簡易檢索 / 詳目顯示

研究生: 張瀚升
Han-Sheng Chang
論文名稱: 毫米波IAB網路下基於QoS感知排程及緩衝區管理的單次傳輸方案
QoS-Aware Scheduling and Buffer Management Scheme for One-Shot Transmission in Millimeter Wave Integrated Access and Backhaul Networks
指導教授: 黃琴雅
Chin-Ya Huang
口試委員: 沈上翔
Shan-Hsiang Shen
金台齡
Tai-Lin Chin
沈中安
Chung-An Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 80
中文關鍵詞: 5G整合傳輸以及回傳網路毫米波網路編碼全雙工排程服務品質
外文關鍵詞: 5G, IAB, mmWave, Network Coding, Full-Duplex, Scheduling, QoS
相關次數: 點閱:278下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 毫米波頻段的使用已經成為5G 網路中一個重要的特色,其大量的可用頻寬可以提供高吞吐量及低延遲的傳輸。然而,毫米波頻段會有高路徑衰減及急遽的視距(line-of-sight) 至非視距(non-line-of-sight) 轉換等問題,因此更密集的基地台部署是必要的。為了提供更彈性的基地台部署,第三代合作夥伴計劃(3rd Generation Partnership Project, 3GPP) 提出整合傳輸以及回傳網路(Integrate Access and Backhaul, IAB) 技術,其使基地台的傳輸(Access) 及回傳(Backhaul) 可以使用相同的無線頻段,並且支援多跳傳輸。多跳傳輸的支援使IAB 網路可以使用更少的有線基地台部署來達成更高的覆蓋範圍。然而,當發生傳輸失敗時,基於反饋的重傳機制如混合式自動重送請求(Hybrid Automatic Repeat reQuest, HARQ) 會帶來額外的延遲,因此難以在多跳傳輸中滿足如延展實境應用(extendedreality, XR) 等低延遲應用的延遲要求。
    本論文提出聯合排程和緩衝區管理網路編碼(Joint Scheduling andBuffer management Network Coding, JSBNC) 方案來降低IAB 網路中的傳輸延遲。JSBNC 主要包含三種機制。首先,用網路編碼(network coding) 來取代HARQ 的重傳,以達成可靠且低延遲的傳輸。網路編碼是一種可以透過主動傳輸額外的冗餘,在多跳拓樸提供低延遲可靠傳輸的技術。然而,過多的冗餘可能會導致壅塞或是對網路中其他流量的效能產生影響。因此,我們使用一個緩衝區管理的機制去彈性的控制冗餘,避免壅塞以及浪費資源傳送已經過時的封包。最後,我們使用一個具備服務品質(Quality of Service, QoS) 感知的排程機制去支援不同QoS 要求的流量,其可以根據不同流量的不同延遲要求來決定傳輸優先順序。實驗結果顯示,JSBNC 與使用HARQ 的傳輸機制相比,可以在不同的場景中達到較高的傳輸成功率,並且不會犧牲網路中其他流量的QoS 要求。


    The large amount of bandwidth of millimeter-wave (mmWave) frequency band plays a vital role to provide high throughput and low latency transmission in 5G. However, mmWave communication comes with problems such as high propagation loss and sharp line-of-sight to non-line-of-sight transition. Integrated Access and Backhaul (IAB) technology is proposed by the 3rd Generation Partnership Project (3GPP) to allow base stations (BSs) to create a multi-hop mmWave network for better coverage by using the same frequency band for access and backhaul. However, when transmission failure happens, feedback-based retransmission schemes such as HARQ bring additional latency. Therefore, it is hard to satisfy the requirement of low latency applications such as extended reality (XR).
    In this thesis, we propose a Joint Scheduling and Buffer management Network Coding (JSBNC) scheme in Full-Duplex mmWave IAB networks. First, network coding is used to replace HARQ to support low latency and reliable transmission by actively transmitting redundancy. However, too much redundancy may cause link congestion or performance degradation of other flows in the network. Therefore, a buffer management mechanism is designed to dynamically control the redundancy to prevent congestion and waste of resources on outdated packets. Then, a QoS-aware scheduling algorithm is adapted to support different QoS requirements of flows. It determines the priority of each flow based on its latency requirement.
    Simulations show that JSBNC can achieve a higher transmission success rate without sacrificing the QoS requirements of other flows.

    Recommendation Letter . . . . . . . . . . . . . . . . . . . . . . . . i Approval Letter . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract in Chinese . . . . . . . . . . . . . . . . . . . . . . . . . . iii Abstract in English . . . . . . . . . . . . . . . . . . . . . . . . . . iv Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . v Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Relate Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 Integrate Access and Backhaul . . . . . . . . . . . . . . . 8 3.2 System Architecture . . . . . . . . . . . . . . . . . . . . . 10 3.3 Propagation Assumptions and Channel Model . . . . . . . 11 3.4 Interference Model . . . . . . . . . . . . . . . . . . . . . 12 3.5 Transport Block Size and Error Model . . . . . . . . . . . 14 3.6 Transmission Constrain . . . . . . . . . . . . . . . . . . . 14 3.7 Delay Model . . . . . . . . . . . . . . . . . . . . . . . . 15 3.8 Problem Description . . . . . . . . . . . . . . . . . . . . 18 4 JSBNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 Network coding scheme . . . . . . . . . . . . . . . . . . 22 4.2.1 Encoding procedure in network coding layer . . . 24 4.2.2 Decoding procedure in network coding layer . . . 25 4.2.3 Recoding procedure in network coding layer . . . 26 4.3 Buffer Management Mechanism . . . . . . . . . . . . . . 27 4.4 QoS-Aware Scheduling . . . . . . . . . . . . . . . . . . . 28 4.5 JSBNC Transmission Example . . . . . . . . . . . . . . . 31 5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . 34 5.3 Performance evaluation in simple topology . . . . . . . . 35 5.3.1 Performance in coexistence with cross traffic . . . 37 5.3.2 Effect of varying data rate in parallel cross traffic . 39 5.3.3 Effect of channel fluctuation in intermediate hop . 41 5.4 Performance evaluation in complex topology with cross traffic . . .43 5.4.1 Performance in coexistence with multiple high latency flows . . . 43 5.4.2 Performance of different mechanism of JSBNC in complex topology . . . 46 5.4.3 Performance of different scheduling metric in complex topology . . . 49 5.4.4 Performance of different buffer management threshold in complex topology . . 51 6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 54 7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.1 System Integration Optimization . . . . . . . . . . . . . . 56 7.1.1 PDCP Reordering Enhancement . . . . . . . . . . 56 7.2 Additional Experiment . . . . . . . . . . . . . . . . . . . 57 7.2.1 Performance under different data rate . . . . . . . 57 7.2.2 Performance under different number of hop . . . . 57 7.2.3 Performance using data source with different jitter 59 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Letter of Authority . . . . . . . . . . . . . . . . . . . . . . . . . . 66

    [1] 3GPP, “NR and NG-RAN Overall description,” Technical Specification (TS) 38.300 (Rel. 16), Jun. 2021.
    [2] M. Zhang, M. Mezzavilla, R. Ford, S. Rangan, S. Panwar, E. Mellios, D. Kong, A. Nix, and M. Zorzi,“Transport layer performance in 5G mmwave cellular,” in 2016 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 730–735, Apr. 2016.
    [3] S. Rangan, T. S. Rappaport, and E. Erkip, “Millimeter-wave cellular wireless networks: Potentials and challenges,” Proceedings of the IEEE, vol. 102, pp. 366–385, Mar. 2014.
    [4] N. Bhushan, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic, R. T. Sukhavasi, C. Patel, and S. Geirhofer, “Network densification: The dominant theme for wireless evolution into 5G,” IEEE Communications Magazine, vol. 52, pp. 82–89, Feb. 2014.
    [5] 3GPP, “NG-RAN; Architecture description,” Technical Specification (TS) 38.401 (Rel. 16), Jul. 2021.
    [6] A. Gupta and R. K. Jha, “A survey of 5G network: Architecture and emerging technologies,” IEEE Access, vol. 3, pp. 1206–1232, Jul. 2015.
    [7] A. Bishnu, M. Holm, and T. Ratnarajah, “Performance evaluation of full-duplex IAB multi-cell and multi-user network for FR2 band,” IEEE Access, vol. 9, pp. 72269–72283, May 2021.
    [8] G. Y. Suk, S.-M. Kim, J. Kwak, S. Hur, E. Kim, and C.-B. Chae, “Full duplex integrated access and backhaul for 5G NR: Analyses and prototype measurements,” IEEE Wireless Communications, early access, May 2022.
    [9] 3GPP, “Study on integrated access and backhaul,” Technical Report (TR) 38.874 (Rel. 16), Dec. 2018.
    [10] M. Polese, M. Giordani, A. Roy, D. Castor, and M. Zorzi, “Distributed path selection strategies for integrated access and backhaul at mmwaves,” in 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–7, Dec. 2018.
    [11] M. S. Elbamby, C. Perfecto, M. Bennis, and K. Doppler, “Toward low-latency and ultra-reliable virtual reality,” IEEE Network, vol. 32, pp. 78–84, Apr. 2018.
    [12] G. J. Sutton, J. Zeng, R. P. Liu, W. Ni, D. N. Nguyen, B. A. Jayawickrama, X. Huang, M. Abolhasan, Z. Zhang, E. Dutkiewicz, and T. Lv, “Enabling technologies for ultra-reliable and low latency communications:From PHY and MAC layer perspectives,” IEEE Communications Surveys Tutorials, vol. 21, pp. 2488–2524, Feb. 2019.
    [13] R. Ahlswede, N. Cai, S.-Y. Li, and R. Yeung, “Network information flow,” IEEE Transactions on Information Theory, vol. 46, pp. 1204–1216, Jul. 2000.
    [14] A. Eryilmaz, A. Ozdaglar, M. Medard, and E. Ahmed, “On the delay and throughput gains of coding in unreliable networks,” IEEE Transactions on Information Theory, vol. 54, pp. 5511–5524, Dec. 2008.
    [15] D. S. Lun, M. Médard, R. Koetter, and M. Effros, “On coding for reliable communication over packet networks,” Physical Communication, vol. 1, pp. 3–20, Mar. 2008.
    [16] B. Shrader and N. M. Jones, “Systematic wireless network coding,” in MILCOM 2009 - 2009 IEEE Military Communications Conference, pp. 1–7, Oct. 2009.
    [17] J. Qiao, L. X. Cai, X. Shen, and J. W. Mark, “STDMA-based scheduling algorithm for concurrent transmissions in directional millimeter wave networks,” in 2012 IEEE International Conference on Communications (ICC), pp. 5221–5225, Jun. 2012.
    [18] K. Ramanan and A. L. Stolyar, “Largest weighted delay first scheduling: Large deviations and optimality,”The Annals of Applied Probability, vol. 11, pp. 1 – 48, Feb. 2001.
    [19] X. Ge, H. Cheng, M. Guizani, and T. Han, “5G wireless backhaul networks: challenges and research advances,” IEEE Network, vol. 28, pp. 6–11, Nov. 2014.
    [20] C. Madapatha, B. Makki, C. Fang, O. Teyeb, E. Dahlman, M.-S. Alouini, and T. Svensson, “On integrated access and backhaul networks: Current status and potentials,” IEEE Open Journal of the Communications Society, vol. 1, pp. 1374–1389, Sep. 2020.
    [21] M. Polese, M. Giordani, A. Roy, S. Goyal, D. Castor, and M. Zorzi, “End-to-end simulation of integrated access and backhaul at mmwaves,” in 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), pp. 1–7, Sep. 2018.
    [22] M. N. Kulkarni, A. Ghosh, and J. G. Andrews, “Max-min rates in self-backhauled millimeter wave cellular networks,” Nov. 2018.
    [23] J. Zhang, H. Luo, N. Garg, A. Bishnu, M. Holm, and T. Ratnarajah, “Design and analysis of wideband In-Band-Full-Duplex FR2-IAB networks,” IEEE Transactions on Wireless Communications, vol. 21, pp. 4183–4196, Nov. 2022.
    [24] G. Pocovi, B. Soret, K. I. Pedersen, and P. Mogensen, “MAC layer enhancements for ultra-reliable low-latency communications in cellular networks,” in 2017 IEEE International Conference on Communications Workshops (ICC Workshops), pp. 1005–1010, May 2017.
    [25] R. Ford, M. Zhang, M. Mezzavilla, S. Dutta, S. Rangan, and M. Zorzi, “Achieving ultra-low latency in 5G millimeter wave cellular networks,” IEEE Communications Magazine, vol. 55, pp. 196–203, Mar. 2017.
    [26] G. Berardinelli, S. R. Khosravirad, K. I. Pedersen, F. Frederiksen, and P. Mogensen, “Enabling early HARQ feedback in 5G networks,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–5, May 2016.
    [27] S. AlMarshed, D. Triantafyllopoulou, and K. Moessner, “Deep learning-based estimator for fast HARQ feedback in URLLC,” in 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 642–647, Sep. 2021.
    [28] R. Torre, C. C. Sala, S. Pandi, H. Salah, G. T. Nguyen, and F. H. Fitzek, “A random linear network coded HARQ solution for lossy and high-jitter wireless networks,” in GLOBECOM 2020 - 2020 IEEE Global Communications Conference, pp. 1–6, Dec. 2020.
    [29] O. Teyeb, A. Muhammad, G. Mildh, E. Dahlman, F. Barac, and B. Makki, “Integrated access backhauled networks,” in 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), pp. 1–5, Sep. 2019.
    [30] M. Pagin, T. Zugno, M. Polese, and M. Zorzi, “Resource management for 5G NR integrated access and backhaul: A semi-centralized approach,” IEEE Transactions on Wireless Communications, vol. 21, pp. 753–767, Feb. 2022.
    [31] W. Ding, Y. Niu, H. Wu, Y. Li, and Z. Zhong, “QoS-aware full-duplex concurrent scheduling for millimeter wave wireless backhaul networks,” IEEE Access, vol. 6, pp. 25313–25322, Apr. 2018.
    [32] B. Zhai, M. Yu, A. Tang, and X. Wang, “Mesh architecture for efficient integrated access and backhaul networking,” in 2020 IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6, May 2020.
    [33] C.-Y. Huang and P. Ramanathan, “Network layer support for gigabit TCP flows in wireless mesh networks,” IEEE Transactions on Mobile Computing, vol. 14, pp. 2073–2085, Oct. 2015.
    [34] J. K. Sundararajan, H.-J. Kwon, O. Awoniyi-Oteri, Y. Kim, C.-P. Li, J. Damnjanovic, S. Zhou, R. Ma, Y. Tokgoz, P. Hande, T. Luo, K. Mukkavilli, and T. Ji, “Performance evaluation of extended reality applications in 5G NR system,” in 2021 IEEE 32nd Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1–7, Sep. 2021.
    [35] J. Jin, B. Li, and T. Kong, “Is random network coding helpful in WiMAX?,” in IEEE INFOCOM 2008 - The 27th Conference on Computer Communications, pp. 2162–2170, Apr. 2008.
    [36] W. Mao, M. Narasimha, M. Simsek, and H. Nikopour, “Network coding for integrated access and backhaul wireless networks,” in 2020 29th Wireless and Optical Communications Conference (WOCC), pp. 1–6, May 2020.
    [37] 3GPP, “Radio Link Control (RLC) protocol specification,” Technical Specification (TS) 38.322 (Rel. 16), Dec. 2020.
    [38] 3GPP, “Backhaul Adaptation Protocol (BAP) specification,” Technical Specification (TS) 38.340 (Rel. 16), Jun. 2021.
    [39] 3GPP, “F1 general aspects and principles,” Technical Specification (TS) 38.470 (Rel. 15), Jul. 2021.
    [40] 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz ,” Technical Report (TR) 38.901 (Rel. 16), Dec. 2019.
    [41] S. Singh, M. N. Kulkarni, A. Ghosh, and J. G. Andrews, “Tractable model for rate in self-backhauled millimeter wave cellular networks,” IEEE Journal on Selected Areas in Communications, vol. 33, pp. 2196–2211, May 2015.
    [42] N. Patriciello, S. Lagen, B. Bojovic, and L. Giupponi, “An E2E simulator for 5G NR networks,”Simulation Modelling Practice and Theory, vol. 96, p. 101933, Nov. 2019.
    [43] 3GPP, “Multiplexing and channel coding,” Technical Specification (TS) 38.212 (Rel. 16), Jun. 2021.
    [44] B. Soret, P. Mogensen, K. I. Pedersen, and M. C. Aguayo-Torres, “Fundamental tradeoffs among reliability, latency and throughput in cellular networks,” in 2014 IEEE Globecom Workshops (GC Wkshps), pp. 1391–1396, Dec. 2014.
    [45] M. Shafi, A. F. Molisch, P. J. Smith, T. Haustein, P. Zhu, P. De Silva, F. Tufvesson, A. Benjebbour, and G. Wunder, “5G: A tutorial overview of standards, trials, challenges, deployment, and practice,”IEEE Journal on Selected Areas in Communications, vol. 35, pp. 1201–1221, Jun. 2017.
    [46] 3GPP, “Packet Data Convergence Protocol (PDCP) specification,” Technical Specification (TS) 38.323 (Rel. 16), Dec. 2021.
    [47] 3GPP, “User Equipment (UE) radio transmission and reception; Part 2: Range 2 Standalone,” Technical Specification (TS) 38.101-2 (Rel. 17), Mar. 2022.
    [48] E. Dahlman and S. Parkvall, “NR - the new 5G radio-access technology,” in 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1–6, Jun. 2018.

    無法下載圖示 全文公開日期 2027/08/30 (校內網路)
    全文公開日期 2027/08/30 (校外網路)
    全文公開日期 2027/08/30 (國家圖書館:臺灣博碩士論文系統)
    QR CODE