簡易檢索 / 詳目顯示

研究生: 王邦臣
Pang-Chen Wang
論文名稱: 開發石墨烯修飾聚偏二氟乙烯複合電極實現自極化摩擦奈米發電機與高靈敏摩擦起電壓力感測元件
Designing the Graphene-modified PVDF Composite Electrodes to Realize Self-polarized Triboelectric Nanogenerators and Highly Sensitive Triboelectric Pressure Sensing Devices
指導教授: 葉旻鑫
Min-Hsin Yeh
口試委員: 洪維松
Wei-Song Hung
賴盈至
Ying-Chih Lai
胡哲嘉
Che-Chia Hu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 90
中文關鍵詞: 複合材料可撓式電極氮摻雜還原氧化石墨烯壓力感測器聚偏二氟乙烯自極化自供電摩擦奈米發電機摩擦起電感測器穿戴式
外文關鍵詞: Flexible electrodes, Triboelectric, Nitrogen-doped reduced graphene oxide, Self-polarization, Self-powering, Triboelectric sensor
相關次數: 點閱:294下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著物聯網和穿戴式電子產品的快速發展,可提供持續且穩定的電源問題變得越來越重要。自供電系統不僅可以減少電子元件對電池的依賴,亦可以提供穩定的能源輸出進而成為次世代電子科技發展的未來趨勢。以摩擦起電現象為基礎的摩擦奈米發電機可有機會實現可持續自供電的穿戴式電子元件系統,藉由接觸起電與靜電感應的共軛效應,可輕鬆地透過人體運動過程中以機械能轉變成可用電能,且因材料選擇性多,結構簡單,使自供電的摩擦奈米發電機在未來的發展備受矚目。
    摩擦奈米發電機常使用物理沉積技術來製備金屬導電薄膜電極;然而,金屬薄膜電極容易在空氣中被氧化且在人體運動過程中容易斷裂破損導致耐用性及導電性下降,因此開發具可撓性的非金屬薄膜電極為將摩擦奈米發電機導入穿戴式電子元件的重要課題。故本論文於第四章設計出了一種以石墨烯聚偏二氟乙烯複合薄膜來實現兼具導電層與摩擦層的雙功能薄膜電極並應用於可撓式摩擦奈米發電機;本研究也首度提出透過石墨烯誘導聚偏二氟乙烯進行自組裝轉變成具有高極化的晶相並將其用於提高摩擦奈米發電機的輸出表現,透過表面界達電位分析能證明具自組裝晶相聚偏二氟乙烯的表面電位(-41.35 mV)高於一般聚偏二氟乙烯(-33.47 mV)。另一方面,具高導電性的石墨烯能於複合薄膜中形成具高機械強度與柔韌性的非金屬導電層,透過簡易有效的鍍膜策略能使其能有效附著於複合薄膜中。通過導入不同比例的石墨烯與製模參數來有效調整石墨烯聚偏二氟乙烯雙功能複合電極的導電性與自極化來進一步提升其應用於軟性摩擦奈米發電機的輸出。本研究所提出的石墨烯聚偏二氟乙烯複合電極在連續彎曲測試下並不會因外力而改變形貌及性能,甚至能將此薄膜塗布在不規則形狀物體上來實現摩擦起電感測器的功能,顯示此複合薄膜有潛力被導入到自供電系統中實現可穿戴式電子元件的願景。
    另一方面,具有材料多樣性及結構簡易的摩擦起電感測器在近年來蓬勃發展,能夠有效克服傳統壓電感測器的靈敏度不足及材料選擇受限等缺點。然而,如何提升摩擦層表面電荷成為實現高靈敏摩擦起電壓力感測器的一大瓶頸。有鑒於此,本論文第五章設計出了一種以氮摻雜還原氧化石墨烯修飾聚偏二氟乙烯複合薄膜作為電荷捕捉層來提升摩擦性能並應用於摩擦發電壓力感測器;本研究提出通過導入具有高比表面積和豐富自由電荷載流子密度的氮摻雜還原氧化石墨烯作為電荷捕捉材料使其成為電荷儲存位點,透過改變燒結溫度調控氮摻雜還原氧化石墨烯中的氮含量變化以調控電荷儲存位點進而提升摩擦發電的輸出性能,其摩擦電荷輸出結果亦證實導入氮摻雜還原氧化石墨烯作為電荷捕捉層的表面電荷(80 nC)高於一般聚偏二氟乙烯(40 nC)。此外,電荷捕捉層除了可以有效的屏蔽摩擦電荷向下擴散至下方電極所感應出的電荷結合,也可增益層與層間的極化效應來提升輸出性能。因此,導入氮摻雜還原氧化石墨烯電荷捕捉層的摩擦起電壓力感測器之靈敏度(15.68 V/kPa)遠高於傳統聚偏二氟乙烯(5.63 V/kPa),顯示了導入氮摻雜還原氧化石墨烯作為電荷捕捉層具有強大的潛力應用於穿戴式自供電摩擦起電式壓力感測元件。
    綜合本論文之研究結果證實石墨烯修飾聚偏二氟乙烯複合薄膜具有高機械強度與柔韌性,能有效提升摩擦奈米發電的性能應用於軟性摩擦奈米發電機與高靈敏摩擦起電壓力感測元件,能有效實現自供電摩擦起電感測器應用於穿戴型連續監測人體生理狀況的願景。


    With the booming development of the Internet of Things and wearable electronics, a continuous and sustainable power supply apparently become a crucial issue. Self-powered systems can provide a stable energy output and reduce the dependence of electronic components such as batteries. Triboelectric nanogenerators are the promising next-generation of energy harvester based on the triboelectrification for converting the mechanical energy of human movement into electrical energy. Moreover, the self-powered triboelectric nanogenerators have attracted much attention due to the abundant material choices and simple structure.
    Conventionally the triboelectric nanogenerators will use metal conductive thin film electrodes. However, two main difficulties including the oxidized metal electrodes in the air and easy damage caused by human movement result in the loss of durability and conductivity. The metal-free film electrodes turn into the alternatives utilizing in wearable triboelectric nanogenerators devices. Therefore, in Chapter 4, a graphene-modified polyvinylidene fluoride (Gr/PVDF) composite film is designed to realize a bifunctional film electrode in flexible triboelectric nanogenerator. The graphene is introduced as the frictional layer to induce the PVDF transformation into a highly polarized β-phase which improved TENG output performance. Solid surface analysis was investigated by electrokinetic analyzer. The findings demonstrated that the surface potential (-41.35 mV) of the self-assembled β-phase PVDF was higher than the pristine PVDF (-33.47 mV). Graphene is also renowned for its high electrical conductivity, high mechanical strength and flexibility to simply fabricate as the conductive layer in metal-free electrode. By introducing the different ratio of graphene and molding parameters, self-polarization graphene/PVDF bifunctional composite electrode could rival the use of metal electrode. Furthermore, there are the retained TENG performance and electrode morphology under continuous bending test. Surprisingly, the graphene/PVDF film can be coated on irregularly shaped objects which would be adventurous for self-powered wearable and flexible electronics.
