簡易檢索 / 詳目顯示

研究生: 林秉鉎
Ping-Sheng Lin
論文名稱: 毫米波回程網路中同步決策與服務品質感知的共時排程演算法
Synchronized Decision and QoS-aware Concurrent Scheduling Algorithm for mmWave Backhaul Networks
指導教授: 黃琴雅
Chin-ya Huang
口試委員: 沈中安
Chung-An Shen
金台齡
Tai-Lin Chin
沈上翔
Shan-Hsiang Shen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 50
中文關鍵詞: 毫米波回程網路中繼節點服務品質排程演算法設計
外文關鍵詞: mmWave backhaul networks, Relay node, QoS, Scheduling algorithm design
相關次數: 點閱:270下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在密集部署微型基地台(small cell)的回程網路(backhaul network)場景中,毫米波(millimeter wave, mmWave)因易於部署以及部署成本較低的緣故成為一項備受矚目的無線回程網路方案。但是微型基地台之間的毫米波連線容易受到障礙物的存在而發生阻擋(blockage),導致吞吐量大幅降低甚至造成連線中斷(outage)。為了確保回程網路服務範圍內使用者的體驗,微型基地台之間流量(flow)必須保持每秒十億位元(gigabits per second, Gbps)的傳輸速率以上。因此,對於具備中繼節點(relay node)的回程網路,我們提出同步決策與QoS感知共時排程(Synchronized Decision and QoS-aware Concurrent Scheduling, \method)演算法。其中,它包含中繼選擇以及共時傳輸決策兩個程序。在中繼節點選擇程序中,演算法會幫尚未獲得中繼節點協助的受阻擋流量(blocked flow)選擇中繼節點。在共時傳輸決策程序中,演算法會在同個空間下以共時的方式安排節點到節點的流量傳輸。不同於現有的演算法設計,我們的方法採用同步進行的架構。因此在排程的過程中動態更新每個受阻擋流量的中繼選擇,這能夠減少於同時隙傳輸的流量在訊號上的干擾,並且提高受阻擋流量的傳輸機會。根據實驗結果,我們提出的方法與其他現有的方法相較之下,完成更多流量的服務品質需求(number of complete flows)以及達到更高的系統吞吐量(system throughput)。


    In the backhaul network scenario where small cells are densely deployed, millimeter wave is a great solution due to its characteristics of the ease of deployment and lower costs. However, millimeter wave is easily blocked by obstacles during transmission, which significantly reduce throughput that would cause connection outage. To ensure user experience in the backhaul network, each small cell must sustain more than gigabits per second data rate for data transmission. Hence, we propose Synchronized Decision and QoS-aware Concurrent Scheduling (\method), which includes two procedures: relay selection and concurrent transmission decision. In the relay selection procedure, the algorithm selects a relay node for blocked flow. In the concurrent transmission decision procedure, the algorithm arranges spectrum resources for node-to-node data transmission within a spatial dimension in a concurrent manner. Unlike other existing algorithms, our approach uses synchronous architecture where the relay selection for each blocked flow is dynamically updated during scheduling which will reduce the signal interference of flows transmitted at the same time slot and improves the transmission chance of the blocked flows. The simulation results show our proposed approach achieves higher number of complete flows and higher system throughput compared to others.

