diss. 2008.
    [33] Taeseop Lee, and Sang-Mo Koo. "Properties of APTES-Functionalized 4H-SiC Devices." Journal of Nanoscience and Nanotechnology 16.12 (2016): 12777-12780.
    [34] Xin Zhi, Yingyan Mao, Zhongzhen Yu, Shipeng Wen, Yan Li, Liqun Zhang, Tung W. Chan, Li Liu. "gamma-Aminopropyl triethoxysilane functionalized graphene oxide for composites with high dielectric constant and low dielectric loss. " Compos. Part A Appl. Sci. Manuf. 76 (2015) 194–202.

    QR CODE