    On the other hand, diverse materials and simple structures in triboelectric sensors can effectively overcome the shortcomings of traditional piezoelectric sensors such as insufficient sensitivity and limited material selection. However, surface charge improvement on triboelectric layer has become a major bottleneck in the realization of a highly sensitive triboelectric pressure sensor. Therefore, in Chapter 5, a N-doped reduced graphene oxide modified polyvinylidene fluoride (N-rGO/PVDF) composite film was designed as a charge trapping layer and further introduced into the triboelectric pressure sensor. N-rGO with high specific surface area and abundant free charge carrier density as a charge-trapping material served the charge storage site. The output performance is significant enhanced by modulating the N content in N-rGO by changing the pyrolysis temperature in the synthesis process. The surface charge (80 nC) of the N-rGO/PVDF trapping layer was higher than that of pristine PVDF (40 nC). In addition, the charge trapping layer can not only shield the triboelectric charges diffusion, but also increase the polarization effect in between the layers to improve the output performance. Therefore, the sensitivity of the triboelectric pressure sensor (15.68 V/kPa) had significant enhanced with the introduction of N-rGO/PVDF compared to the traditional PVDF (5.63 V/kPa), indicating that N-rGO has strong potential to improve the performance of wearable self-powered triboelectric pressure sensor as a result of charge storage site.
    Graphene/PVDF composite film with high mechanical strength and flexibility can effectively improve the output performance of triboelectric nanogenerators in course of enhanced conductivity and charge storage ability. Thus, graphene/PVDF composite can be utilized into the wearable self-powered sensor for continuous monitoring in various human physiological conditions.

    致謝 I 中文摘要 I ABSTRACT III TABLE OF CONTENTS V LIST OF TABLES VIII LIST OF FIGURES IX NOMENCLATURE XII CHAPTER 1 INTRODUCTION 1 1.1Overview of Triboelectric Nanogenerators 1 1.2 Triboelectric Effect 2 1.3 The principle of Triboelectric Nanogenerator 6 1.4 Different Types and Working Mechanisms of Triboelectric Nanogenerators 9 1.4.1 Vertical contact-separation mode 10 1.4.2 Lateral Sliding Mode 11 1.4.3 Single-Electrode Mode 12 1.4.4 Freestanding Mode 13 CHAPTER 2 LITERATURE REVIEW AND RESEARCH SCOPE 14 2.1 Overview of Strategies to Improve Charge Generation 14 2.1.1 Surface Functionalization 14 2.1.2 Spontaneous Polarization 16 2.1.3 Ion Injection 18 2.2 Overview of Strategies to Improve Charge Storage 19 2.2.1 Dielectric Constant 19 2.2.2 Charge Trap 20 2.3 Overview of graphene 23 2.3.1 Introduction of Graphene 23 2.3.2 Introduction of Nitrogen-doped Reduced Graphene Oxide (N-rGO) 24 2.4 Motivation and Research Scope 26 CHAPTER 3 EXPERIMENTAL PROCEDURE 29 3.1 Experimental Chemicals and Instrument 29 3.1.3 Raman Spectroscopy 30 3.1.4 X-Ray Diffractometer (XRD) 31 3.1.5 Field Emission-Scanning Electron Microscopy (FE-SEM) 32 3.1.6 Transmission Electron Microscope (TEM) 34 3.1.7 Energy-dispersive X-ray Spectroscopy (EDX) 35 3.1.8 X-ray Photoelectron Spectroscopy (XPS) 36 3.1.9 Surface Potential Analyzer for Solid Samples 38 3.2 Experimental Materials 40 3.3 Experimental Procedure 40 3.3.1 Fabrication of Graphene/PVDF composite films 40 3.3.2 Synthesis of Graphene Oxide (GO) 41 3.3.3 Synthesis of reduced Graphene Oxide (rGO) and N-doped reduced Graphene Oxide (N-rGO) 41 3.3.4 Fabrication of N-rGO/PVDF films 41 3.3.5 Triboelectric Measurement 42 CHAPTER 4 FLEXIBLE TRIBOELECTRIC NANOGENERATOR WITH GRAPHENE-INDUCED SELF-ASSEMBLY Β-PVDF FREESTANDING ELECTRODE FOR HARVESTING HUMAN MOTION ENERGY 43 4.1Motivation and Conceptual Design 43 4.2 Results and Discussion 45 4.2.1 Characterization of pristine PVDF and Graphene-induced self-assembly β-PVDF (Gr/β-PVDF) 45 4.2.2 Electrokinetic surface characterization of pristine and Gr/β-PVDF films 49 4.2.3 Electrical characterization of Gr/β-PVDF films based TENGs 51 4.2.4 Applications of the Gr/β-PVDF composite TENGs 55 4.3 Summary 58 CHAPTER 5 ULTRASENSITIVE TRIBOELECTRIC PRESSURE SENSOR USING NITROGEN DOPED REDUCED GRAPHENE OXIDE AS CHARGE TRAPPING LAYER 59 5.1 Motivation and Conceptual Design 59 5.2 Results and Discussion 61 5.2.1 Characterization of N-rGO 61 5.2.2 Trapping layer optimization and triboelectric output performance 66 5.2.3 Effect of the pressure on the N-rGO as a trapping layer device 71 5.3 Summary 73 CHAPTER 6 CONCLUSION AND SUGGESTION 74 6.1 General Conclusion 74 6.2 Suggestions and Prospects 75 CHAPTER 7 REFERENCE 77 APPENDIX CURRICULUM VITAE 90

    [1] F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator, Nano energy, 2012, 1, 328-334.
    [2] Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors, ACS nano, 2013, 7, 9533-9557.
    [3] Z.L. Wang, J. Chen, L. Lin, Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors, Energy & Environmental Science, 2015, 8, 2250-2282.
    [4] Y.S. Zhou, S. Wang, Y. Yang, G. Zhu, S. Niu, Z.-H. Lin, Y. Liu, Z.L. Wang, Manipulating nanoscale contact electrification by an applied electric field, Nano letters, 2014, 14, 1567-1572.
    [5] C. Xu, Y. Zi, A.C. Wang, H. Zou, Y. Dai, X. He, P. Wang, Y.C. Wang, P. Feng, D. Li, On the electron‐transfer mechanism in the contact‐electrification effect, Advanced Materials, 2018, 30, 1706790.
    [6] C. Xu, A.C. Wang, H. Zou, B. Zhang, C. Zhang, Y. Zi, L. Pan, P. Wang, P. Feng, Z. Lin, Raising the working temperature of a triboelectric nanogenerator by quenching down electron thermionic emission in contact‐electrification, Advanced materials, 2018, 30, 1803968.
    [7] C. Xu, B. Zhang, A.C. Wang, H. Zou, G. Liu, W. Ding, C. Wu, M. Ma, P. Feng, Z. Lin, Contact-electrification between two identical materials: curvature effect, ACS nano, 2019, 13, 2034-2041.
    [8] G. Castle, L. Schein, General model of sphere-sphere insulator contact electrification, Journal of Electrostatics, 1995, 36, 165-173.
    [9] L.S. McCarty, G.M. Whitesides, Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets, Angewandte Chemie International Edition, 2008, 47, 2188-2207.
    [10] A. Diaz, D. Wollmann, D. Dreblow, Contact electrification: ion transfer to metals and polymers, Chemistry of Materials, 1991, 3, 997-999.
    [11] Z.L. Wang, A.C. Wang, On the origin of contact-electrification, Materials Today, 2019, 30, 34-51.
    [12] P. Shaw, Experiments on tribo-electricity. I.—The tribo-electric series, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1917, 94, 16-33.
    [13] D.K. Davies, Charge generation on dielectric surfaces, Journal of Physics D: Applied Physics, 1969, 2, 1533.
    [14] S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou, Y. Hu, Z.L. Wang, Theoretical study of contact-mode triboelectric nanogenerators as an effective power source, Energy & Environmental Science, 2013, 6, 3576-3583.
    [15] W. Yang, J. Chen, G. Zhu, J. Yang, P. Bai, Y. Su, Q. Jing, X. Cao, Z.L. Wang, Harvesting energy from the natural vibration of human walking, ACS nano, 2013, 7, 11317-11324.
    [16] B. Meng, W. Tang, X. Zhang, M. Han, W. Liu, H. Zhang, Self-powered flexible printed circuit board with integrated triboelectric generator, Nano Energy, 2013, 2, 1101-1106.
    [17] G. Zhu, P. Bai, J. Chen, Z.L. Wang, Power-generating shoe insole based on triboelectric nanogenerators for self-powered consumer electronics, Nano Energy, 2013, 2, 688-692.
    [18] B. Chen, Y. Yang, Z.L. Wang, Scavenging wind energy by triboelectric nanogenerators, Advanced Energy Materials, 2018, 8, 1702649.
    [19] Z.H. Lin, G. Cheng, S. Lee, K.C. Pradel, Z.L. Wang, Harvesting water drop energy by a sequential contact‐electrification and electrostatic‐induction process, Advanced Materials, 2014, 26, 4690-4696.
    [20] C. Rodrigues, D. Nunes, D. Clemente, N. Mathias, J. Correia, P. Rosa-Santos, F. Taveira-Pinto, T. Morais, A. Pereira, J. Ventura, Emerging triboelectric nanogenerators for ocean wave energy harvesting: state of the art and future perspectives, Energy & Environmental Science, 2020, 13, 2657-2683.
    [21] H. Chen, C. Xing, Y. Li, J. Wang, Y. Xu, Triboelectric nanogenerators for a macro-scale blue energy harvesting and self-powered marine environmental monitoring system, Sustainable Energy & Fuels, 2020, 4, 1063-1077.
    [22] J. Luo, Z.L. Wang, Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications, EcoMat, 2020, 2, e12059.
    [23] G. Zhu, Z.-H. Lin, Q. Jing, P. Bai, C. Pan, Y. Yang, Y. Zhou, Z.L. Wang, Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator, Nano letters, 2013, 13, 847-853.
    [24] S. Wang, L. Lin, Z.L. Wang, Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics, Nano letters, 2012, 12, 6339-6346.
    [25] G. Zhu, C. Pan, W. Guo, C.-Y. Chen, Y. Zhou, R. Yu, Z.L. Wang, Triboelectric-generator-driven pulse electrodeposition for micropatterning, Nano letters, 2012, 12, 4960-4965.
    [26] S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, Z.L. Wang, Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism, Nano letters, 2013, 13, 2226-2233.
    [27] H. Zhang, Y. Yang, T.-C. Hou, Y. Su, C. Hu, Z.L. Wang, Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors, Nano Energy, 2013, 2, 1019-1024.
    [28] P. Bai, G. Zhu, Q. Jing, J. Yang, J. Chen, Y. Su, J. Ma, G. Zhang, Z.L. Wang, Membrane‐based self‐powered triboelectric sensors for pressure change detection and its uses in security surveillance and healthcare monitoring, Advanced Functional Materials, 2014, 24, 5807-5813.
    [29] F. Yi, L. Lin, S. Niu, P.K. Yang, Z. Wang, J. Chen, Y. Zhou, Y. Zi, J. Wang, Q. Liao, Stretchable‐rubber‐based triboelectric nanogenerator and its application as self‐powered body motion sensors, Advanced Functional Materials, 2015, 25, 3688-3696.
    [30] W. Yang, J. Chen, X. Wen, Q. Jing, J. Yang, Y. Su, G. Zhu, W. Wu, Z.L. Wang, Triboelectrification based motion sensor for human-machine interfacing, ACS applied materials & interfaces, 2014, 6, 7479-7484.
    [31] Y. Yang, H. Zhang, Z.-H. Lin, Y.S. Zhou, Q. Jing, Y. Su, J. Yang, J. Chen, C. Hu, Z.L. Wang, Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system, ACS nano, 2013, 7, 9213-9222.
    [32] S. Wang, Y. Xie, S. Niu, L. Lin, Z.L. Wang, Freestanding triboelectric‐layer‐based nanogenerators for harvesting energy from a moving object or human motion in contact and non‐contact modes, Advanced materials, 2014, 26, 2818-2824.
    [33] S.-H. Shin, Y.E. Bae, H.K. Moon, J. Kim, S.-H. Choi, Y. Kim, H.J. Yoon, M.H. Lee, J. Nah, Formation of triboelectric series via atomic-level surface functionalization for triboelectric energy harvesting, ACS nano, 2017, 11, 6131-6138.
    [34] Y. Feng, Y. Zheng, S. Ma, D. Wang, F. Zhou, W. Liu, High output polypropylene nanowire array triboelectric nanogenerator through surface structural control and chemical modification, Nano Energy, 2016, 19, 48-57.
    [35] Y.H. Kwon, S.-H. Shin, J.-Y. Jung, J. Nah, Scalable and enhanced triboelectric output power generation by surface functionalized nanoimprint patterns, Nanotechnology, 2016, 27, 205401.
    [36] H. Ryu, J.H. Lee, T.Y. Kim, U. Khan, J.H. Lee, S.S. Kwak, H.J. Yoon, S.W. Kim, High‐performance triboelectric nanogenerators based on solid polymer electrolytes with asymmetric pairing of ions, Advanced Energy Materials, 2017, 7, 1700289.
    [37] Y.S. Choi, J. Sung, S.J. Kang, S.H. Cho, I. Hwang, S.K. Hwang, J. Huh, H.C. Kim, S. Bauer, C. Park, Control of current hysteresis of networked single‐walled carbon nanotube transistors by a ferroelectric polymer gate insulator, Advanced Functional Materials, 2013, 23, 1120-1128.
    [38] P. Bai, G. Zhu, Y.S. Zhou, S. Wang, J. Ma, G. Zhang, Z.L. Wang, Dipole-moment-induced effect on contact electrification for triboelectric nanogenerators, Nano Research, 2014, 7, 990-997.
    [39] J.H. Lee, R. Hinchet, T.Y. Kim, H. Ryu, W. Seung, H.J. Yoon, S.W. Kim, Control of skin potential by triboelectrification with ferroelectric polymers, Advanced materials, 2015, 27, 5553-5558.
    [40] K.Y. Lee, S.K. Kim, J.H. Lee, D. Seol, M.K. Gupta, Y. Kim, S.W. Kim, Controllable charge transfer by ferroelectric polarization mediated triboelectricity, Advanced Functional Materials, 2016, 26, 3067-3073.
    [41] W. Seung, H.J. Yoon, T.Y. Kim, H. Ryu, J. Kim, J.H. Lee, J.H. Lee, S. Kim, Y.K. Park, Y.J. Park, Boosting power‐generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties, Advanced Energy Materials, 2017, 7, 1600988.
    [42] Y.S. Choi, Q. Jing, A. Datta, C. Boughey, S. Kar-Narayan, A triboelectric generator based on self-poled Nylon-11 nanowires fabricated by gas-flow assisted template wetting, Energy & Environmental Science, 2017, 10, 2180-2189.
    [43] Y.S. Choi, S.K. Kim, F. Williams, Y. Calahorra, J.A. Elliott, S. Kar-Narayan, The effect of crystal structure on the electromechanical properties of piezoelectric nylon-11 nanowires, Chemical Communications, 2018, 54, 6863-6866.
    [44] Y.S. Choi, S. Kar‐Narayan, Nylon‐11 nanowires for triboelectric energy harvesting, EcoMat, 2020, 2, e12063.
    [45] Y.S. Choi, S.K. Kim, M. Smith, F. Williams, M.E. Vickers, J.A. Elliott, S. Kar-Narayan, Unprecedented dipole alignment in α-phase nylon-11 nanowires for high-performance energy-harvesting applications, Science advances, 2020, 6, eaay5065.
    [46] S. Wang, Y. Xie, S. Niu, L. Lin, C. Liu, Y.S. Zhou, Z.L. Wang, Maximum surface charge density for triboelectric nanogenerators achieved by ionized‐air injection: methodology and theoretical understanding, Advanced Materials, 2014, 26, 6720-6728.
    [47] S. Li, Y. Fan, H. Chen, J. Nie, Y. Liang, X. Tao, J. Zhang, X. Chen, E. Fu, Z.L. Wang, Manipulating the triboelectric surface charge density of polymers by low-energy helium ion irradiation/implantation, Energy & Environmental Science, 2020, 13, 896-907.
    [48] J.W. Lee, H.J. Cho, J. Chun, K.N. Kim, S. Kim, C.W. Ahn, I.W. Kim, J.-Y. Kim, S.-W. Kim, C. Yang, Robust nanogenerators based on graft copolymers via control of dielectrics for remarkable output power enhancement, Science advances, 2017, 3, e1602902.
    [49] Y.J. Kim, J. Lee, S. Park, C. Park, C. Park, H.-J. Choi, Effect of the relative permittivity of oxides on the performance of triboelectric nanogenerators, RSC advances, 2017, 7, 49368-49373.
    [50] V.K. Thakur, R.K. Gupta, Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects, Chemical reviews, 2016, 116, 4260-4317.
    [51] Z.M. Dang, J.K. Yuan, S.H. Yao, R.J. Liao, Flexible nanodielectric materials with high permittivity for power energy storage, Advanced Materials, 2013, 25, 6334-6365.
    [52] G.Q. Gu, C.B. Han, J.J. Tian, C.X. Lu, C. He, T. Jiang, Z. Li, Z.L. Wang, Antibacterial composite film-based triboelectric nanogenerator for harvesting walking energy, ACS Applied Materials & Interfaces, 2017, 9, 11882-11888.
    [53] J. Chun, J.W. Kim, W.-s. Jung, C.-Y. Kang, S.-W. Kim, Z.L. Wang, J.M. Baik, Mesoporous pores impregnated with Au nanoparticles as effective dielectrics for enhancing triboelectric nanogenerator performance in harsh environments, Energy & Environmental Science, 2015, 8, 3006-3012.
    [54] J. Chen, H. Guo, X. He, G. Liu, Y. Xi, H. Shi, C. Hu, Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film, ACS applied materials & interfaces, 2016, 8, 736-744.
    [55] W.-W. Shen, H.-B. Mu, G.-J. Zhang, J.-B. Deng, D.-M. Tu, Identification of electron and hole trap based on isothermal surface potential decay model, Journal of Applied Physics, 2013, 113, 083706.
    [56] G. Chen, Z. Xu, Charge trapping and detrapping in polymeric materials, Journal of Applied Physics, 2009, 106, 123707.
    [57] J. Li, F. Zhou, D. Min, S. Li, R. Xia, The energy distribution of trapped charges in polymers based on isothermal surface potential decay model, IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22, 1723-1732.
    [58] N. Cui, L. Gu, Y. Lei, J. Liu, Y. Qin, X. Ma, Y. Hao, Z.L. Wang, Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator, ACS nano, 2016, 10, 6131-6138.
    [59] Y. Feng, Y. Zheng, G. Zhang, D. Wang, F. Zhou, W. Liu, A new protocol toward high output TENG with polyimide as charge storage layer, Nano Energy, 2017, 38, 467-476.
    [60] C. Wu, T.W. Kim, H.Y. Choi, Reduced graphene-oxide acting as electron-trapping sites in the friction layer for giant triboelectric enhancement, Nano Energy, 2017, 32, 542-550.
    [61] C. Wu, T.W. Kim, J.H. Park, H. An, J. Shao, X. Chen, Z.L. Wang, Enhanced triboelectric nanogenerators based on MoS2 monolayer nanocomposites acting as electron-acceptor layers, ACS nano, 2017, 11, 8356-8363.
    [62] D.W. Kim, J.H. Lee, I. You, J.K. Kim, U. Jeong, Adding a stretchable deep-trap interlayer for high-performance stretchable triboelectric nanogenerators, Nano Energy, 2018, 50, 192-200.
    [63] A.K. Geim, K.S. Novoselov, The rise of graphene, Nanoscience and technology: a collection of reviews from nature journals, World Scientific2010, pp. 11-19.
    [64] J. Hass, W. De Heer, E. Conrad, The growth and morphology of epitaxial multilayer graphene, Journal of Physics: Condensed Matter, 2008, 20, 323202.
    [65] W.W. Lee, J.-M. Lee, Novel synthesis of high performance anode materials for lithium-ion batteries (LIBs), Journal of Materials Chemistry A, 2014, 2, 1589-1626.
    [66] W. Ai, Z. Luo, J. Jiang, J. Zhu, Z. Du, Z. Fan, L. Xie, H. Zhang, W. Huang, T. Yu, Nitrogen and sulfur codoped graphene: multifunctional electrode materials for high‐performance Li‐ion batteries and oxygen reduction reaction, Advanced Materials, 2014, 26, 6186-6192.
    [67] J. Chen, C. Li, G. Shi, Graphene materials for electrochemical capacitors, The journal of physical chemistry letters, 2013, 4, 1244-1253.
    [68] S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, Carbon-based nanostructured materials and their composites as supercapacitor electrodes, Journal of Materials Chemistry, 2012, 22, 767-784.
    [69] G. Han, Y. Liu, L. Zhang, E. Kan, S. Zhang, J. Tang, W. Tang, MnO2 nanorods intercalating graphene oxide/polyaniline ternary composites for robust high-performance supercapacitors, Scientific reports, 2014, 4, 1-7.
    [70] W. Lian, S. Liu, J. Yu, X. Xing, J. Li, M. Cui, J. Huang, Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan–platinum nanoparticles/graphene–gold nanoparticles double nanocomposites modified electrode for detection of erythromycin, Biosensors and Bioelectronics, 2012, 38, 163-169.
    [71] M.H. Sadeghi, M.A. Tofighy, T. Mohammadi, One-dimensional graphene for efficient aqueous heavy metal adsorption: Rapid removal of arsenic and mercury ions by graphene oxide nanoribbons (GONRs), Chemosphere, 2020, 253, 126647.
    [72] T.J. Fraga, M.N. Carvalho, M.G. Ghislandi, M.A.d. Motta, Functionalized graphene-based materials as innovative adsorbents of organic pollutants: a concise overview, Brazilian Journal of Chemical Engineering, 2019, 36, 1-31.
    [73] T.F. Yeh, J.M. Syu, C. Cheng, T.H. Chang, H. Teng, Graphite oxide as a photocatalyst for hydrogen production from water, Advanced Functional Materials, 2010, 20, 2255-2262.
    [74] B. Jin, P. Wang, H. Mao, B. Hu, H. Zhang, Z. Cheng, Z. Wu, X. Bian, C. Jia, F. Jing, Multi-nanomaterial electrochemical biosensor based on label-free graphene for detecting cancer biomarkers, Biosensors and Bioelectronics, 2014, 55, 464-469.
    [75] N. Ruecha, R. Rangkupan, N. Rodthongkum, O. Chailapakul, Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite, Biosensors and Bioelectronics, 2014, 52, 13-19.
    [76] L. Fritea, M. Tertiș, A. Le Goff, S. Cosnier, R. Săndulescu, C. Cristea, Graphene-based biosensors for dopamine determination, Procedia technology, 2017, 27, 106-107.
    [77] P.T.K. Loan, D. Wu, C. Ye, X. Li, V.T. Tra, Q. Wei, L. Fu, A. Yu, L.-J. Li, C.-T. Lin, Hall effect biosensors with ultraclean graphene film for improved sensitivity of label-free DNA detection, Biosensors and Bioelectronics, 2018, 99, 85-91.
