簡易檢索 / 詳目顯示

研究生: 劉敏清
MIN-QING LIU
論文名稱: 逆打工程深開挖之變形預測及回饋分析
Prediction and performance of deep excavations with the top-down construction method
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 鄧福宸
Fu-Chen Teng
謝百鈎
Pio-Go Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 153
中文關鍵詞: 逆打工程回饋分析壁體變形地表沉陷三向度分析
外文關鍵詞: Top-down method, U-shaped wall, hardening small-strain soil models
相關次數: 點閱:184下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以一處正在進行逆打工法之深開挖案例,通過簡化分析和三向度分析,並在數值分析中採用HS和HSS模式兩種土壤模式進行研究。結果表明,採用HSS模式分析之結果與現地監測結果非常接近,原因為該模式可以更合理模擬土壤小應變行為;因此可以根據回饋分析之結果,預測該實際案例最後階段連續壁壁體變位及地表沉陷,以提供更符合工地施工順序。此外,為進一步了解扶壁與地中壁抑制連續壁壁體變形的效益,亦於假設案例中進行參數研究,例如扶壁敲除時機之不同,地中壁貫入深度之不同,扶壁與地中壁組合設置之型式。結果表明,扶壁若採用不隨挖隨拆方式,需至少保留扶壁高度為一半開挖深度時,才能得到不錯的抑制效果。考慮到地中壁設置之效益,可將地中壁設置為連續壁貫入深度的三分之一作為設計建議值。這樣既可減少壁體側向變形,又能滿足結構安全。此外,與原設計相比,採用U-Shaped wall設計可使用更少的混凝土量,得到更好抑制連續壁壁體變形之效果。


The rapid increase of underground space is crucial in urban areas with dense populations. The excavation site is usually very close to the adjacent building to optimize the excavation space area. The buttress and cross walls system are often implemented inside the excavation to restrain excessive wall displacement and prevent damage to the adjacent buildings. In this study, a three-dimensional finite element analysis was used to evaluate the Shipai excavation case with the top-down method by considering the buttress and cross-wall system. Two advanced soil models were adopted, such as the hardening and hardening small-strain soil models. The field measurement data of wall displacement and ground settlement was used to verify the numerical results and simplified approach. It is found that the finite element results with the hardening small strain model had a close agreement with the field measurement, where this model could provide reasonable small-strain soil behavior. Furthermore, the parametric studies were conducted to further observe the influence of the buttress wall demolition at different stages on the wall displacement, assessing the efficiency of cross wall dimension, and implementing the composite buttress-cross wall (U-shaped wall) as an innovative solution to effectively reduced the wall displacement. The results revealed that maintaining the buttress wall part by half of the excavation height yielded the greatest performance in restraining the wall displacement along the depth. Considering the efficiency of cross-wall dimension, implementing the cross-wall depth by one-third of the wall penetration depth can be considered as a design recommendation, which could reduce the wall displacement and still satisfy the structural safety. Moreover, the implementation of the U-shaped wall system performed the best as compared to the original design, where this system could effectively restrain excessive wall displacement and reduce the required amount of concrete used in the construction. Finally, the U-shape wall system can be recommended as a design consideration for deep excavation in a more economically feasible.

摘要 I ABSTRACT II 目 錄 III 表目錄 VI 圖目錄 IX 第1章 緒論 1 1.1 研究動機及目的 1 1.2 研究方法及內容 2 1.3 論文架構 2 第2章 文獻回顧 4 2.1 前言 4 2.2 開挖引致連續壁壁體變形之特性 4 2.2.1 連續壁壁體變形之因素 4 2.2.2 連續壁壁體變形之型式 6 2.2.3連續壁壁體變形之簡化分析 8 2.3 開挖引致地表沉陷之特性 13 2.3.1 地表沉陷型式 13 2.3.2 地表沉陷影響範圍 15 2.4 扶壁工法應用 17 2.4.1 扶壁型式 17 2.4.2 作用機制及應用 17 2.5 地中壁工法應用 22 2.5.1 地中壁型式 22 2.5.2 作用機制及應用 22 2.6有限元素法之土壤分析模式 25 2.6.1土壤硬化模式(Hardening Soil model, HS) 25 2.6.2土壤硬化小應變模式(Hardening Soil model with small-strain stiffness, HS small) 28 2.6.3分析模式類型 31 2.6.4土壤與結構介面元素 32 第3章 進行中的深開挖工程預測及回饋分析 34 3.1工程概述 34 3.2 地質狀況及水文條件 40 3.3監測系統概述 48 3.4簡化分析 51 3.4.1開挖引致之擋土壁變形分析 51 3.4.2開挖引致之地表沉陷分析 61 3.5三向度數值分析 71 3.5.1土壤參數 71 3.5.2結構參數 76 3.5.3模型邊界與網格生成 78 4.5.4施工步驟模擬 79 3.6 三向度分析及簡化分析與現地監測結果比較 85 3.6.1 三向度分析與現地監測結果比較 85 3.6.2簡化分析與現地監測結果比較 99 3.7 小結 106 第4章 扶壁及地中壁對開挖案例壁體變形影響 108 4.1 前言 108 4.2 案例扶壁及地中壁基本設定之參數 108 4.3扶壁不同敲除時機之研究 109 4.4地中壁特性之參數研究 120 4.4.1改變地中壁貫入深度與開挖深度比 120 4.4.2改變地中壁扶壁組合設置型式 124 4.5 小結 128 第5章 結論與建議 130 5.1 結論 130 5.2 建議 131 參考文獻 132

