簡易檢索 / 詳目顯示

研究生: 林思彤
Ssu-Tung Lin
論文名稱: 應用大跨距支撐於深開挖工程之研究
A Study on the Application of Large-Span Struts in Deep Excavation
指導教授: 歐章煜
Chang -Yu Ou
口試委員: 歐章煜
Chang -Yu Ou
林培元
Pei-Yan Lin
何樹根
Shu-Gen He
鄧福宸
Fu-Chen Teng
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 235
中文關鍵詞: 深開挖無支撐開挖扶壁地中壁U壁鋼支撐
外文關鍵詞: Deep excavation, Strut free excavation, Buttress wall, Cross wall, U-shape wall, Steel strut
相關次數: 點閱:260下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 採用無支撐開挖工法進行開挖時,壁體會呈現懸臂式剛性位移,最大側向變位發生於壁體頂端,其變位值可能大於容許值進而影響連續壁之強度。因此本研究之目的為於大跨距支撐下提出施工方便性與經濟性兼具之鋼支撐配置,以達如同無支撐開挖般無施工阻礙,但又能抑制連續壁頂部最大懸臂式變位之效果。首先針對臨時鋼支撐進行一系列之參數研究,研究成果顯示於基地長度小於75 m時,僅需架設一根或二根支撐即可,若架設二根支撐時建議支撐間距為6 m時有較佳配置;於基地長度大於75 m時,建議架設三根支撐且均勻地架設於擋土壁上時有較佳配置。此外支撐會因架設深度、架設層數及斷面尺寸而影響壁體變位抑制效果,支撐採架設於連續壁頂部、斷面尺寸越大及支撐層數越多,有越佳抑制效果。此外當架設大跨距支撐且同時構築內加勁版或背拉版時,有更佳抑制效果且壁體變形較為均勻。最後,將提出的大跨距支撐系統(LSS 系統)經實際案例驗證,進一步確認其合理性。


    When the strut-free excavation method is used, the shape of the wall deflection is a cantilever shape, and the maximum lateral displacement occurs at the top of the wall. The displacement value may be greater than the allowable value and affect the strength of the diaphragm wall. Therefore, the purpose of this study is to propose a steel strut configuration that is both convenient and economical in construction with large-span struts, so as to achieve no construction obstacles like strut-free excavation, but also can restrain the maximum cantilever displacement at the top of the diaphragm wall. First, a series of parameteric studies on struts are conducted. The research results show that when the length of the excavation geometry is less than 75 m, only one or two struts need to be installed. If two struts are installed, it is recommended that the spacing between the struts is 6 m to have a better configuration. When the length of the excavation geometry is greater than 75 m, it is recommended to install three struts and evenly installed on the retaining wall to have a better configuration. In addition, the wall displacement restraining effect will be affected by the depth of the strut, the number of layers of the strut, and the section size. When the strut is installed at the top of the diaphragm wall, using a larger section size, and more strut layers will have better restraining effect. In addition, when the large-span strut is installed with inner cap slabs or outer cap slabs, there is a better restraining effect and the wall deflection is more uniform. Finally, the proposed configuration of large-span struts system (LSS system) is verified by actual case to confirm its rationality.

    摘要 I ABSTRACT II 致謝 III 目錄 IV 表目錄 VIII 圖目錄 X 符號索引 XVII 第1章 緒論 1 1.1 研究動機及目的 1 1.2 研究方法及內容 2 1.3 論文架構 2 第2章 文獻回顧 4 2.1 前言 4 2.2 深開挖之擋土壁變形特性 4 2.2.1 影響擋土壁變形因素 4 2.2.2 擋土壁變形型式 7 2.3 擋土輔助措施 9 2.3.1 地中壁 9 2.3.2 扶壁 12 2.3.3 U型壁 15 2.4 無支撐開挖 16 2.4.1 RFD 工法 16 2.4.2 無支撐開挖案例 18 2.5 裝配式H型鋼支撐系統 24 2.6 大跨距支撐系統開挖案例 26 2.6.1 淡江大橋主橋塔P130 26 2.6.2 廣慈博愛院B標 28 2.6.3 桃園觀音工業區 30 2.7 小結 34 第3章 大跨距支撐配置之參數研究 35 3.1 前言 35 3.2 假設案例及施工程序 35 3.2.1 基本假設案例 35 3.2.2 施工程序 42 3.3 土壤分析模式 45 3.3.1 土壤勁度 45 3.3.2 分析模式類型 48 3.3.3 土壤與結構界面元素 50 3.4 土壤參數決定 51 3.5 結構參數決定 52 3.6 模型邊界與網格生成 56 3.7 鋼支撐架設數量及間距於不同基地尺寸下之配置 57 3.7.1 基地尺寸25x50公尺 57 3.7.2 基地尺寸37.5x50公尺 63 3.7.3 基地尺寸50x50公尺 68 3.7.4 基地尺寸75x50公尺 73 3.7.5 基地尺寸100x50公尺 78 3.7.6 基地尺寸200x50公尺 84 3.7.7 各基地尺寸下之支撐配置結果討論 90 3.8 鋼支撐架設深度對壁體變位抑制效果 92 3.9 鋼支撐架設層數及尺寸對壁體變位抑制效果 98 3.10 鋼支撐斷面尺寸對壁體變位抑制效果 116 3.11 開挖深度對鋼支撐架設壁體變位抑制效果 123 3.12 鋼支撐及內加勁版之組合對壁體變位抑制效果 129 3.13 鋼支撐及背拉版之組合對壁體變位抑制效果 135 3.14 小結 154 第4章 實際案例之數值模擬驗證分析 156 4.1 前言 156 4.2 工程概述 156 4.3 地質狀況及水文條件 161 4.4 監測系統概述 167 4.5 三向度數值分析 168 4.5.1 HSS 模式 168 4.5.2 分析之土壤參數 170 4.5.3 分析之結構參數 174 4.5.4 模型邊界與網格生成 176 4.5.5 施工程序模擬 177 4.5.6 分析結果與比較 179 第5章 大跨距支撐配置於實際案例結果 182 5.1 前言 182 5.2 基本模型與施工工序 182 5.2.1 基本模型 182 5.2.2 施工工序 185 5.3 大跨距支撐配置於實際案例結果 191 5.3.1 鋼支撐架設數量及間距之配置 191 5.3.2 鋼支撐不同架設深度 194 5.3.3 鋼支撐不同架設層數 196 5.3.4 鋼支撐不同斷面尺寸 198 5.3.5 鋼支撐及內加勁版之組合 200 5.3.6 鋼支撐及背拉版之組合 202 5.3.7 大跨距鋼支撐配置與中和板南段案例結果比較 204 5.4 小結 206 第6章 結論與建議 207 6.1 結論 207 6.2 建議 208 參考文獻 209

    [1]工信工程股份有限公司淡江施工處(2023)。淡江大橋新建工程(第3標)主橋塔P130施工簡報。
    [2]亓立剛、馬明磊、孫旻(2022)。基坑補償裝配式H型鋼支撐體系理論設計實踐。中國:中國建築工業出版社。
    [3]何樹根、高世鍊(2011)。都會區大範圍無支撐開挖案例。地工技術,(128),89-98。
    [4]何樹根、李銘欽(2020)。汐止臺灣科學園區無支撐開挖施工案例介紹。地工技術,(164),39-48。
    [5]林亦郎(2011)。地中壁對粘土層開挖變形影響之研究。博士論文,國立臺灣科技大學營建工程研究所,台北。
    [6]徐明志、黃心泉、張登貴、詹絢存、俞清瀚(2016)。二維分析程式在深開挖工程應用之探討~以PLAXIS程式為例。地工技術,(149),35-46。
    [7]徐明志、黃心泉、張盈智、吳宗翰、李銘欽(2020)。鄰捷運設施之加勁式連續壁無支撐開挖案例。地工技術,(164),49-60。
    [8]郭可侯(2020)。邊區逆打工法~中和環球購物中心案例介紹。地工技術,(164),33-38。
    [9]莊坤諺、林高禾、黃明慧、陳英森、曾惠斌(2022)。日字型邊區逆打工法於都會地區深開挖營建工程之應用。土木水利,49(4),62-70。
    [10]富國技術工程股份有限公司(2016)。新北市中和區板南段18等5筆地號基地土壤地質調查分析報告書。
    [11]富國技術工程股份有限公司(2016)。新北市中和區板南段18等地號基地基礎開挖對捷運影響之分析評估報告書。
    [12]鄧建剛(1985)。有限元素法於台北市支撐開挖工程之應用研究。碩士論文,國立臺灣工業技術學院工程技術研究所,台北。
    [13]鄧文賓(2013)。扶壁對深開挖壁體變形影響之研究。碩士論文,國立臺灣科技大學營建工程研究所,台北。
    [14]歐章煜(2021)。進階深開挖工程分析與設計(二版)。臺北市:科技圖書。
    [15]歐章煜、Lim, A. (2020)。無支撐開挖工法的發展及原理。地工技術,(164),7-14。
    [16]謝旭昇、石強、林婷媚(2003)。淺論雙排鋼軌樁無支撐工法。地工技術,(97),5-14。
    [17]Atkinson, J. H., and Sallfors, G. (1991). “Experimental determination of stress–strain–time characteristics in laboratory and in situ tests.” Proceedings of the 10th European Conference on Soil Mechanics and Foundation Engineering, Florence, 915-956.
    [18]Benz, T. (2007). “Small-strain stiffness of soils and its numerical consequences.” Ph.D dissertation, University Stuttgart, Germany.
    [19]Bryson, L.S., and Zapata-Medina, D.G. (2012). “Method for estimating system stiffness for excavation support walls.” Journal of Geotechnical and Geoenvironmental Engineering, 138, 1104-1115.
    [20]Brinkgreve, R.B.J., Kumarswamy, S., and Swolfs, W.M. (2017). “Plaxis Reference Manual.”
    [21]Clough, G.W., and O'Rourke, T.D. (1990). “Construction induced movements of in-situ walls.” Proceeding, Design and Performance of Earth Retaining Structure, ASCE, Special Conference, Ithaca, New Yark, 439-470.
    [22]Calvello, M., and Finno, R.J. (2004). “Selecting parameters to optimize in model calibration by inverse analysis.” Computer and Geotechnics, 31(5), 410-424.
    [23]Hardin, B.O., and Black, W.L. (1969). “Vibration modulus of normally consolidated clay.” Journal of the Soil Mechanics and Foundations Division, 94(2), 353–369.
    [24]Hsieh, P.G., and Ou, C.Y. (1998). “Shape of ground surface settlement profiles caused by excavation.” Canadian Geotechnical Journal, 35(6), 1004-1017.
    [25]Hsieh, P.G., Ou, C.Y., and Hsieh, W.H. (2016). “Efficiency of excavations with buttress walls in reducing the deflection of the diaphragm wall.” Acta Geotech, 11, 1087–1102.
    [26]Jaky, J. (1944). “The coefficient of earth pressure at rest.” Journal for Society of Hungarian Architects and Engineers, 8(22), 355–358.
    [27]Khoiri, M., and Ou, C.Y. (2013). “Evaluation of deformation parameter for deep excavation in sand through case histories.” Computers and Geotechnics, 47, 57–67.
    [28]Ladd, C.C., Foott, R., Ishihara, K., Schlosser, F., and Poulos, H.G. (1977). “Stress-deformation and strength characteristics.” Proceedings of the 9th international conference on soil mechanics and foundation engineering, Tokyo, 2, 421–494.
    [29]Lim, A., Ou, C.Y., and Hsieh, P.G. (2010). “Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions.” Journal of GeoEngineering, 5(1), 9-20.
    [30]Lim, A. (2018). “Investigation of integrated buttress and cross walls to control movements induced by excavation.” Ph.D Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [31]Lim, A., and Ou, C.Y. (2018). “Performance and three-dimensional analyses of a wide excavation in soft soil with strut-free retaining system.” International Journal of Geomechanics, 18, 1-18.
    [32]Lim, A., Ou, C.Y., and Hsieh, P.G. (2019). “An innovative earth retaining supported system for deep excavation.” Computer and Geotechnics, 114, 103-135.
    [33]Lim, A., Ou, C.Y., and Hsieh, P.G. (2020). “A novel strut-free retaining wall system for deep excavation in soft clay: numerical study.” Acta Geotech, 15, 1557–1576.
    [34]Masuda, T., Einstein, H.H., and Mitachi, T. (1994). “Prediction of lateral deflection of diaphragm wall in deep excavation.” Journal of Geotechnical Engineering, Proceedings of Japan Society of Civil Engineering, ASCE, 505, 19-29.
    [35]Ou, C.Y., Hsieh, P.G., and Chiou, D.C. (1993). “Characteristics of ground surface settlement during excavation.” Canadian Geotechnical Journal, 30(5), 758-767.
    [36]Ou, C.Y. (2006). “Deep Excavation: Theory and Practice.” Taylor and Francis, London.
    [37]Ou, C.Y., Lin, Y.L., and Hsieh, P.G. (2006). “Case record of an excavation with cross walls and buttress walls.” Journal of GeoEngineering, 1(2), 79-86.
    [38]Peck, R.B. (1969). “Deep excavation and tunneling in soft ground.” Proceddings of the 7th international conference on soil mechanics and foundation engineering, Mexico, 225-290.
    [39]Schanz, T., and Vermeer, P.A. (1998). “Special issue on Pre-failure deformation behavior of geo-materials.” Geotechnique 48, 383-387.
    [40]Schanz, T., Vermeer, P.A., and Bonnier, P.G. (1999). “Formulation and verification of the Hardening-Soil model.” Brinkgreve, R.B.J, Beyond 2000 in Computational Geotechnics, 281-290.
    [41]Santos, J. A.Dos, and Correia, A.G. (2001). “Reference threshold shear strain of soil. Its application to obtain an unique strain-dependent shear modulus curve for soil.” In Proceedings 15th InternationalConference on Soil Mechanics and Geotechnical Engineering(Istanbul).
    [42]Utama, R. (2021). “Lateral deflection mechanism of double-wall induced by the excavation.” MS Thesis, Department of Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan.
    [43]Woo, S.M., and Moh, Z.C. (1990). “Geotechnical characteristics of soils in the Taipei Basin.” Proceedings of the Tenth Southeast Asian Geotechnical Conference, Taipei, 3, 54–65.
    [44]Wichtmann, T., and Triantafyllidis, T. (2004). “Influence of a cyclic and dynamic loading history on dynamic properties of dry sand, Part i: cyclic and dynamic torsional prestraining.” Soil Dynamics and Earthquake Engineering, 24(2), 127-147.
    [45]Yeh, T.Y., Ou, C.Y., and Lim, A. (2022). “A case study of strut-free excavation retaining system.” Acta Geotechnica, 17, 5557–5571.

    QR CODE