    [78] H.D. Jang, S.K. Kim, H. Chang, K.-M. Roh, J.-W. Choi, J. Huang, A glucose biosensor based on TiO2–graphene composite, Biosensors and Bioelectronics, 2012, 38, 184-188.
    [79] S.-J. Li, D.-H. Deng, Q. Shi, S.-R. Liu, Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite, and its application to amperometric sensing of dopamine, Microchimica Acta, 2012, 177, 325-331.
    [80] L. Lin, Y. Liu, L. Tang, J. Li, Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy, Analyst, 2011, 136, 4732-4737.
    [81] K.A. Madurani, S. Suprapto, N.I. Machrita, S.L. Bahar, W. Illiya, F. Kurniawan, Progress in graphene synthesis and its application: history, challenge and the future outlook for research and industry, ECS Journal of Solid State Science and Technology, 2020, 9, 093013.
    [82] Y. Xu, W. Hong, H. Bai, C. Li, G. Shi, Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure, Carbon, 2009, 47, 3538-3543.
    [83] D. Cai, K. Yusoh, M. Song, The mechanical properties and morphology of a graphite oxide nanoplatelet/polyurethane composite, Nanotechnology, 2009, 20, 085712.
    [84] Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films, ACS nano, 2010, 4, 1963-1970.
    [85] I.H. Kim, Y.G. Jeong, Polylactide/exfoliated graphite nanocomposites with enhanced thermal stability, mechanical modulus, and electrical conductivity, Journal of Polymer Science Part B: Polymer Physics, 2010, 48, 850-858.
    [86] H.-B. Zhang, W.-G. Zheng, Q. Yan, Y. Yang, J.-W. Wang, Z.-H. Lu, G.-Y. Ji, Z.-Z. Yu, Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding, polymer, 2010, 51, 1191-1196.
    [87] A. Dasari, Z.-Z. Yu, Y.-W. Mai, Electrically conductive and super-tough polyamide-based nanocomposites, Polymer, 2009, 50, 4112-4121.
    [88] A. Yu, P. Ramesh, M.E. Itkis, E. Bekyarova, R.C. Haddon, Graphite nanoplatelet− epoxy composite thermal interface materials, The Journal of Physical Chemistry C, 2007, 111, 7565-7569.
    [89] X. Xiao, T. Xie, Y.-T. Cheng, Self-healable graphene polymer composites, Journal of Materials Chemistry, 2010, 20, 3508-3514.
    [90] M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu, N. Koratkar, Enhanced mechanical properties of nanocomposites at low graphene content, ACS nano, 2009, 3, 3884-3890.
    [91] X.-K. Kong, C.-L. Chen, Q.-W. Chen, Doped graphene for metal-free catalysis, Chemical Society Reviews, 2014, 43, 2841-2857.
    [92] Y. Gao, G. Hu, J. Zhong, Z. Shi, Y. Zhu, D.S. Su, J. Wang, X. Bao, D. Ma, Nitrogen‐doped sp2‐hybridized carbon as a superior catalyst for selective oxidation, Angewandte Chemie International Edition, 2013, 52, 2109-2113.
    [93] Y. Zheng, Y. Jiao, L. Ge, M. Jaroniec, S.Z. Qiao, Two‐step boron and nitrogen doping in graphene for enhanced synergistic catalysis, Angewandte Chemie, 2013, 125, 3192-3198.
    [94] B. Liu, C.-M. Yang, Z. Liu, C.-S. Lai, N-doped graphene with low intrinsic defect densities via a solid source doping technique, Nanomaterials, 2017, 7, 302.
    [95] N. Chen, X. Huang, L. Qu, Heteroatom substituted and decorated graphene: preparation and applications, Physical Chemistry Chemical Physics, 2015, 17, 32077-32098.
    [96] H. Wang, T. Maiyalagan, X. Wang, Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications, AcS catalysis, 2012, 2, 781-794.
    [97] S.K. Hwang, J.M. Lee, S. Kim, J.S. Park, H.I. Park, C.W. Ahn, K.J. Lee, T. Lee, S.O. Kim, Flexible multilevel resistive memory with controlled charge trap B-and N-doped carbon nanotubes, Nano letters, 2012, 12, 2217-2221.
    [98] J.O. Hwang, J.S. Park, D.S. Choi, J.Y. Kim, S.H. Lee, K.E. Lee, Y.-H. Kim, M.H. Song, S. Yoo, S.O. Kim, Workfunction-tunable, N-doped reduced graphene transparent electrodes for high-performance polymer light-emitting diodes, Acs Nano, 2012, 6, 159-167.
    [99] W.H. Shin, H.M. Jeong, B.G. Kim, J.K. Kang, J.W. Choi, Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity, Nano letters, 2012, 12, 2283-2288.
    [100] H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes, Nano letters, 2011, 11, 2472-2477.
    [101] K.S. Lee, W.J. Lee, N.-G. Park, S.O. Kim, J.H. Park, Transferred vertically aligned N-doped carbon nanotube arrays: use in dye-sensitized solar cells as counter electrodes, Chemical communications, 2011, 47, 4264-4266.
    [102] Z. Mou, Y. Wu, J. Sun, P. Yang, Y. Du, C. Lu, TiO2 nanoparticles-functionalized N-doped graphene with superior interfacial contact and enhanced charge separation for photocatalytic hydrogen generation, ACS applied materials & interfaces, 2014, 6, 13798-13806.
    [103] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction, science, 2009, 323, 760-764.
    [104] W.J. Lee, U.N. Maiti, J.M. Lee, J. Lim, T.H. Han, S.O. Kim, Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications, Chemical Communications, 2014, 50, 6818-6830.
    [105] A.U. Haq, J. Lim, J.M. Yun, W.J. Lee, T.H. Han, S.O. Kim, Direct Growth of Polyaniline Chains from N‐Doped Sites of Carbon Nanotubes, Small, 2013, 9, 3829-3833.
    [106] S.H. Lee, H.W. Kim, J.O. Hwang, W.J. Lee, J. Kwon, C.W. Bielawski, R.S. Ruoff, S.O. Kim, Three‐dimensional self‐assembly of graphene oxide platelets into mechanically flexible macroporous carbon films, Angewandte Chemie, 2010, 122, 10282-10286.
    [107] S. Mosca, C. Conti, N. Stone, P. Matousek, Spatially offset Raman spectroscopy, Nature Reviews Methods Primers, 2021, 1, 1-16.
    [108] A.A. Bunaciu, E.G. UdriŞTioiu, H.Y. Aboul-Enein, X-ray diffraction: instrumentation and applications, Critical reviews in analytical chemistry, 2015, 45, 289-299.
    [109] Y. Jusman, S.C. Ng, N.A. Abu Osman, Investigation of CPD and HMDS sample preparation techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX, The Scientific World Journal, 2014, 2014,
    [110] L.A. Giannuzzi, F.A. Stevie, A review of focused ion beam milling techniques for TEM specimen preparation, Micron, 1999, 30, 197-204.
    [111] M. Iqbal, A. Saeed, S.I. Zafar, FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste, Journal of hazardous materials, 2009, 164, 161-171.
    [112] S. Ferraris, M. Cazzola, V. Peretti, B. Stella, S. Spriano, Zeta potential measurements on solid surfaces for in vitro biomaterials testing: surface charge, reactivity upon contact with fluids and protein absorption, Frontiers in bioengineering and biotechnology, 2018, 6, 60.
    [113] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS nano, 2010, 4, 4806-4814.
    [114] X. Hu, L. Xu, X. Lin, M. Pecht, Battery lifetime prognostics, Joule, 2020, 4, 310-346.
    [115] L.C. Rome, L. Flynn, E.M. Goldman, T.D. Yoo, Generating electricity while walking with loads, Science, 2005, 309, 1725-1728.
    [116] Y. Li, Z. Chen, G. Zheng, W. Zhong, L. Jiang, Y. Yang, L. Jiang, Y. Chen, C.-P. Wong, A magnetized microneedle-array based flexible triboelectric-electromagnetic hybrid generator for human motion monitoring, Nano Energy, 2020, 69, 104415.
    [117] L.M. Zhang, C.B. Han, T. Jiang, T. Zhou, X.H. Li, C. Zhang, Z.L. Wang, Multilayer wavy-structured robust triboelectric nanogenerator for harvesting water wave energy, Nano Energy, 2016, 22, 87-94.
    [118] Y. Yang, W. Guo, K.C. Pradel, G. Zhu, Y. Zhou, Y. Zhang, Y. Hu, L. Lin, Z.L. Wang, Pyroelectric nanogenerators for harvesting thermoelectric energy, Nano letters, 2012, 12, 2833-2838.
    [119] X. Lu, Q. Zhang, J. Liao, H. Chen, Y. Fan, J. Xing, S. Gu, J. Huang, J. Ma, J. Wang, High‐efficiency thermoelectric power generation enabled by homogeneous incorporation of MXene in (Bi, Sb) 2Te3 matrix, Advanced Energy Materials, 2020, 10, 1902986.
    [120] W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang, Y. Song, X. Deng, M. Leung, Z. Yang, R.X. Xu, A droplet-based electricity generator with high instantaneous power density, Nature, 2020, 578, 392-396.
    [121] H. Wang, L. Xu, Y. Bai, Z.L. Wang, Pumping up the charge density of a triboelectric nanogenerator by charge-shuttling, Nature communications, 2020, 11, 1-9.
    [122] M.T. Rahman, S.S. Rana, M. Salauddin, P. Maharjan, T. Bhatta, J.Y. Park, Biomechanical energy‐driven hybridized generator as a universal portable power source for smart/wearable electronics, Advanced Energy Materials, 2020, 10, 1903663.
    [123] C. Ye, K. Dong, J. An, J. Yi, X. Peng, C. Ning, Z.L. Wang, A triboelectric–electromagnetic hybrid nanogenerator with broadband working range for wind energy harvesting and a self-powered wind speed sensor, ACS Energy Letters, 2021, 6, 1443-1452.
    [124] Z. Yuan, C. Wang, J. Xi, X. Han, J. Li, S.-T. Han, W. Gao, C. Pan, Spherical triboelectric nanogenerator with dense point contacts for harvesting multidirectional water wave and vibration energy, ACS Energy Letters, 2021, 6, 2809-2816.
    [125] M. Salauddin, S.S. Rana, M. Sharifuzzaman, M.T. Rahman, C. Park, H. Cho, P. Maharjan, T. Bhatta, J.Y. Park, A novel MXene/Ecoflex nanocomposite‐coated fabric as a highly negative and stable friction layer for high‐output triboelectric nanogenerators, Advanced Energy Materials, 2021, 11, 2002832.
    [126] S. Adonijah Graham, B. Dudem, H. Patnam, A.R. Mule, J.S. Yu, Integrated design of highly porous cellulose-loaded polymer-based triboelectric films toward flexible, humidity-resistant, and sustainable mechanical energy harvesters, ACS Energy Letters, 2020, 5, 2140-2148.
    [127] T. Bhatta, P. Maharjan, H. Cho, C. Park, S.H. Yoon, S. Sharma, M. Salauddin, M.T. Rahman, S.S. Rana, J.Y. Park, High-performance triboelectric nanogenerator based on MXene functionalized polyvinylidene fluoride composite nanofibers, Nano Energy, 2021, 81, 105670.
    [128] M.T. Rahman, M. Salauddin, P. Maharjan, M. Rasel, H. Cho, J.Y. Park, Natural wind-driven ultra-compact and highly efficient hybridized nanogenerator for self-sustained wireless environmental monitoring system, Nano Energy, 2019, 57, 256-268.
    [129] M.T. Rahman, S.S. Rana, M. Salauddin, P. Maharjan, T. Bhatta, H. Kim, H. Cho, J.Y. Park, A highly miniaturized freestanding kinetic-impact-based non-resonant hybridized electromagnetic-triboelectric nanogenerator for human induced vibrations harvesting, Applied Energy, 2020, 279, 115799.
    [130] H. Qin, G. Cheng, Y. Zi, G. Gu, B. Zhang, W. Shang, F. Yang, J. Yang, Z. Du, Z.L. Wang, High energy storage efficiency triboelectric nanogenerators with unidirectional switches and passive power management circuits, Advanced Functional Materials, 2018, 28, 1805216.
    [131] H. Qin, G. Gu, W. Shang, H. Luo, W. Zhang, P. Cui, B. Zhang, J. Guo, G. Cheng, Z. Du, A universal and passive power management circuit with high efficiency for pulsed triboelectric nanogenerator, Nano Energy, 2020, 68, 104372.
    [132] W. Shang, G. Gu, W. Zhang, H. Luo, T. Wang, B. Zhang, J. Guo, P. Cui, F. Yang, G. Cheng, Rotational pulsed triboelectric nanogenerators integrated with synchronously triggered mechanical switches for high efficiency self-powered systems, Nano Energy, 2021, 82, 105725.
    [133] T.-H. Kong, S.-S. Lee, G.-J. Choi, I.-K. Park, Churros-like polyvinylidene fluoride nanofibers for enhancing output performance of triboelectric nanogenerators, ACS applied materials & interfaces, 2020, 12, 17824-17832.
    [134] M.O. Shaikh, Y.-B. Huang, C.-C. Wang, C.-H. Chuang, Wearable woven triboelectric nanogenerator utilizing electrospun PVDF nanofibers for mechanical energy harvesting, Micromachines, 2019, 10, 438.
    [135] X. Pu, J.-W. Zha, C.-L. Zhao, S.-B. Gong, J.-F. Gao, R.K. Li, Flexible PVDF/nylon-11 electrospun fibrous membranes with aligned ZnO nanowires as potential triboelectric nanogenerators, Chemical Engineering Journal, 2020, 398, 125526.
    [136] L. Lu, W. Ding, J. Liu, B. Yang, Flexible PVDF based piezoelectric nanogenerators, Nano Energy, 2020, 78, 105251.
    [137] S.S. Rana, M.T. Rahman, M. Salauddin, S. Sharma, P. Maharjan, T. Bhatta, H. Cho, C. Park, J.Y. Park, Electrospun PVDF-TrFE/MXene nanofiber mat-based triboelectric nanogenerator for smart home appliances, ACS Applied Materials & Interfaces, 2021, 13, 4955-4967.
    [138] G.-J. Choi, S.-H. Baek, S.-S. Lee, F. Khan, J.H. Kim, I.-K. Park, Performance enhancement of triboelectric nanogenerators based on polyvinylidene fluoride/graphene quantum dot composite nanofibers, Journal of Alloys and Compounds, 2019, 797, 945-951.
    [139] A. Salimi, A.A. Yousefi, Conformational changes and phase transformation mechanisms in PVDF solution‐cast films, Journal of Polymer Science Part B: Polymer Physics, 2004, 42, 3487-3495.
    [140] X. Cai, T. Lei, D. Sun, L. Lin, A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR, RSC advances, 2017, 7, 15382-15389.
    [141] M.T. Riosbaas, K.J. Loh, G. O'Bryan, B.R. Loyola, In situ phase change characterization of PVDF thin films using Raman spectroscopy, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2014, SPIE, 2014, pp. 235-245.
    [142] W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen, A. Peck, H.M. Fahad, H. Ota, H. Shiraki, D. Kiriya, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis, Nature, 2016, 529, 509-514.
    [143] Y.-G. Park, H.S. An, J.-Y. Kim, J.-U. Park, High-resolution, reconfigurable printing of liquid metals with three-dimensional structures, Science advances, 2019, 5, eaaw2844.
    [144] T.Q. Trung, L.T. Duy, S. Ramasundaram, N.-E. Lee, Transparent, stretchable, and rapid-response humidity sensor for body-attachable wearable electronics, Nano Research, 2017, 10, 2021-2033.
    [145] D. Kim, D. Kim, H. Lee, Y.R. Jeong, S.J. Lee, G. Yang, H. Kim, G. Lee, S. Jeon, G. Zi, Body‐attachable and stretchable multisensors integrated with wirelessly rechargeable energy storage devices, Advanced Materials, 2016, 28, 748-756.
    [146] L.-Q. Tao, K.-N. Zhang, H. Tian, Y. Liu, D.-Y. Wang, Y.-Q. Chen, Y. Yang, T.-L. Ren, Graphene-paper pressure sensor for detecting human motions, ACS nano, 2017, 11, 8790-8795.
    [147] S. Lee, A. Reuveny, J. Reeder, S. Lee, H. Jin, Q. Liu, T. Yokota, T. Sekitani, T. Isoyama, Y. Abe, A transparent bending-insensitive pressure sensor, Nature nanotechnology, 2016, 11, 472-478.
    [148] J. Lee, H. Kwon, J. Seo, S. Shin, J.H. Koo, C. Pang, S. Son, J.H. Kim, Y.H. Jang, D.E. Kim, Conductive fiber‐based ultrasensitive textile pressure sensor for wearable electronics, Advanced materials, 2015, 27, 2433-2439.
    [149] N. Luo, W. Dai, C. Li, Z. Zhou, L. Lu, C.C. Poon, S.C. Chen, Y. Zhang, N. Zhao, Flexible piezoresistive sensor patch enabling ultralow power cuffless blood pressure measurement, Advanced Functional Materials, 2016, 26, 1178-1187.
    [150] Y. Ma, N. Liu, L. Li, X. Hu, Z. Zou, J. Wang, S. Luo, Y. Gao, A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances, Nature communications, 2017, 8, 1-8.
    [151] Y. Ma, Y. Yue, H. Zhang, F. Cheng, W. Zhao, J. Rao, S. Luo, J. Wang, X. Jiang, Z. Liu, 3D synergistical MXene/reduced graphene oxide aerogel for a piezoresistive sensor, ACS nano, 2018, 12, 3209-3216.
    [152] M. Antipov, I. Yurtov, A. Utenkov, A. Fedoseev, V. Ogorodnikov, A. Mikhailov, Peculiarities of Performance of Piezoelectric Sensors under a Linear Increase in Pressure, Journal of Experimental and Theoretical Physics, 2020, 130, 517-522.
    [153] E.S. Hosseini, L. Manjakkal, D. Shakthivel, R. Dahiya, Glycine–chitosan-based flexible biodegradable piezoelectric pressure sensor, ACS applied materials & interfaces, 2020, 12, 9008-9016.
    [154] Y. Yang, H. Pan, G. Xie, Y. Jiang, C. Chen, Y. Su, Y. Wang, H. Tai, Flexible piezoelectric pressure sensor based on polydopamine-modified BaTiO3/PVDF composite film for human motion monitoring, Sensors and Actuators A: Physical, 2020, 301, 111789.
    [155] K. Li, Z. Li, T. Zhang, X. Yang, High sensitivity, broad linearity range and low detection limit flexible pressure sensors based on irregular surface microstructure, Organic Electronics, 2020, 87, 105920.
    [156] M. Ha, S. Lim, S. Cho, Y. Lee, S. Na, C. Baig, H. Ko, Skin-inspired hierarchical polymer architectures with gradient stiffness for spacer-free, ultrathin, and highly sensitive triboelectric sensors, ACS nano, 2018, 12, 3964-3974.
    [157] S. Liu, H. Wang, T. He, S. Dong, C. Lee, Switchable textile-triboelectric nanogenerators (S-TENGs) for continuous profile sensing application without environmental interferences, Nano Energy, 2020, 69, 104462.
    [158] L. Chen, Q. Shi, Y. Sun, T. Nguyen, C. Lee, S. Soh, Controlling surface charge generated by contact electrification: strategies and applications, Advanced Materials, 2018, 30, 1802405.
    [159] A. Ahmed, I. Hassan, A.M. Pourrahimi, A.S. Helal, M.F. El‐Kady, H. Khassaf, R.B. Kaner, Toward High‐Performance Triboelectric Nanogenerators by Engineering Interfaces at the Nanoscale: Looking into the Future Research Roadmap, Advanced Materials Technologies, 2020, 5, 2000520.
    [160] K.N. Kim, Y.K. Jung, J. Chun, B.U. Ye, M. Gu, E. Seo, S. Kim, S.-W. Kim, B.-S. Kim, J.M. Baik, Surface dipole enhanced instantaneous charge pair generation in triboelectric nanogenerator, Nano Energy, 2016, 26, 360-370.
    [161] X. Kang, C. Pan, Y. Chen, X. Pu, Boosting performances of triboelectric nanogenerators by optimizing dielectric properties and thickness of electrification layer, RSC advances, 2020, 10, 17752-17759.
    [162] G. Xie, X. Yang, J. Duan, Y. Duan, Q. Tang, Bulk Pt/CsPbBr 3 Schottky junctions for charge boosting in robust triboelectric nanogenerators, Journal of Materials Chemistry A, 2020, 8, 11966-11975.
    [163] Z.L. Wang, On the first principle theory of nanogenerators from Maxwell's equations, Nano Energy, 2020, 68, 104272.
    [164] G. Wang, Y. Xi, H. Xuan, R. Liu, X. Chen, L. Cheng, Hybrid nanogenerators based on triboelectrification of a dielectric composite made of lead-free ZnSnO3 nanocubes, Nano Energy, 2015, 18, 28-36.
    [165] K. Zhao, Y. Wang, L. Han, Y. Wang, X. Luo, Z. Zhang, Y. Yang, Nanogenerator-based self-charging energy storage devices, Nano-Micro Letters, 2019, 11, 1-19.
    [166] J. Luo, L. Xu, W. Tang, T. Jiang, F.R. Fan, Y. Pang, L. Chen, Y. Zhang, Z.L. Wang, Direct‐current triboelectric nanogenerator realized by air breakdown induced ionized air channel, Advanced Energy Materials, 2018, 8, 1800889.
    [167] H. Yi, L. Xiong, The effect of the electric field on the output performance of triboelectric nanogenerators, Journal of Computational Electronics, 2020, 19, 1670-1677.
    [168] J. Nie, Z. Ren, L. Xu, S. Lin, F. Zhan, X. Chen, Z.L. Wang, Probing contact‐electrification‐induced electron and ion transfers at a liquid–solid interface, Advanced Materials, 2020, 32, 1905696.
    [169] C. Zhang, W. Tang, C. Han, F. Fan, Z.L. Wang, Theoretical comparison, equivalent transformation, and conjunction operations of electromagnetic induction generator and triboelectric nanogenerator for harvesting mechanical energy, Advanced Materials, 2014, 26, 3580-3591.