吳沛軫、王明俊、彭嚴儒(1997),「連續壁變形行為探討」,第七屆大地工程學術研,究討論會,第 601-608 頁。
李承哲(2021),「舊建物基礎改建既地下結構分析與應用」,碩士學位論文,國立台灣科技大學,營建工程研究所。
李宇軒(2022),「小應變彈塑性模式於深開挖分析之研究」,碩士學位論文,國立台灣科技大學 營建工程研究所。
林亦郎(2011),「地中壁對粘土層開挖變形影響之研究」,博士論文,台灣科技大學,營建工程系。
陳玫臻(2015),「黏土層開挖引致連續壁側向位移之預測」,碩士論文,台灣科技大學,營建工程研究所。
陳煌銘(1987),「深開挖引致之地盤位移」,地工技術,第 20 期,第 19-33。
歐章煜(2017),「進階深開挖工程分析與設計」,科技圖書。
鄧文賓(2013),「扶壁對深開挖壁體變形影響之研究」,碩士論文,台灣科技大學 ,營建工程研究所。
謝百鈎(1999),「黏土層開挖引致地盤移動之預測」,博士論文,台灣科技大學營,建工程研究所。
謝百鈎(2001),「黏土層深開挖引致地盤最大位移之預測」,中國土木水利工程學刊,13(3),pp. 489-498。
Atkinson, J.H. and Sallfors, G. (1991) Experimental Determination of Soil Properties. Proceedings of the 10th ECSMFE, Vol. 3, 915-956.
Benz, T. (2007). Small-Strain Stiffness of Soils and its Numerical Consequences. In University of Stuttgart.
Brinkgreve, R. B. J., Kumarswamy, S., Swolfs, W. M., Fonseca, F., Monoj, N. R., Zampich, L., &Zalamea, N. (2021). PLAXIS Material Models Manual. 274.
Calvello, M. and Finno, R. (2004), Selecting parameters to optimize in model calibration by inverse analysis, Computer and Geotechnics, Vol. 31, pp. 410–424.
Clough, G. W., and O'Rourke, T. D. (1990), Construction Induced Movements of In-situ Walls, Proceeding of Design and Performance of Earth Retaining Structure, ASCE, Special Conference, Ithaca, New Yark, pp.439-470.
Hsieh, P. G. and Ou, C. Y. (1998), Shape of ground surface settlement profiles caused by excavation, Canadian Geotechnical Journal, Vol. 35, No. 6, pp. 1004–1017.
Hsieh, P. G., Ou, C. Y. (2015), Simplified approach to estimate the maximum wall deflection for deep excavations with cross walls in clay under the undrained condition, Acta Geotechnics, Vol. 11, pp. 177–189.
Hsieh, P. G. and Ou, C. Y., and Hsieh, W. H. (2016), Efficiency of excavations with buttress walls in reducing the deflection of the diaphragm wall, Acta Geotechnica, Vol. 11, pp. 1087–1102. doi:10.1007/s11440-015-0416-6.
Hsieh, P. G. and Ou, C. Y. (2018), Mechanism of buttress walls in restraining the wall deflection caused by deep excavation, Tunneling and Underground Space Technology, Vol. 82, pp. 542–553.
Jaky, J. (1944), The coefficient of earth pressure at rest, Journal of the Society of Hungarian Architects and Engineers (in Hungarian), Vol. 8, No. 22, pp. 355–358.
Khoiri, M. and Ou, C. Y. (2013), Evaluation of deformation parameter for deep excavation in sand through case histories, Computers and Geotechnics, Vol. 47.
Ladd, C. C., Foote, R., Ishihara, K., Schlosser, F., and Poulous, H. G. (1977), Stress-Deformation and Strength Characteristics, State-of-the-ART Report, Proceedings of the Ninth International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol. 2, pp. 421–494.
Lim, A., Ou, C. Y. and Hsieh, P. G. (2010), Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions, Journal of GeoEngineering, Vol. 5, No. 1, pp. 9–20.
Lim, A. and Ou, C. Y. (2017), Stress paths in deep excavations under undrained conditions and its influence on deformation analysis, Tunnelling and Underground Space Technology, Vol. 63, pp. 118-132.
Masuda, T., Einstein, H. H. and Mitachi, T. (1994), Prediction of lateral deflection of diaphragm dall in deep excavation, Journal of Geotechnical Engineering, Proceedings of Japan Society of Civil Engineering, ASCE, No.505, III-29, pp.19- 29.
Ou, C. Y., Chiou, D. C. and Wu, T. S. (1996), Three-dimensional finite element analysis of deep excavations, Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 5, pp. 337–345.
Ou, C. Y., Lin, Y. L., Hsieh, P. G. (2006), Case record of an excavation with cross walls and buttress walls, Journal of GeoEngineering, Vol. 1, No. 2, pp. 79-86.
Ou, C. Y. and Hsieh, P. G. (2011), A simplified method for predicting ground settlement profiles induced by excavation in soft clay, Computers and Geotechnics, Vol. 38, pp. 987–997.
Peck, R.B. (1969), Deep Excavation and Tunneling in Soft Ground, Proceedings of the 7th International Conference on soil Mechanics and Foundation Engineering, Mexico City, State of the Art Volume, pp. 225–290.
Santos, J. A. Dos, and Correia, A. G. (2001). Reference threshold shear strain of soil. Its application to obtain an unique strain-dependent shear modulus curve for soil. Proceedings of 15th International Conference on Soil Mechanics and Geotechnical Engineering(Istanbul).
Schanz T., Vermeer P. A., and Bonnier P. G. (1999), The hardening soil model: formulation and verification. In R.B.J. Brinkgreve, Beyond 2000 in Computational Geothechnics, Balkema, Roterdam.

QR CODE