簡易檢索 / 詳目顯示

研究生: 陳玫臻
Mei-Jhen Chen
論文名稱: 黏土層開挖引致連續壁側向位移之預測
Prediction of Diaphragm Wall Caused by Deep Excavation in Clays
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 謝百鈎
Pio-Go Hsieh
劉泉枝
Chuan-Chih Liu
林宏達
Hung-Da Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 217
中文關鍵詞: 深開挖擋土壁變形
外文關鍵詞: deep excavation, wall deflection
相關次數: 點閱:220下載:38
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為建立黏土層進行深開挖引致之連續壁位移的簡化方法。首先針對一基地位置座落於台北盆地的實際開挖案例,以PLAXIS 2D進行數值模擬分析,並與監測結果比較驗證,藉以確定二向度數值模擬分析時,土壤模式的適用性及土壤及結構參數的合理擇取原則。本研究針對開挖深度、開挖寬度、土壤正規化不排水剪力強度、壁體系統勁度及支撐軸向剛度等各項影響因素進行參數研究,假設案例共384組進行黏土層開挖數值模擬分析,統計假設案例的連續壁最大側向位移,選擇及測試合適且合理的回歸分析模型,並剔除不合理的假設案例資料點,最終假設案例留下358組,並利用SPSS進行指數型模型進行複回歸分析,建立於黏土層開挖時連續壁最大側位移量的簡易預測方法。本研究將此簡易預測方法應用於實際開挖案例,並與其他學者所提出之方法的預測結果進行比較及探討。


    The purpose of this study is to establish a simplified methods for prediction of the maximum wall deflections caused by a excavation in clay. Initially, the soil model and parameters of soil and structural elements were calibrated with a well-documented deep excavation case, namely TNEC excavation, by using PLAXIS 2D. Then, 384 sets of hypothetical case, with variation of influence factors such as excavation depth, excavation width, normalization undrained shear strength, the system stiffness of the wall, and the axial stiffness of the lateral strut per unit length of the wall, were simulated in order to establish the relationship between the maximum wall lateral deflection and those factors. The multivariate regression analysis with exponential model was selected as a proper model for processing those data. Owing to some data were illogical from practical point of view, only data from 358 sets of hypothetical case were considered as valid data. The SPSS software was used as a tool for data processing. Finally, a simplified method was developed. The result was compared and discussed with the previous proposed methods.

    中文摘要 ABSTRACT 誌謝 目錄 表目錄 圖目錄 符號索引 第一章 緒論 1.1 研究動機與目的 1.2 研究方法及內容 第二章 文獻回顧 1.1 深開挖之擋土壁變形行為 2.1.1 擋土壁之側向位移特性 2.1.2 擋土壁變形之影響因素 1.2 穩定分析之底面隆起破壞 1.3 擋土壁側向位移預測公式之相關研究 第三章 開挖案例之模擬驗證分析 3.1 前言 3.2 土壤分析模式 3.3 土壤參數之決定 3.3.1 砂土質土層參數 3.3.2 黏土質土層參數 3.4 結構參數之決定 3.4.1 連續壁結構參數 3.4.2 支撐結構參數 3.5 台北國家企業中心(TNEC)之案例分析 3.5.1 工程概況 3.5.2 土層狀況 3.5.3 監測系統概述 3.5.4 參數輸入 3.5.5 網格建立 3.5.6 施工步驟模擬 3.5.7 分析結果比較 第四章 黏土層中擋土壁最大位移量預測法 4.1 假設案例之參數變化架構 4.2土壤參數輸入 4.3網格建立及施工步驟 4.4 回歸分析模式之比較 4.5 擋土壁最大側向位移預測公式之應用 4.5.1 預測公式之特性比較 4.5.2 實際開挖案例之預測結果比較 4.5.3 綜合討論 第五章 結論與建議 5.1 結論 5.2 建議 參考文獻

    王獻增(2000),「台北盆地黏性土壤不排水剪力強度之研究」,碩士論文,國立中央大學土木工程學系研究所,桃園。
    吳沛軫、王明俊、彭嚴儒(1997),「連續壁變形行為探討」,第七屆大地工程學術研究討論會,pp.601-608
    林亦郎(2010),「地中壁對黏土層開挖變形影響之研究」,博士論文,國立臺灣科技大學營建工程研究所,台北。
    喬國華(1992),「台北粉土質黏土在不同應力路徑下之力學行為」,碩士論文,國立臺灣工業技術學院工程技術研究所,台北。
    廖瑞堂,歐章煜(1997),「台北國家企業中心深開挖工程行為之研究-大地工程研究報告」,台北。
    鄧建剛(1985),「有限元素法於台北市支撐開挖工程之應用研究」,碩士論文,國立臺灣工業技術學院工程技術研究所,台北。
    劉泉枝(1911),「台北盆地凝聚性土壤之不排水剪力強度與孔隙壓力參數」,中國土木水利工程學刊,第三卷,第三期,267-270。
    劉泉枝、謝旭昇、黃志祥(1997),「黏性土壤深開挖穩定性分析方法之探討」,第七屆大地工程學術研討會,台北金山,pp. 629-638
    謝百鈎(1993),「考慮異向性行為之有限元素法深開挖分析」,碩士論文,國立臺灣工業技術學院工程技術研究所,台北。
    謝百鈎(1999),「黏土層開挖引致地盤移動之預測」,博士論文,台灣科技大學,營建工程研究所,台北
    謝百鈎(2001),「黏土層深開挖引致地盤最大位移預測」,中國土木水利工程學刊,13(3),pp. 489-498
    歐章煜(2009),深開挖工程-分析設計理論與實務(2版),科技圖書,275-276。
    ACI committee 318 (1995), “Building Code Requirements for Structural Concrete,” (ACI 318-95) & Commentary (ACI 318R-95)
    Bjerrum, L. and Eide, O. (1956) “Stability of strutted excavation in clay,” Gèotechnique, Vol. 6, pp. 32-47
    Bathe, K. J. (1982) “Finite element analysis in engineering analysis,” Prentice-Hall, New Jersey.
    Bowles, J. E., (1986) “Foundation Analysis and Design,” 4th Ed, Mcgraw-Hill Book Company, New York, U. S. A.
    Bolton, M. D., (1986) “The strength and dilatancy of sands.” Gèotechnique, 36(1), 65-78
    Brinkgreve, R. B. J., Engin, E., & Swolfs, W. M. (2014) “PLAXIS 2D manual.”
    Chang, C. S. & Abas, M. H. B. (1980) “Deformation analysis for braced excavation in clay,” Application of Plasticity and Generalized Stress-Strain in Geotechnical Engineering, Edited by Young and Seling, ASCE, pp. 205-215
    Clough, G. W. and L. A. Hansen (1981) “Clay anisotropy and braced wall behavior,” Journal of Geotechnical Engineering Division, ASCE, Vol. 107, No. 7, pp. 893-913
    Clough, G. W. and T. D. O′Rourke (1990) “Construction induced movements of insitu walls,”Proceedings, Design and Performance of Earth Retainings Structure, ASCE Special Conference, Ithaca, New York, pp. 439-470
    Das, B. M., (1984) “Principles of Foundation Engineering,” Brook/Cole Engineering Division, Monterey, California, U. S. A.
    Hsieh, P. G., Kung, T. C., Ou, C. Y., & Tang, Y. G. (2003) “Deep excavation analysis with consideration of small strain modulus and its degradation behavior of clay,” Proceedings of the 12th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering, Singapore, Vol. 1, pp. 785-788
    Hsieh, P. G., & Ou, C. Y. (2011) “Analysis of nonlinear stress and strain in clay under the undrained condition,” Journal of Mechanics, Vol. 27, Issue 2, pp.201-213
    Hsieh, P. G., Ou, C. Y. (2015) “Simplified approach to estimate the maximum wall deflection for deep excavations with cross walls in clay under the undrained condition,” Acta Geotechnica, 10.1007/s11440-014-0360-x
    Jacky, J., (1944) “The Coefficient of Earth Pressure at Rest,” Journal of the society of Hungarian Architects and Engineers, Vol.78, No.22, pp.355-358
    Kung, T. C., Juang, C. H., Hsiao, C. L., & Hashash Y. M. A (2007) “Simplified model for wall deflection and ground-surface settlement caused by braced excavation in clays,” Journal of Geotechnical and Geoenvironmental Engineering, 133(6), pp. 731-747
    Kung, G. T. C. (2007) “Equipment and testing procedures for small strain triaxial tests,” Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A, Vol. 30, No. 4, pp. 579-591
    Kung, T. C., Ou, C. Y. & Juang, C.H. (2009) “Modeling small-strain behavior of Taipei clays for finite element analysis of braced excavations,” Computers and Geotechnics, SCI, Vol. 36, No. 1-2, pp.304-319
    Ladd, C.C., Foote, R., Ishihara, K., Schlosser, F., & Poulous, H. G. (1977) “Stress-deformation and strength characteristics,” State-of-the-ART Report, Proceedings of the Ninth International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol. 2, pp. 421-494
    Lee, S. H. H., (1990) “Regression models of shear wave velocities in Taipei basin,” Journal of the Chinese Institute of Engineers, Vol. 13, No. 5, pp. 519-532
    Liu, C. C., Chen, S.H., & Cheng, W. L. (1998) “Undrained behavior of Taipei sility clay and under simple shear condition,” Journal of the Chinese Institute of Civil and Hydraulic Engineering, Vol. 10, No. 4, pp. 627-637 (in Chinese).
    Lim, A., Ou, C. Y. & Hsieh, P. G. (2010) “Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions,” Journal of GeoEngineering, Vol.5, No. 1, pp. 9-20
    Lim, A., Ou, C.Y. & Teng, F. C. (2015) “The influence of soil stress paths in deformation analysis of deep excavation under undrained conditions,” Acta Geotechnica.
    Masuda, T., Einstein, H. H., & Mitachi, T. (1994) “Prediction of lateral deflection of diaphragm wall in deep excavations,” Journal of Geotechnical Engineering, Proceeding of Japan Society of Civil Engineers, No. 505, III-29, pp. 19-20
    Mana, A. I. and Clough, G. W. (1981) “Prediction of movements for braced cut in clay,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 107, No. 8, pp. 759-777
    Ou, C. Y., Hsieh, P. G., & Chiou, D. C. (1993) “Characteristics of ground surface settlement during excavation,” Canadian Geotechnical Journal, Vol. 30, No. 5, pp. 758-767
    Ou, C. Y., Liao, J. T., & Lin, H. D. (1998) “Performance of diaphragm wall constructed using top-down method,” Journal of Geotecnical Engineering and Geoenvironmental Engineering, Vol. 124, pp. 798-808
    Ou, C. Y., Liao, J. Y., & Chang, W. L. (2000) “Building response and ground movements induced by a deep excavation,” Gèotechnique, Vol.50, Issue 3, 01, pp. 209-220
    Skempton, A. W. (1951) “The bearing capacity of clays,” Proceeding of Building Research Congress, Vol. 1, pp. 180-189
    Swiss Standar SN 670010b, Characteristic Coefficients of soils, Association of Swiss Road and Traffic Engineers.
    Terzaghi, K. (1943) “Theoretical soil mechanics,” John Wiley & Sons, Inc., New Yourk, N. Y.
    Teng, F. C. (2010) Personal file.
    Teng, F. C., Ou, C. Y., & Hsieh, P. G. (2014) “Measurements and numerical simulation of inherent stiffness anisotropy in soft Taipei clay,” Jouranal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 140, No.1, pp. 237-250
    Wong, K. S., and Broms, B. B. (1989) “Lateral wall deflection of braced excavations in clay,” Journal of Geotech. Engrg., 115(6), pp. 853-870
    Woo, S. M., & Moh, Z. C. (1990) “Geotechnical characteristics of soils in Taipei basin,” Proceedings, 10th Southeast Asian Geotechnical Conference, Special Taiwan Session, Taipei, Vol. 2, pp. 51-65
    Wu, S. H., Ching, J. and Ou, C. Y. (2013) “Predicting wall displacements for excavations with cross walls in soft clay,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 139, No. 6, pp. 914-927
    Ying, H. W., Yang, Y.W., & Ou, C. Y. (2015) “Characteristics of deep excavations supported by continuous piles wall in Hangzhou soft clay,” Manuscrip submitted for publication.

    QR CODE