簡易檢索 / 詳目顯示

研究生: 張偉軒
Wei-Hsuan Chang
論文名稱: 應用於5G手持式裝置與防撞雷達系統之毫米波天線設計
Millimeter-Wave Antenna Design for 5G Handheld Device and Anti-Collision Radar System
指導教授: 楊成發
Chang-Fa Yang
口試委員: 廖文照
Wen-Jiao Liao
林健維
Jian-Wei Lin
陳文士
Wen-Shi Chen
戴易明
Yi-Ming Dai
王德順
De-Shun Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 97
中文關鍵詞: 第五代行動通訊毫米波場型可重置天線防撞雷達系統波導槽孔陣列天線
外文關鍵詞: 5G communication system, Millimeter-wave, Pattern reconfigurablesantenna, sAnti-Collision Radar System, Waveguide slot array antenna
相關次數: 點閱:491下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對應用於第五代行動通訊手持式裝置之場型可重置天線以及應用於盲點偵測之車用防撞雷達天線進行研究。第一部分將提出兩款可重置功率分配電路,並與準八木天線和矩形貼片天線結合而形成場型可重置天線,其中該可重置電路可任意激發4支天線,使場型具有多達15種的變化,以依照使用情境選擇合適之場型,來滿足手持式裝置之訊號涵蓋需求。本研究針對此兩款可重置電路的匹配流程進行分析探討,以固定匹配方式即能使所提出場型可重置天線在36~40GHz毫米波頻帶內於所有操作狀態下皆有一定的頻寬,並且實測驗證整體天線輻射效果良好。第二部分則針對盲點偵測防撞雷達之應用,提出一款以基板整合波導為串列式饋入結構之槽孔陣列天線設計,並進行相關前端電路設計,如巴倫器、濾波器、直流阻隔器等,其中為改善前端電路對天線場型造成影響,本研究應用基板整合波導本身的特性、陣列編排的技巧並結合饋入形式,來進一步提升天線性能。


    This thesis contains two parts. First part presents a pattern reconfigurable antenna operating in the 36~40 GHz band. It is projected to be used on handheld devices for future 5G wireless communications. The proposed design is a multi-antenna system, which comprises a reconfigurable power divider that excites one or multiple antennas according to system’s commands. The diversified antenna excitation combinations provide various radiation patterns to meet the wideband mobile communication need of the future 5G handset. The main challenge is to maintain a proper matching condition under different excitation configurations. In the proposed design, a simple matching circuit is employed to match all cases. A total of fifteen radiation patterns is provided with a four-antenna system. The second part is to design substrate integrated waveguide(SIW) slot array antenna for blind spot detection(BSD) application and further, cooperating with Alltek Marine Electronics Corp. (AMEC) carry out automotive collision avoidance radar system. Because propose antennas need to be integrated with radar module, we have to design some RF front end circuits to achieve system’s requirement, ex : balun, filter, and DC block. However these circuits will influence antenna’s performance, so in this study propose another antenna structure which take different way to feed to reduce RF front end circuits and make use of different arrange skill of array to solve aforementioned influence and upgrade antenna performance.

    摘要 I ABSTRACT II 致謝 III 目錄 V 圖目錄 VII 表目錄 IX 第一章緒論 1 1.1研究背景與動機 1 1.2論文組織 3 第二章多波束雙極化天線系統設計 4 2.1前言 4 2.2天線設計原理與結構 6 2.3第一款可重置電路設計原理與切換機制 9 2.4第一款可重置電路匹配流程 11 2.5第二款可重置電路架構與匹配設計 17 2.6偏壓電路設計 22 2.7可重置天線模擬與實測結果 23 2.8可重置天線模擬與實測結果 26 2.9小結 44 第三章應用於盲點偵測之車用防撞雷達毫米波天線設計 45 3.1 前言 45 3.2天線結構 48 3.3天線設計流程 50 3.3.1基板整合波導槽孔陣列天線模擬結果 53 3.3.2濾波器設計 57 3.4天線之效能驗證 58 3.5發射端天線加入巴倫器之模擬結果 65 3.6改善發射端天線之設計 67 3.7改善發射端天線之模擬結果 70 3.7.1差模輸入/出之濾波器之設計 71 3.8寬波束基板整合波導槽孔陣列天線設計 73 3.9寬波束基板整合波導槽孔陣列天線設計模擬結果 75 3.8小結 77 第四章結論 78 參考文獻 79

    G. Wunder, P. Jung, and M. Kasparick,“5GNOW: Non-Orthogonal Asynchronous Waveforms for Future Mobile Applications,” IEEE Comm, Vol.52 , pp.97-105, Feb 2014
    F. Boccardi , Robert W. Heath Jr.,“Five Disruptive Technology Directions for 5G,” IEEE Comm, Vol.52 , pp.74-80, Feb 2014
    Z. Gao, L Dai, D. Mi, Z. Wang, M.-A. Imran, and M.-Z Shakir,“MMwave Massive-MIMO-Based Wireless Backhaul for the 5G Ultra-Dense Network,” IEEE Comm, Vol.22 , pp.13-21, Oct 2015
    T.- Narasimhan, P. Raviteja, and A. Chockalingam, “Large-Scale Multiuser SM-MIMO Versus Massive MIMO,” Information Theory and Applications Workshop (ITA), pp. 1-9, Feb 2014
    J. Shen, S. Suyama, T. Obara, and Y. Okumura, “Requirements of Power Amplifier on Super High Bit Rate Massive MIMO OFDM Transmission Using Higher Frequency Bands,” Globecom Workshops (GC Wkshps),pp.433-437, Dec 2014
    B. Panzner, W. Zirwas, S.-D. Lauridsenz, P. Mogensenz, K. Pajukoskix and D. Miao,” Deployment and Implementation Strategies for Massive MIMO in 5G,” Globecom Workshops (GC Wkshps),pp.346-351, Dec 2014
    K. Ogawa, , A. Yamamoto , and J.-I Takada, “Multipath Performance of Handset Adaptive Said Array Antennas in the Vicinity of a Human Operator,” IEEE Trans. Antennas Propag., Vol.53,pp.2422-2436, Aug 2005
    N. Nonaka, Y. Kakishima, and K. Higuchi, “Investigation on Beamforming Control Methods in Base Station Cooperative Multiuser MIMO Using Block-Diagonalized Beamforming Matrix,” IEEE Vehicular Technology Conference (VTC Fall),pp.1-5, Sept 2014
    S. Han, C-L I, Z. Xu, and C. Rowell, “Large-Scale Antenna Systems with Hybrid Analog and Digital Beamforming for Millimeter Wave 5G,” IEEE Comm, Vol.53 , pp.186-194, Jan 2015
    S.- E.-E.Khamy I.-K.- H. Moussa , A.- A.-E.Sherif, “Performance Analysis of Massive MIMO Multiuser Transmit Beamforming Techniques over Generalized Spatial Channel Model,” Radio Science Conference (NRSC),pp139-146, Mar 2015
    S.-H. Wu, L.-K. Chiu, K.-Y. Lin and M.-C. Chiang,“Planar Antenna Array Hybrid Beamforming for SDMA in Millimeter Wave WPAN,” Book chapter in Radio Communications, ISBN: 978-953-307-091-9, INTECH, April 2010.
    S.-H. Wu, L.-K. Chiu, K.-Y. Lin and M.-C. Chiang,“Planar Antenna Array Hybrid Beamforming for SDMA in Millimeter Wave WPAN,” Book chapter in Radio Communications, ISBN: 978-953-307-091-9, INTECH, April 2010.
    X. Ding, B.-Z. Wang, and G.-Q. He, “Research on a Millimeter-Wave Phased Array With Wide-Angle Scanning Performance,” IEEE Antennas and Propagation, Vol. 61, Issue 10,pp.5319 – 5324, June 2013.
    Y.-Y. Bai, S. Xiao, M.-C. Tang, Z.-F. Ding, and B.-Z. Wang,“Wide angle scanning phase array with pattern reconfigurable elements,” IEEE Antennas and Propagation, Volume 55, Issue 11,Pages: 4071– 4076, Aug. 2011.
    S. J. Yoo,K.S. Kim, T.D. Yeo, S.J. Lee, D. J. Lee,and J. W.Yu,“A compact and reconfigurable beam pattern ESPAR antenna with automatic impedance matching system,” Microwave Conference (EuMC)., Oct. 2014, pp. 53-56.
    M. L. Lee, Y. S. Wang, and S. J. Chung, “Pattern reconfigurable strip monopole with eight switched printed parasitic elements,” in Proc. IEEE Int. Symp. Antennas Propag., Jun. 2007, pp. 3177–3180.
    I.-Y. Tarn, S.-J. Chung "A Novel Pattern Diversity Reflector Antenna Using Reconfigurable Frequency Selective Reflectors", IEEE Trans. Antennas Propag., vol. 57, no. 10 ,pp. 3035-3042, Oct 2009.
    C. Kittiyanpunya and M. Krairiksh, “Pattern reconfigurable printed Yagi-Uda antenna,”in Proc. Int. Symp. on Antennas and Propag., Dec. 2002, pp325-326
    T. Sabapathy, M. F. Jamlos, R. B. Ahmad, M. Jusoh, and M. I. Jais, “A reconfigurable microstrip rectangular parasitic array antenna,”Wiressless Technology and Applications(ISWTA), Sept. 2013., pp. 363-367.
    M.Jusoh, A.H.Ismail, M.R. Kamarudin, A.Alomainy, M.W. Nasrudin, andT.Sabapathy,“Multi-directional beam of patch antenna,”Electronic Design (ICED), 2014 2nd International Conference on, vol. 60, no. 12, pp. 5947–5957, Dec. 2012.
    P. K. Li, Z. H. Shao, Y. J. Cheng, and Q. Wang, “A pattern reconfigurable quasi-Yagi antenna with compact size,” in Proc. ISAP, 2013, pp. 565–567.
    H. S. Tae, K. S. Oh, H. L. Lee, W. I. Son, and J. W. Yu, “Reconfigurable 1×4 power divider with switched impedance matching circuits,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 2, pp. 64–66, Feb. 2012.
    卓良, “應用於LTE與WWAN頻段之可重置天線設計”台灣科技大學 碩士論文 中華民國 104年 7月9日
    F. Xu and K. Wu,“Guide wave and leakage characteristics of substrate integrated waveguide,” IEEE Trans. Microw. Theory and Technology, vol. 53 ,pp. 66-73, Jan 2005.
    S.-J. Park, D.-H. Shin, and S.-O. Park, “Low side lobe substrate integrated waveguide anttenna array using broadband unequeal feeding network for millimeter wave handset device,” IEEE Trans. Antennas Propag., vol. 64 ,pp. 923-932, Dec 2015.
    J. Puskely, T. Mikulášek, “Compact wideband vivaldi antenna array for microwave imaging applications,” Antennas Propag.(EUCAP), pp. 1519-1522, April 2013.
    Y.-J.Cheng, W. Hong and K. Wu“Millimeter wave monopulse antenna incorporating substrate integrated waveguide phase shifter,”IET Microw. Antennas and Propag ., vol. 2 ,pp. 1751-8725, Feb 2008.
    N.Ghassemi, K. Wu, S. Claude, X. Zhang, and J. Bornemann, “Low-cost and high-efficient W-band substrate integrated waveguide antenna array made of printed circuit board process” IEEE Trans. Antennas Propag., vol. 60, No. 3, March. 2012.
    K. Wu, “Towards system-on-substrate approach for future millimeter-wave and photonic wireless applications,” in Proc. Asia–Pacific Microw. Conf., Dec. 2006, pp. 1895-1900.
    Djerafi and K. Wu, “Broadside and end fire substrate integrated waveguide antennas fed by a multi-layered Butler matrix,” IEEE Trans. on Antennas and Propag.
    T. Djerafi, K. Wu, “Super-compact substrate integrated waveguide cruciform directional coupler,” IEEE Microw. and Wireless Components Lett., Vol. 17, pp. 757-759, Nov. 2007.
    T. Djerafi, N. Fonseca, and K. Wu, “Planar 4x4 Ku-band Nolen matrix in SIW technology,” IEEE Trans. Asia-Pacific Microw., pp. 1-4, Dec. 2008.
    B. Youzkatli El Khatib, T. Djerafi, and Ke Wu, “Three-Dimensional Architecture of Substrate Integrated Waveguide Feeder for Fermi Tapered Slot Antenna Array Applications,” IEEE Trans. Antennas Propag., vol. 60, pp. 4610-4618, July. 2012.
    K. Wu, D. Deslandes, and Y. Cassivi, “The Substrate Integrated Circuits - A New Concept for High-Frequency Electronics and Optoelectronics,” 6th Int. Conf. on Telecommunications in Modern Satellite, Cable and Broadcasting Service, vol.1, pp. 3-5, Oct. 2003.
    Y. Cai, Z. Qian, Y. Zhang, and D. Guan, “Compact wideband millimeter wave substrate integrated waveguide fed interdigital cavity antenna array,” IEEE Trans. Antennas Propag (ISAP) , vol. 2 ,pp. 1248-1251, Oct 2013.
    W.-M.-A. Wahab, S.-S.Naeini , and D. Busuioc“High gain/efficiency 2D-dielectric resonator antenna array for low cost mm-wave systems,” IEEE Trans. Antennas Propag (APSURSI),pp. 1682-1684, July 2011.
    Y. J. Cheng, W. Hong, and K. Wu, “Millimeter-wave multibeam antenna based on eight-port hybrid,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 4, pp. 212-214, Apr. 2009.
    X.-P. Chen, L. Li, and K. Wu, “Multi-Antenna System Based on Substrate Integrated Waveguide for Ka-Band Traffic-Monitoring Radar Applications,” in Proc. 39th European Microw. Conf. Symp., Roma, Italy, 2009, pp. 417-420.
    X.-P. Chen, Ke Wu, L. Han, and F. He, “Low-Cost High Gain Planar Antenna Array for 60-GHz Band Applications,” IEEE Trans. Antennas Propagat.
    Y. J. Cheng, W. Hong, and K. Wu, “Millimeter-wave half mode substrate integrated waveguide frequency scanning antenna with quadri-polarization,”IEEE Trans. Antennas Propag. vol. 58, pp. 1848-1855, Mar. 2010.
    J. Xu, , Z.-N. Chen, and X. Qing, “CPW center-fed single-layer SIW slot antenna array for automotive radars,” IEEE Trans. Antennas Propaga. vol. 62, pp. 4528-4536, June 2009.
    M. Chen, W. Che, “Bandwidth enhancement of substrate integrated waveguide slot antenna with center-fed techniques,” Antenna Technology (iWAT). pp. 348-351, March 2011.

    QR CODE