簡易檢索 / 詳目顯示

研究生: 楊家睿
Jia-Rui Yang
論文名稱: 以三維解耦分析方法探討開挖地表沉陷與鄰房角變量之行為
A Study of Behavior of Excavation-Induced Ground Settlement and Angular Distortion of Adjacent Building Using 3D Decoupled Analysis Method
指導教授: 林宏達
Horn-Da Lin
口試委員: 歐章煜
Chang-Yu Ou
林宏達
Horn-Da Lin
陳正誠
Cheng-Cheng Chen
謝佑明
Yo-Ming Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 224
中文關鍵詞: 深開挖鄰房損害三維解耦分析方法基腳角變量
外文關鍵詞: Deep excavation, Damage of adjacent building, 3D Decoupled Analysis Method, Angular distortion
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究團隊過去已成功地應用三維解耦分析方法針對開挖引致之不同基礎型式之鄰房損害行為進行深入探討,但鄰房角變量與地表沉陷之量化關係僅有初步之心得,仍值得進一步研究。本研究主要分為兩大主軸,第一項主軸為將三跨結構物放置於4 種不同沉陷槽位置,根據三維解耦分析結果深入探討鄰房角變量行為,然後檢討現有現地評估鄰房損害方法,並提出改進建議。第二項主軸為以獨立基腳與板式筏基之基準結構物模型,分別進行15 種不同鄰房位置之三維解耦分析,綜整所有分析結果並探討自由場角變量及基腳角變量與距離之關係,然後建立角變量比值與正規化距離關係式。
    第一項主軸之研究成果顯示,不論任何沉陷槽位置,鄰房結構物的基腳角變量皆大約等於跨間角變量,而多數沉陷槽位置之基腳角變量幾乎都與層間角變量無關。工程實務上利用層間角變量評估鄰房損害行為,可能會誤判實際結構損壞潛勢。改進方式可參考本研究提出II
    之以經緯儀及傾度盤量測跨間角變量之方法。第二項主軸之研究成果顯示,獨立基腳與板式筏基之基腳角變量與自由場角變量,皆隨距離增加而有特定之變化趨勢。獨立基腳基腳角變量幾乎都大於自由場角變量,而板式筏基的基腳角變量幾乎都小於自由場角變量,若使用自由場角變量評估結構物安全性,會有誤判之虞。為解決此問題,本研究最後提出利用自由場角變量評估基礎角變量之方法,建立角變量比值與正規化距離之關係式,並以MAPE 驗證得知不同關係式皆具有良好預測的能力。


    The 3D Decoupled Analysis Method (DAM) has been successfully
    applied to study the excavation-induced adjacent building damage
    behavior of different types of foundation in the past few years by our
    research team. However, the study is only preliminary about the angular
    distortion behavior of the adjacent building and its quantitative relationship
    with ground settlement. This issue is worthy of further study. This study is
    mainly divided into two research parts. First part is to use DAM to
    investigate the angular distortion behavior of the three-span structure at 4
    different locations adjacent to the excavation. Then, the analytical results
    are used to review and improve the current methods of in-situ measurement
    of the adjacent building damage. Second part is to place the baseline
    structure of spread footing and mat foundation at 15 different locations and
    to analyze the excavation-structure interaction using DAM respectively.
    The results are used to study the relationship between the greenfield
    settlement and the bay angular distortion of the adjacent structure. As a
    IV
    result, quantified relationships are developed to evaluate the relationship
    between the ratio of angular distortion and the normalized distance.
    The research results of the first part show that, regardless of the
    adjacent building location, the bay angular distortion is approximately
    equal to the span drift ratio. In addition, the bay angular distortion has no
    relation with the story drift ratio. In practice, using the story drift ratio to
    evaluate the damage of the adjacent building may misjudge the actual
    damage potential. This research proposes an improvement method of
    measuring the span drift ratio using theodolite and tilt plate. The research
    results of the second part show that, the greenfield angular distortion and
    the bay angular distortion of spread footing and mat foundation exhibit
    specific trends changing with the distance. The angular distortions of the
    spread footing are mostly larger than the greenfield angular distortions, but
    the angular distortions of the mat foundation are mostly smaller than the
    greenfield angular distortions. If the greenfield angular distortion is used
    to evaluate the safety of the adjacent structure, there is a risk of
    misjudgment. To solve this situation, this research proposes a method for
    evaluating the bay angular distortion using the greenfield angular distortion.
    Three types of the relationship between the angular distortion ratio and the
    normalized distance are proposed. Their good predictive abilities are
    verified using the MAPE index.

    論 文 摘 要......................I ABSTRAC......................III 致謝......................V 目錄......................VII 表目錄......................XI 圖目錄......................XV 第一章 緒論......................1 1.1 研究背景與目的......................1 1.2研究內容及架構......................2 第二章 文獻回顧......................5 2.1開挖引致地盤反應及結構物變形行為......................5 2.1.1 地盤反應行為......................5 2.1.2結構變形行為......................8 2.2 開挖引致結構物之損害評估......................9 2.3 三維開挖與結構物之數值分析......................11 2.3.1 開挖與結構物之解耦分析......................11 2.4 開挖引致之不同基礎型式之鄰房角變量......................15 第三章 研究分析方法......................31 3.1三維解耦分析方法......................31 3.2不同基礎型式結構物模擬方法......................32 3.2.1獨立基腳結構物模擬流程......................34 3.2.2板式筏基結構物模擬流程......................35 3.2.3 土壤彈簧勁度模擬......................35 3.3開挖模擬方法......................37 3.3.1開挖模擬流程......................37 3.3.2土壤分析模式......................38 3.4開挖與結構物迭代分析方法......................41 第四章 開挖案例及不同基礎之結構物解耦分析......................61 4.1開挖案例分析模擬......................62 4.1.1開挖案例之工程概況......................62 4.1.2土壤與擋土結構之參數率定......................63 4.1.3開挖分析模型之條件假設......................65 4.2結構物分析模擬......................67 4.2.1基準結構物......................67 4.2.2 本研究之三跨結構物......................68 4.2.3結構物分析流程......................69 4.3不同基礎型式結構物之三維解耦分析結果......................71 第五章 開挖引致之不同基礎型式之鄰房角變量關係......................103 5.1 開挖引致之鄰房角變量關係定義......................103 5.2 不同沉陷槽位置之三跨鄰房結構物角變量反應......................105 5.2.1獨立基腳之三跨結構物......................105 5.2.2 板式筏基之三跨結構物......................108 5.3 現有鄰房損害評估方法之檢討......................112 5.4 鄰房基腳角變量與距離關係之探討......................114 5.4.1獨立基腳之鄰房角變量與距離之關係......................115 5.4.2板式筏基之鄰房角變量與距離之關係......................116 5.5 鄰房基腳角變量關係式建立......................118 5.5.1 獨立基腳結構物之角變量關係式......................120 5.5.2 板式筏基結構物之角變量關係式......................122 第六章 結論與建議......................163 6.1 結論......................163 6.1.1 開挖引致三跨結構物之鄰房角變量關係......................163 6.1.2 現地鄰房損害評估方法之建議......................165 6.1.3自由場角變量及基腳角變量與距離之關係......................166 6.1.4 角變量比值與正規化距離之關係式......................168 6.2 建議......................169 參考文獻......................171 附表A 結構物之基礎位移...................... 177 附表B 三跨結構物之鄰房角變量 ......................189

    1. 汪家新(2017),「以三維解耦分析方法探討開挖引致之地盤反應與不同基礎型式之鄰房損害潛勢」,碩士論文,國立台灣科技大學營建工程系。
    2. 林冠傑(2016),「以三維解耦分析方法探討開挖引致地盤反應與不同方位之鄰房損害潛勢評估」,碩士論文,國立台灣科技大學營建工程系。
    3. 林宜甄(2019) ,「以三維解耦分析方法探討開挖與複合式基礎形式之鄰房互制行為」,碩士論文,國立台灣科技大學營建工程系。
    4. 陳維晟(2015),「三維空間下開挖行為與鄰房反應之解耦分析與探討」,碩士論文,國立台灣科技大學營建工程系。
    5. 陳思琳(2018) ,「以三維解耦分析方法探討開挖與板式筏基之鄰房互制行為」,碩士論文,國立台灣科技大學營建工程系。
    6. 新北市政府工務局(2019),「新北市建築物工程師工損壞鄰房鑑定手冊」。
    7. 歐章煜(2017),「進階深開挖工程分析與設計」,科技圖書。
    8. 嚴東利、張桂才(1991),「建築物允許沉陷量之探討」,地工技術雜誌,第34期,第78-96頁。
    9. ACI Committee 318, “Building code requirements for structural concrete (ACI318-95) and commentary (ACI 318R-95),” American Concrete Institute (ACI), Farmington Hills (1995).
    10. Bjerrum, L. (1963). "Allowable settlement of structures." Proceedings of the 3rd European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, Germany, Vol. 2, 135-137.
    11. Boscardin, M. D., & Cording, E. J. (1989). "Building response to excavation-induced settlement." Journal of Geotechnical Engineering, 115(1), 1-21.
    12. Boone, S. J. (1996). "Ground-movement-related building damage." Journal of Geotechnical Engineering, 122(11), 886-896.
    13. Burd, H. J., Houlsby, G. T., Augarde, C. E., & Liu, G. (2000). "Modelling tunneling-induced settlement of masonry buildings." Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 143(1), 17-29.
    14. Cording, E. J., Long, J. L., Son, M., Laefer, D., & Ghahreman, B. (2010). "Assessment of excavation-induced building damage." Earth Retention Conference 3, 101-120.
    15. Dang, H. P. (2008). "Excavation behavior and adjacent building reponse analyses using user defined soil models in PLAXIS." Master dissertation, National Taiwan University of Science and Technology.
    16. Dang, H. P., Lin, H. D., Kung, J. H., & Wang, C. C. (2012)." Deformation behavior analyses of braced excavation considering adjacent structure by user-defined soil models." Journal of GeoEngineering, 7(1), 13-20.
    17. Elsamee, W. N. A. (2013). "An experimental study on the effect of foundation depth, size and shape on subgrade reaction of cohessionless soil." Engineering, 5(10), 785.
    18. Finno, R. J., and Bryson, L. S. (2002). "Response of building adjacent to stiff excavation support system in soft clay." Journal of performance of constructed facilities, 16(1), 10-20.
    19. Finno, R. J., Bryson, S., and Calvello, M. (2002), "Performance of a stiff support system in soft clay." Journal of Geotechnical and Geoenvironmental Engineering, 128(8), 660-671.
    20. Finno, R. J, Voss, F. T., Rosscow, E., and Blackburn, J. T. (2005), "Evaluating damage potential buildings affected by excavations", Journal of Geotechnical and Geoenvironmental Engineering, 131(10), 1199-1210.
    21. Finno, R. J., Blackburn, J. T., and Roboski, J. F. (2007). "Three-dimensional effects for supported excavation in clay." Journal of Geotechnical and Geoenvironmetal Engineering, ASCE 133(1), 30-36.
    22. Gazetas, G. and Tassoulas, J. L. (1987). "Horizontal stiffness of arbitrarily shaped embedded foundations." Journal of Geotechnical Engineering, ASCE, 113(5), 440-457.
    23. Hsieh, P. G., & Ou, C. Y. (1998). "Shape of ground surface settlement profiles caused by excavation." Canadian geotechnical journal, 35(6), 1004-1017.
    24. Kung, G. T., Juang, C. H., Hsiao, E. C., & Hashash, Y. M. (2007). "Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays." Journal of Geotechnical and Geoenvironmental Engineering, 133(6), 731-747.
    25. Ladd, C. C., Foote, R., Ishihara, K., Schlosser, F., & Poulous, H. G. (1977) "Stress-deformation and strength characteristics." State-of-the-ART Report, Proceedings of Ninth International Conference on soil Mechanics and Foundation Engineering, Tokyo, 2, 421-494.
    26. Lewic, C. D., (1982). "Industrial and Business Forecasting Method", London: Butterworth Scientific Publisher.
    27. Laefer, D. F., Ceribasi, S., Long, J. H., & Cording, E. J. (2009). "Predicting RC frame response to excavation-induced settlement." Journal of geotechnical and geoenvironmental engineering, 135(11), 1605-1619.
    28. Lim, A., Ou, C. Y., and Hsieh, P. G. (2010). "Evaluation of clay constitutive models for analysis of deep excavation under undrained consitions." Journal of GeoEngineering, 5(1), 9-20.
    29. Lin, H. D., Truong, H. M., Dang, H. P., & Chen, C. C. (2014). "Assessment of 3D Excavation and Adjacent Building's Reponses with Consideration of Excavation-Structure interaction." Tunneling and Underground Construction, 256-265.
    30. Lin, H. D., Mendy, S., Liao, H. C., Dang, P. H., Hsieh, Y. M., & Chen, C. C. (2016). "Responses of 3D excavation and adjacent buildings in sagging and hogging zones using Dcoupled Analysis Method." Journal of GeoEngineering, 11(2), 85-96.
    31. Mendy, S. (2014) "Study of excavation behavior and adjacent building response using 3D Decouple Analysis." Master dissertation, National Taiwan University of Science and Technology.
    32. Ou, C. Y., Hsieh, P. G., and Chiou, D. C. (1993). "Characteristics of ground surface settlement during excavation." Canadian Geotechnical Journal, 30, 758-767.
    33. Ou, C. Y., Liao, J. T., and Lin, H. D. (1998). "Performance of diaphragm wall constructed using top-down method." Journal of Geotechnical and Geoenvironmetal Engineering, 124(9), 798-808.
    34. Ou, C. Y., Liao, J. T., and Cheng, W. L. (2000). "Building response and ground movements induced by a deep excavation." Geotechnique, 50(3), 209-220.
    35. Ou, C. Y., & Hsieh, P. G. (2011). "A simplified method for predicting ground settlement profiles induced by excavation in soft clay." Computers and Geotechnics, 38(8), 987-997.
    36. Potts, D. M., & Addenbrooke, T. I. (1997). " A structure's influence on tunnelling-induced ground movements." Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, Vol. 125, No. 2.
    37. Plaxis 3D. (2014). Material Models Manual.
    38. Skempton, A. W., & MacDonald, D. H. (1956). "The allowable settlements of buildings." Proceedings of the Institution of Civil Engineers, 5(6), 727-768.
    39. Son, M., and Cording, E. J. (2005). "Estimation of building damage due to excavation-induced ground movements." Journal of Geotechnical and Geoenvironmetal Engineering, ASCE, 131(2), 162-177.
    40. Son, M., & Cording, E. J. (2007). " Evaluation of building stiffness for building response analysis to excavation-induced ground movements." Journal of Geotechnical and Geoenvironmental engineering, 133(8), 995-1002.
    41. Schuster, M., Kung, G. T. C., Juang, C. H., and Hashash, Y. M. A. (2009). "Simplified model for evaluating damage potential of buildings adjacent to a braced excavation." Journal of Geotechnical and Geoenvironmetal Engineering, ASCE, 135(12), 1823-1835.
    42. Lilianto, S. (2020) "Study of excavation behavior and adjacent building response with mixed foundation using 3D Decouple Analysis." Master dissertation, National Taiwan University of Science and Technology.
    43. Son, M., & Cording, E. J. (2010). "Responses of buildings with different structural types to excavation-induced ground settlements." Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 137(4), 323-333.
    44. Truong, H. M. (2013). "Study of excavation behavior and adjacent building response with 3D simulation." Master dissertation, National Taiwan University of Science and Technology.
    45. Walhls, H. E. (1981). "Tolerable settlement of buildings." Journal of Geotechnical and Geoenvironmental Engineering, (107), 1489-1504.

    無法下載圖示 全文公開日期 2024/08/09 (校內網路)
    全文公開日期 2024/08/09 (校外網路)
    全文公開日期 2024/08/09 (國家圖書館:臺灣博碩士論文系統)
    QR CODE