    [170] K. Krishnamoorthy, M. Veerapandian, K. Yun, S.-J. Kim, The chemical and structural analysis of graphene oxide with different degrees of oxidation, Carbon, 2013, 53, 38-49.
    [171] J. Chen, B. Yao, C. Li, G. Shi, An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon, 2013, 64, 225-229.
    [172] N.P. Ngidi, M.A. Ollengo, V.O. Nyamori, Effect of doping temperatures and nitrogen precursors on the physicochemical, optical, and electrical conductivity properties of nitrogen-doped reduced graphene oxide, Materials, 2019, 12, 3376.
    [173] T. Livneh, T.L. Haslett, M. Moskovits, Distinguishing disorder-induced bands from allowed Raman bands in graphite, Physical Review B, 2002, 66, 195110.
    [174] L. Malard, M.A. Pimenta, G. Dresselhaus, M. Dresselhaus, Raman spectroscopy in graphene, Physics reports, 2009, 473, 51-87.
    [175] A. Jorio, M.S. Dresselhaus, R. Saito, G. Dresselhaus, Raman spectroscopy in graphene related systems, John Wiley & Sons2011.
    [176] N. Sanchez-Padilla, R. Benavides, C. Gallardo, S. Fernandez, E. De-Casas, D. Morales-Acosta, Influence of doping level on the electrocatalytic properties for oxygen reduction reaction of N-doped reduced graphene oxide, International Journal of Hydrogen Energy, 2021, 46, 26040-26052.
    [177] N. Hidayah, W.-W. Liu, C.-W. Lai, N. Noriman, C.-S. Khe, U. Hashim, H.C. Lee, Comparison on graphite, graphene oxide and reduced graphene oxide: Synthesis and characterization, AIP Conference Proceedings, AIP Publishing LLC, 2017, p. 150002.
    [178] L.K. Putri, B.-J. Ng, W.-J. Ong, H.W. Lee, W.S. Chang, S.-P. Chai, Heteroatom nitrogen-and boron-doping as a facile strategy to improve photocatalytic activity of standalone reduced graphene oxide in hydrogen evolution, ACS applied materials & interfaces, 2017, 9, 4558-4569.
    [179] X.-F. Li, K.-Y. Lian, L. Liu, Y. Wu, Q. Qiu, J. Jiang, M. Deng, Y. Luo, Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia, Scientific reports, 2016, 6, 1-10.
    [180] H. Miao, S. Li, Z. Wang, S. Sun, M. Kuang, Z. Liu, J. Yuan, Enhancing the pyridinic N content of Nitrogen-doped graphene and improving its catalytic activity for oxygen reduction reaction, International Journal of Hydrogen Energy, 2017, 42, 28298-28308.
    [181] J. Bai, Q. Zhu, Z. Lv, H. Dong, J. Yu, L. Dong, Nitrogen-doped graphene as catalysts and catalyst supports for oxygen reduction in both acidic and alkaline solutions, International journal of hydrogen energy, 2013, 38, 1413-1418.
    [182] K. Kinoshita, Carbon: electrochemical and physicochemical properties, 1988,
    [183] X. Li, H. Wang, J.T. Robinson, H. Sanchez, G. Diankov, H. Dai, Simultaneous nitrogen doping and reduction of graphene oxide, Journal of the American Chemical Society, 2009, 131, 15939-15944.
    [184] Z.-H. Sheng, L. Shao, J.-J. Chen, W.-J. Bao, F.-B. Wang, X.-H. Xia, Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis, ACS nano, 2011, 5, 4350-4358.
    [185] D. Deng, X. Pan, L. Yu, Y. Cui, Y. Jiang, J. Qi, W.-X. Li, Q. Fu, X. Ma, Q. Xue, Toward N-doped graphene via solvothermal synthesis, Chemistry of Materials, 2011, 23, 1188-1193.
    [186] S. Sahoo, J.-J. Shim, Nanostructured 3D zinc cobaltite/nitrogen-doped reduced graphene oxide composite electrode for supercapacitor applications, Journal of industrial and engineering chemistry, 2017, 54, 205-217.
    [187] V. Duraisamy, R. Krishnan, S.M. Senthil Kumar, N-doped hollow mesoporous carbon nanospheres for oxygen reduction reaction in alkaline media, ACS Applied Nano Materials, 2020, 3, 8875-8887.
    [188] X. Chen, J. Shao, N. An, X. Li, H. Tian, C. Xu, Y. Ding, Self-powered flexible pressure sensors with vertically well-aligned piezoelectric nanowire arrays for monitoring vital signs, Journal of Materials Chemistry C, 2015, 3, 11806-11814.
    [189] K. Parida, V. Bhavanasi, V. Kumar, R. Bendi, P.S. Lee, Self-powered pressure sensor for ultra-wide range pressure detection, Nano Research, 2017, 10, 3557-3570.
    [190] Y. Park, Y.-E. Shin, J. Park, Y. Lee, M.P. Kim, Y.-R. Kim, S. Na, S.K. Ghosh, H. Ko, Ferroelectric multilayer nanocomposites with polarization and stress concentration structures for enhanced triboelectric performances, ACS nano, 2020, 14, 7101-7110.
    [191] T. Bhatta, S. Sharma, K. Shrestha, Y. Shin, S. Seonu, S. Lee, D. Kim, M. Sharifuzzaman, S.S. Rana, J.Y. Park, Siloxene/PVDF Composite Nanofibrous Membrane for High‐Performance Triboelectric Nanogenerator and Self‐Powered Static and Dynamic Pressure Sensing Applications, Advanced Functional Materials, 2022, 2202145.
    [192] S. Ippili, V. Jella, A.M. Thomas, C. Yoon, J.-S. Jung, S.-G. Yoon, ZnAl–LDH-induced electroactive β-phase and controlled dielectrics of PVDF for a high-performance triboelectric nanogenerator for humidity and pressure sensing applications, Journal of Materials Chemistry A, 2021, 9, 15993-16005.
    [193] Y. Liu, N. Sun, J. Liu, Z. Wen, X. Sun, S.-T. Lee, B. Sun, Integrating a silicon solar cell with a triboelectric nanogenerator via a mutual electrode for harvesting energy from sunlight and raindrops, ACS nano, 2018, 12, 2893-2899.
    [194] J. Heiska, M. Nisula, M. Karppinen, Organic electrode materials with solid-state battery technology, Journal of Materials Chemistry A, 2019, 7, 18735-18758.
    [195] M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.-L. Taberna, C.P. Grey, B. Dunn, P. Simon, Efficient storage mechanisms for building better supercapacitors, Nature Energy, 2016, 1, 1-10.
    [196] R. Xiong, H. Chen, C. Wang, F. Sun, Towards a smarter hybrid energy storage system based on battery and ultracapacitor-A critical review on topology and energy management, Journal of cleaner production, 2018, 202, 1228-1240.
    [197] B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future, Journal of power sources, 2010, 195, 2419-2430.
    [198] J.R. Miller, Perspective on electrochemical capacitor energy storage, Applied Surface Science, 2018, 460, 3-7.
    [199] B.L. Ellis, P. Knauth, T. Djenizian, Three‐dimensional self‐supported metal oxides for advanced energy storage, Advanced Materials, 2014, 26, 3368-3397.
    [200] B.K. Deka, A. Hazarika, S. Lee, Y.-B. Park, H.W. Park, Triboelectric-nanogenerator-integrated structural supercapacitor based on highly active P-doped branched Cu–Mn selenide nanowires for efficient energy harvesting and storage, Nano Energy, 2020, 73, 104754.

    無法下載圖示 全文公開日期 2027/09/22 (校內網路)
    全文公開日期 2027/09/22 (校外網路)
    全文公開日期 2027/09/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE