簡易檢索 / 詳目顯示

研究生: 劉沂泓
Yi-Hung Liu
論文名稱: 深開挖拘限含水層袪水引致之壓密沉陷分析研究
A Study of Consolidation Settlement Caused by Dewatering in Confined Aquifer during Deep Excavation
指導教授: 歐章煜
Chang-Yu Ou
口試委員: 何樹根
Shu-Ken Ho
何嘉浚
Chia-Chun Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 155
中文關鍵詞: 拘限含水層深開挖壓密沉陷袪水工法洩降量抽水井
外文關鍵詞: Confined aquifer, Deep excavation, Consolidation, Dewatering, Drawdown, Pumping well
相關次數: 點閱:218下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 許多工區進行深開挖工程時,為避免拘限含水層水壓過高,需要針對含水層進行降水,而先前袪水工法之研究文獻主要以Modflow有限差分法(FDM)進行數值模擬,其對水理參數反算與袪水工序模擬與現地擬合良好,但缺乏高階土壤組成率,故無法模擬開挖所造成的地盤反應。本研究團隊利用PLAXIS 3D有限元素法分析(FEM)對深開挖工程進行許多案例及參數研究,研究結果顯示,除了能夠合理預測地盤反應及壁體變位,還能透過此數值分析進行反算分析,得到更適用於各工區之土壤參數。因此為了於深開挖工程中同時考量袪水行為之影響,本研究將探討分析軟體中袪水工法之趨勢性。以目前正在進行的「台北市北投區石牌市場改建案」為主要分析案例,簡化其土壤參數及使用現地水井配置進行研究。研究主軸主要會分成兩部分,第一個部分為驗證並探討袪水工法在數值分析之結果趨勢是否貼近於現地、水理參數反算結果可靠性,並利用反算分析擬合抽水試驗之水井抽水量及水壓變化量,其結果顯示無論是在水壓變化抑或是水井抽水量之推估相當擬合。第二部分則以第一部分為依據,並使用袪水之假設案例探討超額孔隙水壓變化趨勢,以確認分析方法之合理性及結果趨勢性。再以一開挖及袪水之假設案例進行完整開挖之分析,以模擬實際開挖及袪水造成之壁體變位、地表沉陷及開挖區內之隆起趨勢。針對最終研究結果,提出合理且適用於工程界之簡化分析方式。


    Many construction sites require dewatering in aquifers to avoid excessive water pressure during deep excavation projects. Earlier research on dewatering methods mainly used Modflow, which is finite difference method (FDM) for numerical simulations and has a certain degree of accuracy in back-analysis hydraulic parameters and simulation of dewatering processes. However, due to the lack of advanced soil constitutive models, it is not possible to simulate the ground reaction caused by excavation. The research team used PLAXIS 3D, the finite element method (FEM), to conducted the analysis of numerous case and parameter studies on deep excavation projects. The researches results showed that, in addition to accurately predicting ground reaction and wall deformation, PLAXIS 3D can also be used for back-analysis to obtain soil parameters that are more suitable for various construction sites. Therefore, to consider the effect of dewatering on deep excavation projects, this study will verify the rationality of dewatering methods by using PLAXIS 3D.This study takes the ongoing "Shihpai Market Redevelopment Project in Beitou District, Taipei City" as the main analysis case, simplifies the soil parameters, and uses the configuration of on-site water wells for research. The main research will be divided into two parts. The first part is to verify and explore whether the results of the dewatering method in the PLAXIS 3D are correct and whether the back-analysis of hydraulic parameters is reasonable. By using back-analysis, the pumping rate and water pressure change of the pumping test can be fitted.The second part is based on the first part to use a hypothetical dewatering case to explore and observe the trend of excess pore water pressure changes to confirm the rationality of the analysis method. Then, a hypothetical excavation case is used with the dewatering method to analyze ground reaction and simulate wall deformation, surface subsidence, and uplift trends within the excavation area. Based on the final research results, a simplified analysis method that is reasonable and applicable to the engineering field is proposed.

    摘要 I ABSTRACT II 致謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 符號索引 XIV 第一章 緒論 1 1.1 研究動機及目的 1 1.2 研究內容及架構 2 第二章 文獻回顧 4 2.1 水井理論 4 2.1.1水理參數 4 2.1.2 Theis不平衡方程式及Jacob修正不平方程式 7 2.1.3 Hantush修正Theis不平衡方程式 10 2.2 壓密理論 14 2.2.1 Terzaghi單向度壓密理論 14 2.3 開挖引致之地表沉陷特性 17 2.3.1地表沉陷型式 17 2.3.2沉陷影響範圍 20 2.3.3沉陷影響評估 22 2.3.4地表沉陷與地盤沉陷關係 23 2.4有限元素法之分析方式 25 2.4.1土壤硬化模式 25 2.4.2分析模式類型 28 2.4.3土壤與結構介面元素 29 2.5 小結 30 第三章 袪水行為與水理參數研究 31 3.1 工程概述 31 3.2假設案例與參數設定 41 3.3 三向度分析 48 3.3.1土壤參數 48 3.3.2 結構參數 53 3.3.3 水理參數 55 3.3.4 模型邊界 56 3.4 抽水井洩降解析解與數值解比較 62 3.4.1 Jacob不平衡方程式與數值解 62 3.4.2 Hantush 修正Jacob不平衡方程式與數值解 66 3.5 抽水洩降疊加法與數值解 66 3.5.1 線性疊加法 68 3.5.2 雙井數值解 69 3.6 探討求取水理參數之方法可靠性 73 3.7洩降行為應用及結果 80 第四章 袪水工法對超額孔隙水壓影響之研究 87 4.1數值分析模式介紹 87 4.2數值分析方法驗證 89 4.2.1 利用單向度壓密理論確認數值分析之壓密模式結果合理性 89 4.2.2 利用數值分析之壓密模式確認耦合模式結果合理性 94 4.3不同分析模式下超額孔隙水壓變化引致之地盤反應趨勢研究 102 4.3.1 開挖及袪水假設案例介紹(簡稱假設案例5) 102 4.3.2 耦合分析結果 107 4.3.2 塑性分析加上壓密分析結果 112 4.3.3 壓密分析結果 119 4.3.4 袪水引致之地表沉陷角變量 122 第五章 結論與建議 126 5.1結論 126 5.2建議 127 參考文獻 128

    1. 陳世新(2010),「捷運新莊線於景美礫石層抽水洩降行為研究」,博士學位論文,國立台灣科技大學,營建工程系。
    2. 高世鍊(2014),「現地抽水試驗漫談-規劃、執行、分析及配井設計」,大地技師期刊,第8期,第24-37頁。
    3. 曾為恭(2007),「捷運台北橋站抽水洩降行為及模擬之研究」,碩士學位論文,國立臺安科技大學,營建工程系。
    4. 歐章煜(2021),「進階深開挖工程分析與設計」,科技圖書。
    5. 劉敏清(2023),「逆打工程深開挖之變形預測及回饋分析」,碩士學位論文,國立台灣科技大學,營建工程研究所。
    6. ACI Committee 318. (1995). “Building code requirements for structural concrete (ACI319-95) and commentary(ACI318E-95).
    7. Bjerrum, L. (1963). “Allowable settlement of structures.” Proceedings of the 3rd European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, Germany, Vol. 2, 135-137.
    8. Brinkgreve, R. B. J., Kumarswamy, S., Swolfs, W. M., Fonseca, F., Monoj, N.R., Zampich, L., & Zalamea, N. (2023).”PLAXIS Material Models Manual.” 274.
    9. Calvello, M. and Finno, R. (2004). “Selecting parameters to optimize in model calibration by inverse analysis,” Computer and Geotechnics, Vol. 31, 410-424.
    10. Clough, G.W., and O’Rourke, T. D. (1990). “Construction Induced Movements of In-situ Walls,” Proceeding of Design and Performance of Earth Retaining Structure, ASCE, Special Publication, No. 25, 439-470.
    11. Finno, R. J., and Harahap, I.S. (1991). “Analysis of braced excavations with coupled finite element formulations,” ASCE, Vol.177, No.10.
    12. Hantush, M.S. (1961a). “Drawdown Around a Partial Penetrating Well,” Journal of the Hydraulic Division, ASCE, Vol. 87, N0.4, 83-89.
    13. Hantush, M.S. (1961b). “Aquifer Tests on Partially Penetration Wells,” Journal of the Hydraulic Division, ASCE, Vol. 87, N0.4, 83-89.
    14. Heath, R. C. (1983). “Basic ground-water hydrology, Water Supply Paper 2220”, U.S. Geological Survey.
    15. Hsieh, P. G., Ou, C.Y. (1998). “Shape of ground surface settlement profiles caused by excavation,” Canadian Geotechnical Journal, Vol.11, 177-189.
    16. Jacob, C.E. (1940). “On the Flow of Water in an Elastic Artesian Aquifer,” Transactions of the American Geophysical Union, Vol. 2, 574-586.
    17. Jaky, J. (1944). “The coefficient of earth pressure at rest,” Journal of the Society of Hungarian Architects and Engineers (in Hungarian), Vol.8, N0.22,355-358.
    18. Karen, J.D., and Jonathon D.I. (1991). “Aquifer Testing:Design and Analysis of Pumping and Slug Tests,” Lewis Publishers, INC.
    19. Khoiri, M., and Ou, C.Y. (2013). “Evaluation of deformation parameter for deep excavation in sand through case histories.” In Computer and Geotechnics, Vol.47, 57-67.
    20. Kruseman, G.P. and de Ridder, N.A. (1991). “Analysis and evaluation of pumping test data,” International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands.
    21. Lim, A., Ou, C.Y., and Hsieh, P. G. (2010). “Evaluation of clay constitutive models for analysis of deep excavation under undrained conditions.” 5(1), 1-12.
    22. Ou, C. Y., Liao, J.T., and Lin, H.D. (1998). “Performance of Diaphragm Wall Constructed Using Top-Down Method,” ASCE, Vol.124, No. 9.
    23. Ou, C.Y., Liao, J. T., and Cheng, W. L. (2000). “Building Response and Ground Movements Induce by a Deep excavation,” Geotechnique 50, No.3, 209-220.
    24. Schanz, T., Vermeer, P.A. (1998). “Pre-failure deformation behaviour of geomaterials:On the stiffness of sands.
    25. Schanz, T., Vermeer, P.A., and Bonnoer, P. G. (1999). “The hardening soil model:formulation and verification,” In R. B. J. Brinkgreve, Beyond 2000 in Computational Geothechnics, Balkema, Roterdam.
    26. Sichart W. and Kyrieleis, W. (1930). “Grundwasser Absekungen bei Fundierungsarbeiten, Belin.
    27. Skempton, A. W., & MacDonald, D. H. (1956). “The allowable settlements of buildings.” Proceedings of the Institution of Civil Engineers, 5(6), 727-768.
    28. Syiril, E.H. (2020). “A Study of Tunnel movent and Restricted Zone of an Existing Tunnel Adjacent to Excavations”,博士學位論文,國立台灣科技大學,營建工程系。
    29. Terzaghi, K., and O. K. Frohlich. (1936). “Theorie der Setzung von Tonschichten (Theory of settlement of clay layers).” Leipzig, Deutike,166.
    30. Theis, C.V. (1935). “The Relationship Between the Lowering of the Piezometric Surface and the Rate and Duration of Discharge of a Well Using Groundwater Storage,” Transactions of the American Geophysical Union, Vol. 16, 519-524.

    QR CODE