    中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 誌謝 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii 目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 表目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 圖目錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 緒論 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 文獻探討 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3 系統模型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1 定向MAC訊框架構 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 接收功率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3 資料傳輸速率 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4 定向天線增益 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.5 半雙工系統限制 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.6 使用中繼節點的排程限制 . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.7 問題規劃 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 同步決策與QoS感知共時排程演算法 . . . . . . . . . . . . . . . . . . . . . . 15 4.1 中繼選擇程序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.1 預先計算處理階段 . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1.2 分配效益計算階段 . . . . . . . . . . . . . . . . . . . . . . . . 18 4.1.3 同步中繼選擇階段 . . . . . . . . . . . . . . . . . . . . . . . . 21 4.2 共時傳輸決策程序 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 4.2.1 批次排程初始化階段 . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.2 濾除高影響集合階段 . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.3 生成最終選項階段 . . . . . . . . . . . . . . . . . . . . . . . . 27 4.2.4 批次排程決策階段 . . . . . . . . . . . . . . . . . . . . . . . . 31 4.3 排程環節 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 實驗結果與分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1 模擬設置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 比較方案和評估指標 . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2.1 比較方案 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2.2 評估指標 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.3 效能評估 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6 結論與後續工作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.1 後續工作 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7 附錄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.1 STDMA的實現 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 7.2 實現與參考論文上STDMA的性能比較 . . . . . . . . . . . . . . . . . 44 參考文獻 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    [1] M. Olsson et al., “5GrEEn: Towards Green 5G Mobile Networks,” in Proceedings
    of the 2013 IEEE 9th International Conference on Wireless and Mobile Computing,
    Networking and Communications (WiMob), Oct. 7-9, 2013, pp. 212-216.
    [2] R. Taori and A. Sridharan, “Point-to-Multipoint In-Band mmWave Backhaul for 5G
    Networks,” IEEE Communications Magazine, vol. 53, no. 1, pp. 195-201, Jan.
    2015.
    [3] Y. Niu et al., “Relay-Assisted and QoS Aware Scheduling to Overcome Blockage in
    mmWave Backhaul Networks,” IEEE Transactions on Vehicular Technology, vol.
    68, no. 2, pp. 1733-1744, Feb. 2019.
    [4] Y. Zhu et al., “QoS-aware Scheduling for Small Cell Millimeter Wave Mesh Back-
    haul,” in Proceedings of the 2016 IEEE International Conference on Communica-
    tions (ICC), May 22-27, 2016, pp. 1-6.
    [5] Y. Niu et al., “Energy-Efficient Scheduling for mmWave Backhauling of Small Cells
    in Heterogeneous Cellular Networks,” IEEE Transactions on Vehicular Technol-
    ogy, vol. 66, no. 3, pp. 2674-2687, Mar. 2017.
    [6] C. Sum et al., “A Virtual Time-Slot Allocation Throughput Enhancement Scheme
    with Multiple Modulations for a Multi-Gbps Millimeter-Wave WPAN System,” in
    Proceedings of the 2009 IEEE Wireless Communications and Networking Confer-
    ence, Apr. 5-8, 2009, pp. 1-6.
    [7] J. Qiao et al., “STDMA-based Scheduling Algorithm for Concurrent Transmissions
    in Directional Millimeter Wave Networks,” in Proceedings of the 2012 IEEE Inter-
    national Conference on Communications (ICC), Jun. 10-15, 2012, pp. 5221-5225.
    [8] M. R. Akdeniz et al., “Millimeter Wave Channel Modeling and Cellular Capacity
    Evaluation,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6,
    pp. 1164-1179, Jun. 2014.
    [9] S. Sun et al., “Propagation Path Loss Models for 5G Urban Micro- and Macro-
    Cellular Scenarios,” in Proceedings of the 2016 IEEE 83rd Vehicular Technology
    Conference (VTC Spring), May 15-18, 2016, pp. 1-6.
    [10] R. J. Teather, A. Pavlovych, W. Stuerzlinger, and I. S. MacKenzie, “ Effects of
    Tracking Technology, Latency, and Spatial Jitter on Object Movement,” in Pro-
    ceedings of the 2009 IEEE Symposium on 3D User Interfaces, Mar. 2009, pp.
    43–50.
    [11] Y. Li et al., “A Joint Scheduling and Resource Allocation Scheme for Millimeter
    Wave Heterogeneous Networks,” in Proceedings of the 2017 IEEE Wireless Com-
    munications and Networking Conference (WCNC), Mar. 19-22, 2017, pp. 1-6.
    [12] J. Qiao et al., “Enabling Multi-Hop Concurrent Transmissions in 60 GHz Wireless
    Personal Area Networks,” IEEE Transactions on Wireless Communications, vol.
    10, pp. 3824-3833, Nov. 2011.
    [13] Y. Liu, Q. Hu and D. M. Blough, “Blockage Avoidance in Relay Paths for Road-
    side mmWave Backhaul Networks,” in Proceedings of the 2018 IEEE 29th Annual
    International Symposium on Personal, Indoor and Mobile Radio Communications
    (PIMRC), Sep. 9-12, 2018, pp. 1-7.
    [14] S. Singh et al., “Millimeter Wave WPAN: Cross-Layer Modeling and Multi-Hop Ar-
    chitecture,” in Proceedings of the IEEE INFOCOM 2007 - 26th IEEE International
    Conference on Computer Communications, May 6-12, 2007, pp. 2336-2340.
    [15] J. Qiao et al., “Enabling Device-to-Device Communications in Millimeter Wave 5G
    Cellular Networks,” IEEE Communications Magazine, vol. 53, no. 1, pp. 209-215,
    Jan. 2015.
    [16] H. Luo, S. Lu, and V. Bharghavan, “A New Model for Packet Scheduling in Multi-
    Hop Wireless Networks,” in Proceedings of the 6th Annual International Confer-
    ence on Mobile Computing and Networking, Aug. 1, 2000, pp. 76-86.
    [17] Z. Genc et al., “Robust 60 GHz Indoor Connectivity: Is It Possible with Reflec-
    tions?,” in Proceedings of the 2010 IEEE 71st Vehicular Technology Conference,
    May 16-19, 2010, pp. 1-5.
    [18] C. Yiu and S. Singh, “Empirical Capacity of mmWave WLANS,” IEEE Journal
    on Selected Areas in Communications, vol. 27, no. 8, pp. 1479-1487, Oct. 2009.
    [19] X. An et al., “Beam Switching Support to Resolve Link-Blockage Problem in 60
    GHz WPANs,” in Proceedings of the 2009 IEEE 20th International Symposium on
    Personal, Indoor and Mobile Radio Communications, Sep. 13-16, 2009, pp. 390-
    394.
    [20] F. Firyaguna et al., “Performance Evaluation of Scheduling in 5G-mmWave Net-
    works under Human Blockage,” ar13iv:2007.13112 [cs.IT], Jul. 2020.
    [21] M. Alrabeiah and A. Alkhateeb, “Deep Learning for mmWave Beam and Blockage
    Prediction Using Sub-6 GHz Channels,” IEEE Transactions on Communications,
    vol. 68, no. 9, pp. 5504-5518, Sep. 2020.
    [22] T. Nishio et al., “Proactive Received Power Prediction Using Machine Learning
    and Depth Images for mmWave Networks,” IEEE Journal on Selected Areas in
    Communications, vol. 37, no. 11, pp. 2413-2427, Nov. 2019.
    [23] “IEEE Standard for Information Technology– Local and Metropolitan Area
    Networks– Specific Requirements– Part 15.3: Amendment 2: Millimeter-wave-
    based Alternative Physical Layer Extension,” IEEE Std 802.15.3c-2009, Oct. 2009.
    [24] I. Toyoda et al., “Reference Antenna Model with Side Lobe for TG3c Evaluation,”
    in Proceedings of the IEEE 802.15.3c document, Nov. 2006.

    QR CODE