簡易檢索 / 詳目顯示

研究生: 黃泓智
Hong-Zhi Huang
論文名稱: 改善毫米波蜂巢網路中擴增實境與虛擬實境網路性能之雙連線與網路編碼方案
Improving the Network Performance of AR/VR Application in Millimeter-wave Cellular Networks through Dual-connectivity and Network Coding
指導教授: 黃琴雅
Chin-Ya Huang
口試委員: 曾柏軒
Po-Hsuan Tseng
許獻聰
Shiann-Tsong Sheu
任芳慶
Fang-Ching Ren
黃琴雅
Chin-Ya Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 121
中文關鍵詞: 網路編碼毫米波沉浸式內容傳輸控制協定雙連線網路模擬器第五世代行動網路
外文關鍵詞: Network Coding, mmWave, Immersive Content, TCP, Dual-connectivity, NS-3, 5G Mobile Networks
相關次數: 點閱:359下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 5G的關鍵技術毫米波(Millimeter Wave, mmWave)通訊具有廣大的可用頻譜,它有機會滿足擴充實境(Augmented Reality, AR)和虛擬實境(Virtual Reality, VR)應用的高吞吐量以及低延遲需求。然而高頻段的mmWave訊號容易受到障礙物的影響,造成通道品質急遽下降,進而使AR/VR應用的端對端性能變差。在5G非獨立架構(Non-Standalone, NSA)的mmWave蜂巢網路中,針對基於傳輸層控制協定(Transmission Control Protocol, TCP)且具備每秒千兆位元傳輸速率的AR/VR應用,我們提出了一種結合毫米波雙連線與網路編碼的單次傳輸方案(One-shot Transmission with Dual-connectivity and Network Coding, OTDNC)。LTE演進節點B(Evolved Node B, eNB)將沉浸式內容進行網路編碼,並透過引入冗餘來提高可靠度。編碼資訊動態地附加在編碼封包上,藉此減少傳輸延遲。編碼封包透過轉發策略被轉發到兩個mmWave下世代節點B(Next Generation Node B, gNB),藉此減少傳輸延遲。在mmWave通道品質急遽下降或多用戶頻寬不足時,每個mmWave gNB透過緩衝區管理策略來剔除無法即時傳輸的冗餘,藉此降低延遲。此外每個mmWave gNB都關閉重傳機制和無線電連結控制層(Radio Link Control, RLC)的封包分割,藉此減少封包重傳以及分段傳輸的延遲。當UE從任何mmWave鏈路收到足夠數量的編碼封包,UE立即解碼編碼封包,使等待解碼的延遲最小化。我們將OTDNC實現在NS-3模擬器來進行評估,模擬結果顯示,OTDNC能改善端對端吞吐量及延遲性能,使AR/VR應用的端對端需求能被滿足,此外OTDNC在端對端延遲的表現優於其他方法。


    The millimeter-wave (mmWave) communication has the opportunity to meet the high throughput and low latency requirements of AR/VR applications. However, the mmWave signals are easily affected by obstacles, which can cause a sharp degradation of the channel quality and further reduce the end-to-end performance of AR/VR applications. In the 5G Non-Standalone (NSA) mmWave cellular network, we propose the One-shot Transmission with Dual-connectivity and Network Coding (OTDNC) scheme for gigabit AR/VR applications which are delivered through Transmission Control Protocol (TCP). The LTE Evolved Node B (eNB) performs network coding for immersive content to improve reliability by introducing redundancy. The encoding information is dynamically appended to the encoded packet to reduce latency. The encoded packets are forwarded to two mmWave Next Generation Node Bs (gNBs) through the forwarding strategy to reduce transmission latency. When the mmWave bandwidth is insufficient, the mmWave gNBs immediately remove accumulated redundancies through the buffer management strategy to reduce latency. The mmWave gNBs disable retransmission and Radio Link Control (RLC) segmentation to reduce latency. When the UE receives a sufficient number of encoded packets from any mmWave links, the UE immediately decodes the encoded packets to minimize the latency. We implement OTDNC in the NS-3 simulator for evaluation. The simulation results show that OTDNC can improve the end-to-end throughput and latency, enabling the end-to-end requirements of AR/VR applications to be met. In addition, OTDNC outperforms other schemes in terms of the end-to-end latency.

    Recommendation Letter . . . . . . . . . . . . . . . . . . . . . . . . i Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . v Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 System Architecture . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 mmWave Channel and Propagation Model . . . . 15 3.1.2 Error Model . . . . . . . . . . . . . . . . . . . . . 16 3.2 Problem Description . . . . . . . . . . . . . . . . . . . . 17 4 One­shot Transmission with Dual­connectivity and Network Coding (OTDNC) Schemes . . . . . . . . . . . . . . . . . . . . . . 22 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.1.1 mmWave Dual­connectivity Strategy . . . . . . . 23 4.1.2 Priority­based Network Coding Strategy . . . . . . 26 4.1.3 Forwarding Strategy . . . . . . . . . . . . . . . . 29 4.1.4 RLC Buffer Management Strategy . . . . . . . . . 31 4.1.5 Disable RLC Segmentation . . . . . . . . . . . . . 32 4.1.6 Disable RAN Retransmission Strategy . . . . . . . 32 4.1.7 Priority­based Decoding Strategy . . . . . . . . . 35 4.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.1 The Procedure of OTDNC in LTE eNB . . . . . . 37 4.2.2 The Procedure of OTDNC in mmWave gNB . . . 40 4.2.3 The Procedure of OTDNC in UE . . . . . . . . . . 41 5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.1 mmWave Dual­connectivity . . . . . . . . . . . . . . . . 47 5.2 OTDNC Integration . . . . . . . . . . . . . . . . . . . . . 49 5.2.1 OTDNC implementation at LTE eNB . . . . . . . 51 5.2.2 OTDNC implementation at mmWave gNB . . . . 53 5.2.3 OTDNC implementation at UE . . . . . . . . . . 55 6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.2 Explore the effect of user performance under different channel conditions . . . . . . . . . . . . . . . . . . . . . . . . 60 6.2.1 Simulation Setup . . . . . . . . . . . . . . . . . . 60 6.2.2 Simulation Results . . . . . . . . . . . . . . . . . 62 6.3 Explore the effect of multi­user performance in different urban scenarios . . . . . . . . . . . . . . . . . . . . . . . 74 6.3.1 Simulation Setup . . . . . . . . . . . . . . . . . . 74 6.3.2 Simulation Results . . . . . . . . . . . . . . . . . 76 6.4 Exploring the contribution of different strategies to multiuser performance . . . . . . . . . . . . . . . . . . . . . . 93 6.4.1 Simulation Setup . . . . . . . . . . . . . . . . . . 93 6.4.2 Simulation Results . . . . . . . . . . . . . . . . . 94 7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 101 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . 106

    [1] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, N. Dai, and H.-S.Lee, “Furion: Engineering High-Quality Immersive Virtual Reality on Today’s Mobile Devices,” IEEE Transactions on Mobile Computing, vol. 19, no. 7, pp. 1586–1602, Jul. 2020.
    [2] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward Low-­Latency and Ultra­-Reliable Virtual Reality,” IEEE Network, vol. 32, no. 2, pp. 78–84, Mar. 2018.
    [3] 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz,” 3rd Generation Partnership Project (3GPP), Technical report (TR) 38.801, Dec. 2017, version 14.0.0.
    [4] J. S. Lu, D. Steinbach, P. Cabrol, and P. Pietraski, “Modeling human blockers in millimeter wave radio links,” ZTE communications, vol. 10, no. 4, pp. 23–28, Dec. 2012.
    [5] S. Choi and K. Shin, “A class of adaptive hybrid ARQ schemes for wireless links,” IEEE Transactions on Vehicular Technology, vol. 50, no. 3, pp. 777–790, May 2001.
    [6] M. Polese, R. Jana, and M. Zorzi, “TCP in 5G mmWave networks: Link level retransmissions and MP-­TCP,” in Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS), May 2017, pp. 343–348.
    [7] J. V. d. Hooft, M. T. Vega, S. Petrangeli, T. Wauters, and F. D. Turck, “Tile­Based Adaptive Streaming for Virtual Reality Video,” ACM Transactions on Multimedia Computing, Communications, and Applications, vol. 15, no. 4, pp. 1–24, Dec. 2019.
    [8] M. Polese, R. Jana, and M. Zorzi, “TCP and MP-­TCP in 5G mmWave Networks,” IEEE Internet Computing, vol. 21, no. 5, pp. 12–19, Sep. 2017.
    [9] M. Zhang et al., “Will TCP Work in mmWave 5G Cellular Networks?” IEEE Communications Magazine, vol. 57, no. 1, pp. 65–71, Jan. 2019.
    [10] 3GPP, “Study on small cell enhancements for E­-UTRA and E-­UTRAN :higher layer aspects,” 3rd Generation Partnership Project (3GPP), Technical report (TR) 36.842, Feb. 2014, version 0.4.0.
    [11] R. Ahlswede, N. Cai, S.­Y. Li, and R. Yeung, “Network information flow,” IEEE Transactions on Information Theory, vol. 46, no. 4, pp. 1204–1216, Jul. 2000.
    [12] M. Mezzavilla, M. Zhang, M. Polese, R. Ford, S. Dutta, S. Rangan, and M. Zorzi, “End­-to-­End Simulation of 5G mmWave Networks,” IEEE Communications Surveys and Tutorials, vol. 20, no. 3, pp. 2237–2263, Apr. 2018.
    [13] O. Semiari, W. Saad, M. Bennis, and M. Debbah, “Integrated Millimeter Wave and Sub-­6 GHz Wireless Networks: A Roadmap for Joint Mobile Broadband and Ultra­-Reliable Low­-Latency Communications,” IEEE Wireless Communications, vol. 26, no. 2, pp. 109–115, Apr. 2019.
    [14] M. Polese, M. Giordani, M. Mezzavilla, S. Rangan, and M. Zorzi, “Improved Handover Through Dual Connectivity in 5G mmWave Mobile Networks,” IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp. 2069–2084, Jun. 2017.
    [15] S. Kang, S. Choi, G. Lee, and S. Bahk, “A Dual-­Connection Based Handover Scheme for Ultra­-Dense Millimeter­-Wave Cellular Networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2019, pp. 1–6.
    [16] 3GPP, “NR and NG­-RAN Overall Description,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.300, Jan. 2021, version 16.4.0.
    [17] A. Aijaz, “Packet Duplication in Dual Connectivity Enabled 5G Wireless Networks: Overview and Challenges,” IEEE Communications Standards Magazine, vol. 3, no. 3, pp. 20–28, Dec. 2019.
    [18] J. Rao and S. Vrzic, “Packet duplication for URLLC in 5G dual connectivity architecture,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2018, pp. 1–6.
    [19] D. Vukobratović, C. Khirallah, V. Stanković, and J. S. Thompson, “Random Network Coding for Multimedia Delivery Services in LTE/LTE-­Advanced,” IEEE Transactions on Multimedia, vol. 16, no. 1, pp. 277–282, Jan. 2014.
    [20] D. Vukobratovic, A. Tassi, S. Delic, and C. Khirallah, “Random linear network coding for 5G mobile video delivery,” Information, vol. 9, no. 4, pp. 1–20, Apr. 2018.
    [21] M. Drago, T. Azzino, M. Polese, Č. Stefanović, and M. Zorzi, “Reliable Video Streaming over mmWave with Multi Connectivity and Network Coding,” in Proc. Int. Conf. Comput. Netw. Commun. (ICNC), Mar. 2018, pp. 508–512.
    [22] J. Bao and H. Li, “Multi­-Connectivity using Erasure Code for Reliable Transmission in MillimeterWave Communications,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2019, pp. 1–6.
    [23] C.­-Y. Huang and P. Ramanathan, “Network Layer Support for Gigabit TCP Flows in Wireless Mesh Networks,” IEEE Transactions on Mobile Computing, vol. 14, no. 10, pp. 2073–2085, Oct. 2015.
    [24] S. Dutta, M. Mezzavilla, R. Ford, M. Zhang, S. Rangan, and M. Zorzi, “Frame Structure Design and Analysis for Millimeter Wave Cellular Systems,” IEEE Transactions on Wireless Communications, vol. 16, no. 3, pp. 1508–1522, Jan. 2017.
    [25] R. Ford, M. Zhang, M. Mezzavilla, S. Dutta, S. Rangan, and M. Zorzi, “Achieving Ultra-­Low Latency in 5G Millimeter Wave Cellular Networks,” IEEE Communications Magazine, vol. 55, no. 3, pp. 196–203, Mar. 2017.
    [26] 3GPP, “Physical layer procedures for data,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.214, Oct. 2018, version 15.3.0.
    [27] B. Göktepe, T. Fehrenbach, T. Schierl, and C. Hellge, “Reduced CBG HARQ Feedback for Efficient Multimedia Transmissions in 5G for Coexistence with URLLC Traffic,” in Proc. IEEE Int. Symp. Broadband Multimedia Syst. Broadcast. (BMSB), Jun. 2018, pp. 1–5.
    [28] J. Yeo, J. Bang, H. Ji, Y. Kim, and J. Lee, “Outer Code-­Based HARQ Retransmission for Multicast/Broadcast Services in 5G,” in Proc. IEEE 90th Veh. Technology Conf. (VTC2019­Fall), Sep. 2019, pp. 1–5.
    [29] M. Kim, S.-­W. Ko, H. Kim, S. Kim, and S.­-L. Kim, “Exploiting Caching for Millimeter-­Wave TCP
    Networks: Gain Analysis and Practical Design,” IEEE Access, vol. 6, pp. 69769–69781, Nov. 2018.
    [30] T. Azzino, M. Drago, M. Polese, A. Zanella, and M. Zorzi, “X-­TCP: a cross layer approach for TCP uplink flows in mmwave networks,” in Proc. 16th Annu. Mediterranean Ad Hoc Netw. Workshop (Med­Hoc­Net), Jun. 2017, pp. 1–6.
    [31] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure, “TCP Extensions for Multipath Operation with Multiple Addresses,” RFC Editor, RFC 6824, Jan. 2013.
    [32] S. Sukhmani, M. Sadeghi, M. Erol-­Kantarci, and A. El Saddik, “Edge Caching and Computing in 5G for Mobile AR/VR and Tactile Internet,” IEEE MultiMedia, vol. 26, no. 1, pp. 21–30, Jan. 2019.
    [33] 3GPP, “Multi­-connectivity,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 37.340, Jan. 2018, version 15.0.0.
    [34] M. Giordani, M. Mezzavilla, C. N. Barati, S. Rangan, and M. Zorzi, “Comparative analysis of initial access techniques in 5G mmWave cellular networks,” in Proc. Annu. Conf. Inform. Sci. Syst. (CISS), Mar. 2016, pp. 268–273.
    [35] K. Chandra, R. V. Prasad, I. G. M. M. Niemegeers, and A. R. Biswas, “Adaptive beamwidth selection for contention based access periods in millimeter wave WLANs,” in Proc. IEEE 11th Consumer Commun. Netw. Conf. (CCNC), Jan. 2014, pp. 458–464.
    [36] M. Giordani, M. Mezzavilla, S. Rangan, and M. Zorzi, “Multi­connectivity in 5G mmWave cellular networks,” in Proc. 15th Annu. Mediterranean Ad Hoc Netw. Workshop (Med­Hoc­Net), Jun. 2016, pp. 1–7.
    [37] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 560–576, Aug. 2003.
    [38] M. Graf, C. Timmerer, and C. Mueller, “Towards Bandwidth Efficient Adaptive Streaming of Omnidirectional Video over HTTP: Design, Implementation, and Evaluation,” in Proc. 8th ACM Multimedia Syst. Conf., Jun. 2017, pp. 261–271.
    [39] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the Scalable Video Coding Extension of the H.264/AVC Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no. 9, pp. 1103–1120, Sep. 2007.
    [40] 3GPP, “Multiplexing and channel coding,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.212, Jul. 2018, version 15.2.0.
    [41] 3GPP, “Medium Access Control (MAC) protocol specification,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.321, Jan. 2020, version 15.8.0.
    [42] M. R. Akdeniz et al., “Millimeter Wave Channel Modeling and Cellular Capacity Evaluation,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1164–1179, Jun. 2014.
    [43] M. Mezzavilla, M. Miozzo, M. Rossi, N. Baldo, and M. Zorzi, “A Lightweight and Accurate Link Abstraction Model for the Simulation of LTE Networks in Ns­3,” in Proc. 15th ACM Int. Conf. Modeling, Anal. Simulation Wireless Mobile Syst., Oct. 2012, pp. 55–60.
    [44] 3GPP, “Study on physical layer enhancements for NR ultra-­reliable and low latency case (URLLC),” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.824, Mar. 2019, version 16.0.0.
    [45] N. Baldo, M. Miozzo, M. Requena-­Esteso, and J. Nin­-Guerrero, “An Open Source Product­-Oriented LTE Network Simulator Based on NS­3,” in Proc. 14th ACM Int. Conf. Modeling, Anal. Simulation Wireless Mobile Syst., Oct. 2011, pp. 293–298.

    無法下載圖示 全文公開日期 2026/12/30 (校內網路)
    全文公開日期 2026/12/30 (校外網路)
    全文公開日期 2026/12/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE