簡易檢索 / 詳目顯示

研究生: 江衍霆
Yen-Ting Chiang
論文名稱: 28/38 GHz 雙模頻率合成器
28/38 GHz dual mode frequency synthesizer
指導教授: 陳筱青
Hsiao-Chin Chen
口試委員: 姚嘉瑜
Chia-Yu Yao
邱弘緯
Hung-Wei Chiu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 84
中文關鍵詞: 第五代行動通訊雙頻帶整數型頻率合成器Ka頻段毫米波積體電路
外文關鍵詞: Fifth-Generation Mobile Communication, Dual Band Integer-N Frequency Synthesizer, Ka-band, Millimeter-Wave Integrated Circuits
相關次數: 點閱:355下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用TSMC 90奈米CMOS技術實現應用於第五代行動通訊之單晶片28/38 GHz雙頻帶頻率合成器,電壓控制振盪器的可操作頻率範圍為23.5 GHz到28 GHz,相位雜訊在1 MHz的偏移頻率下為-105.57 dBc/Hz ~ -107.08 dBc/Hz,配合除頻器以及混波器,可以使頻率合成器有兩種不同的模式分別對應到操作頻率為28 GHz,通道頻率解析度為281.25 MHz,頻帶內相位雜訊在100 kHz的偏移頻率下為-75.57 dBc/Hz ~ -81.38 dBc/Hz,頻帶外相位雜訊在10 MHz的偏移頻率下為-93.27 dBc/Hz ~ -106.32 dBc/Hz,此時電路功耗為143.16 mW;操作頻率為38 GHz,通道頻率解析度為375 MHz,頻帶內相位雜訊在100 kHz的偏移頻率下為-77.11 dBc/Hz ~ -84.75 dBc/Hz,頻帶外相位雜訊在10 MHz的偏移頻率下為-98.34 dBc/Hz ~ -105.29 dBc/Hz,此時電路功耗為129.64 mW;虛部拒斥比為 17.8 dB ~ 39.73 dB,本地振盪器洩漏拒斥比為 6.07 dB ~ 56.47 dB,鎖定時間為4~6 μs,晶片面積為2.154 mm2。


    A 28/38 GHz dual-band frequency synthesizer for 5th generation mobile communication is implemented using TSMC 90-nm CMOS technology. The on-chip VCO achieves the tuning range from 23.5 GHz to 28 GHz, and exhibits the phase noise of -105.57 dBc/Hz~ -107.08 dBc/Hz at 1 MHz offset, from the 23.5 GHz~28 GHz carriers. With dividers and mixers, the 28/38 GHz carrier is synthesized from the VCO output signal in two operation modes, where the synthesizer dissipates 143.16 mW at 28 GHz band with the resolution of 281.25 MHz and the in-band phase noise is -75.57 dBc/Hz ~-81.38 dBc/Hz @ 100 kHz offset, the out-band phase noise is -93.27 dBc/Hz ~-106.32 dBc/Hz @ 10 MHz offset, and 129.64 mW at 38 GHz band with the resolution of 375 MHz and the in-band phase noise is -77.11 dBc/Hz ~-84.75 dBc/Hz @ 100 kHz offset, the out-band phase noise is -98.34 dBc/Hz ~-105.29 dBc/Hz @ 10 MHz offset. The sideband rejection ratio is 17.8 dB ~ 39.73 dB. The LO leakage rejection ratio is 6.07 dB ~ 56.47 dB. The locking time is 4~6 μs. The chip area is 2.154 mm2.

    摘要 I Abstract II 致謝 III Contents IV List of Figures VI List of Tables X Chapter1、 Introduction 1 1.1 Motivation 1 1.2 Organization 2 Chapter2、 Structure and design of 28/38 GHz Dual-band Frequency Synthesizer for Fifth-Generation Mobile Communications Technology 3 2.1 The Basic structure of PLL 3 2.2 Synthesizer Architecture 4 2.2.1 Phase Frequency Detector (PFD) 5 2.2.2 Charge Pump (CP) 7 2.2.3 Loop filter (LPF) 8 2.2.4 Voltage Controlled Oscillator (VCO) 10 2.2.5 Miller Divider 12 2.2.6 Truly Programmable Frequency Divider 13 2.2.7 28/38 GHz Mixer 15 2.2.8 Multiplexer (MUX) 16 2.3 The Consideration of PLL 18 2.3.1 Phase Noise 18 2.3.2 Spurs 20 2.3.3 Locking time 21 2.3.4 Power down of each band 22 2.4 Noise analysis of synthesizer architecture 25 2.5 The EM simulation considerations of the frequency synthesizer 31 Chapter3、Measurement results 39 3.1 Introduction 39 3.2 VCO measurement 39 3.2.1 VCO measurement 39 3.2.2 VCO measurement results 40 3.3 Miller frequency divider measurement 43 3.3.2 Miller frequency divider measurement results 44 3.4 Mixer+RF MUX measurement 44 3.4.1 28 GHz band Mixer+RF MUX measurement results 44 3.4.2 38 GHz band Mixer+RF MUX measurement results 47 3.5 PLL measurement 50 3.5.1 PLL measurement 50 3.5.2 PLL 24 GHz band measurement results 50 3.5.3 PLL 28 GHz band measurement results 52 3.5.4 PLL 38 GHz band measurement results 55 3.5.5 PLL locking time measurement results 58 3.6 Conclusion 61 Chapter4、Conclusion 65 Reference 66 Appendix A 68

    [1] Y. Chen, L. Praamsma, N. Ivanisevic and D. M. W. Leenaerts, "A 40GHz PLL with −92.5dBc/Hz in-band phase noise and 104fs-RMS-jitter," 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, 2017, pp. 31-32.
    [2] C. H. Yu, J. H. Tsai and T. W. Huang, "A low-power Ka-band frequency synthesizer with transformer feedback VCO embedded in 90-nm COMS technology," 2013 IEEE International Wireless Symposium (IWS), Beijing, 2013, pp. 1-4.
    [3] Wei Li and K. K. M. Cheng, "A single-PLL UWB frequency synthesizer using current reusing SSB mixer," 2010 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), Hong Kong, 2010, pp. 1-4.
    [4] 葉承瀚, “應用於第五代行動通訊之雙頻帶頻率合成器”, 國立臺灣科技大學電機所碩士論文, June. 2017.
    [5] B. Sadhu, M. Ferriss, A. Natarajan, S. Yaldiz, J. O. Plouchart, A. Rylyakov, A. Valdes-Garcia, B. Parker, A. Babakhani, S. Reynolds, X. Li, L. Pileggi, R. Harjani, J. Tierno and D. Friedman, "A linearized, low-phase-noise VCO-based 25-GHz PLL with autonomic biasing", IEEE J. Solid-State Circuits, vol. 48, no. 5, pp. 1138-1150, 2013
    [6] 楊育哲, “CMOS單晶片分數型鎖相迴路頻率合成器之設計與應用”, 國立臺灣大學電子所博士論文, June. 2007.
    [7] M. Ferriss et al., "A 28GHz hybrid PLL in 32nm SOI CMOS", IEEE Journal of Solid-State Circuits, vol. 49, no. 4, pp. 1027-1035, Apr. 2014.
    [8] M. Ferriss et al., "An Integral Path Self-Calibration Scheme for a Dual-Loop PLL", IEEE Journal of Solid-State Circuits, vol. 48, no. 4, pp. 996-1008, Apr. 2013.
    [9] S. Pellerano et al., " A 39.1-to-41.6GHz DeltaSigma Fractional-N Frequency Synthesizer in 90nm CMOS ", IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp. 484-485, 2008.
    [10] O. Richard et al., "A 17.5-to-20.94GHz and 35-to-41.88GHz PLL in 65nm CMOS for wireless HD applications", IEEE International Solid-State Circuits Conference (ISSCC) Digest of Technical Papers, pp. 252-253, 2010.
    [11] T. Siriburanon et al., "A 28-GHz Fractional-N Frequency Synthesizer with Reference and Frequency Doublers for 5G Cellular", ESSCIRC, 2015.
    [12] H. Yoon et al., "A −31dBc integrated-phase-noise 29GHz fractional-N frequency synthesizer supporting multiple frequency bands for backward-compatible 5G using a frequency doubler and injection-locked frequency multipliers", 2018 IEEE International Solid - State Circuits Conference - (ISSCC), pp. 366-368, 2018.
    [13] W. El-Halwagy, A. Nag, P. Hisayasu, F. Aryanfar, P. Mousavi, and M. Hossain, “A 28-GHz quadrature fractional-N frequency synthesizer for 5G transceivers with less than 100-fs jitter based on cascaded PLL architecture,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 2, pp. 396–413, Feb. 2017.
    [14] S. Ek et al., "A 28-nm FD-SOI 115-fs Jitter PLL-Based LO System for 24–30-GHz Sliding-IF 5G Transceivers," in IEEE Journal of Solid-State Circuits, vol. 53, no. 7, pp. 1988-2000, July 2018.
    [15] S. Shahramian et al., "Design of a Dual W- and D-Band PLL," in IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 1011-1022, May 2011.
    [16] Z. Chen et al., "Linear CMOS LC-VCO Based on Triple-Coupled Inductors and Its Application to 40-GHz Phase-Locked Loop," in IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 8, pp. 2977-2989, Aug. 2017.

    無法下載圖示 全文公開日期 2024/02/10 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE