簡易檢索 / 詳目顯示

研究生: 陳昱升
Yu-Sheng Chen
論文名稱: 寬頻電壓控制振盪器與除三注入鎖定除頻器
Wideband Voltage-Controlled Oscillator and Divide-by-Three Injection-Locked Frequency Divider
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
馮武雄
Wu-Shiung Feng
黃進芳
Jhin-Fang Huang
楊賜麟
Su-Lin Yang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 96
中文關鍵詞: 寬可調範圍低電壓電壓控制振盪器除三注入鎖定除頻器線性混波器寬鎖定範圍互補式金氧半導體
外文關鍵詞: wide tuning range, low-voltage voltage-controlled oscillator, divide-by-three injection-locked frequency divid, linear mixer, wide locking range, CMOS
相關次數: 點閱:240下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   電壓控制振盪器與除頻器為頻率合成器中之主要電路區塊,此兩者的操作頻率範圍決定頻率合成器之頻寬,因此在寬頻應用中需要寬頻電壓控制振盪器與除頻器。一個好的振盪器必須具有低相位雜訊之特性,以避免相鄰頻帶雜訊的混波轉換。注入鎖定除頻器經常被用作高頻除頻器,必須具有寬鎖定範圍之特性。
      本論文提出一個電壓控制振盪器與一個注入鎖定除頻器,前者為使用聯電 90 奈米製程、具有33 %可調範圍之電壓控制振盪器,後者為使用台積電0.13微米製程、具有16.5 %鎖定範圍與35 %操作範圍之除三注入鎖定除頻器。以上兩者皆具有低消耗功率特性,所消耗之直流功率分別為1.32 mW與2.05 mW。
      首先,我們提出一個寬可調範圍電壓控制振盪器,其使用堆疊式電感來解決標準數位製程中缺少厚金屬層之問題,降低振盪器的相位雜訊。同時,採用低臨界電壓電晶體與最佳化可調比的可變電容,獲得寬可調範圍與低製程變異。此電路之供應電壓為0.4 V,頻率為9.15 GHz至12.77 GHz,範圍為3.62 GHz。而在輸出頻率為10.13 GHz時,1 MHz偏移頻率下相位雜訊為 -108.78 dBc/Hz,figure of merit(FOM)為 -187.68 dBc/Hz,figure of merit with tuning range(FOMT)則為 -198.06 dBc/Hz。
      其次提出的是一個寬鎖定範圍除三注入鎖定除頻器,其輸入電晶體作為線性混波電晶體,並且由電路本身獲得兩倍振盪頻率訊號來與輸入混波,改善傳統架構中有效次諧波訊號較小之問題,得到較寬的注入鎖定範圍。此電路供應電壓為1.3 V,消耗功率為2.05 mW。注入鎖定範圍在Vtune為1.3 V時由14.5 GHz至17.1 GHz,而調整Vtune由0 V至1.3 V可得到由12.0 GHz至17.1 GHz之工作範圍,鎖定範圍與工作範圍之百分比分別為16.5 %與35.1 %。


    The voltage-controlled oscillator (VCO) and the frequency divider are main blocks of a frequency synthesizer’s. Bandwidth of a frequency synthesizer is dominated by operating frequency ranges of these two blocks, so we require wideband VCOs and frequency dividers for wideband applications. A good VCO must exhibit low-phase-noise characteristic to prevent noise in adjacent frequencies from being down-converted or up-converted. We generally apply an injection-locked frequency divider (ILFD) to perform frequency division at high frequency. The wider the locking range is, the better ILFD.
    We present a voltage-controlled oscillator and an injection-locked frequency divider in this thesis. The former is a VCO with 33 % frequency tuning range and is fabricated in UMC 90 nm process. The latter is a divide-by-three ILFD with 16.5 % locking range and 35 % operation range. This ILFD is implemented in TSMC 0.13 process. Both of the proposed circuits are low-power as the power consumption of the VCO and the ILFD are 1.32 mW and 2.05 mW respectively.
    At first, we present a wide-tuning-range VCO, which adopts stacked inductors to straighten out the absence of ultra-thick top metal in the standard digital process. Thus, the phase noise is lowered. Meanwhile, transistors with low threshold voltage and varactors with optimized tuning ratio are used to acquire a wide tuning range and low process variation. At the supply voltage 0.4 V, the tuning range is 3.62 GHz, ranging from 9.15 GHz to 12.77 GHz. Phase noise at 1 MHz offset frequency from the carrier frequency 10.13 GHz is -108.78 dBc/Hz. Figure of merit (FOM) and the figure of merit with tuning range (FOMT) are -187.68 dBc/Hz and -198.06 dBc/Hz respectively.
    Then, a wide-locking-range divide-by-three ILFD is presented. Its input transistors act as linearly mixing transistors. A signal, of which the frequency is twice that of the free-running signal, is extracted by the circuit itself. This signal is mixed into the input of the ILFD to solve the problem that the subharmonic is too weak in conventional structure. This results in a wider locking range. At the supply voltage of 1.3 V, the power consumption is 2.05 mW. At Vtune of 1.3 V, the locking range is from 14.5 GHz to 17.1 GHz. The operation range is from 12.0 GHz to 17.1 GHz, while Vtune varies from 0 V to 1.3 V. Percentage of the locking range and the operation range are 16.5 % and 35.1 % respectively.

    中文摘要 I Abstract II 致謝 IV Table of Contents V List of Figures VII List of Tables IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 3 Chapter 2 Principles and Design Considerations of Voltage-Controlled Oscillators and Injection-Locked Frequency Dividers 5 2.1 Fundamental Oscillator Models 5 Feedback Oscillators 5 Negative-Resistance Oscillators 8 2.2 Review of Oscillator Topologies 11 Resonator-Less Oscillators 12 LC Oscillators 15 Voltage-Controlled Oscillators 18 2.3 Parameters of a Voltage-Controlled Oscillator 19 Center Frequency 19 Power Consumption 20 Phase Noise 20 Frequency Tuning Range 20 Output Signal Power 21 2.4 Phase Noise in Oscillators 21 Definition of Phase Noise 21 Linear Time Invariant (LTI) Model 23 Linear Time Variant (LTV) Model 26 Phase Noise in Communications 29 Models of Phase Noise 31 2.5 Resistors, Inductors and Capacitors in Semiconductor Technologies 32 Resistors 32 Inductors 33 Transformers 41 Capacitors 45 Varactors 47 2.6 Principle of Injection-Locked Frequency Dividers 53 Chapter 3 A 33% Tuning Range Voltage-Controlled Oscillator Robust to Environmental Variation 58 3.1 Introduction 58 3.2 Circuit Design 59 3.3 Measurement Results 62 3.4 Conclusion 66 Chapter 4 A Wide-Locking Range ÷3 Injection-Locked Frequency Divider Using Linear Mixer 67 4.1 Introduction 67 4.2 Circuit Design 68 4.3 Measurement Results 72 4.4 Conclusion 76 Chapter 5 Conclusion 77 References 79

    [1] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press 1998.
    [2] B. Razavi, RF Microelectronics, Prentice Hall PTR 1998.
    [3] M. Odyniec, RF and Microwave Oscillator Design, Artech House Publishers 2002.
    [4] A. Hajimiri and T. H. Lee, The Design of Low Noise Oscillators, Springer 1999.
    [5] Andrei Grebennikov, RF and Microwave Transistor Oscillator Design, Wiley 2007.
    [6] Marc Tiebout, Low Power VCO Design in CMOS, Springer 2009.
    [7] J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003.
    [8] G. Gonzales, Microwave Transistor Amplifiers: Analysis and Design, Prentice Hall 1996.
    [9] A. M. Niknejad and R. G. Meyer, Design, Simulation and Applications of Inductors and Transformers for Si RF ICs, Springer 2000.
    [10] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
    [11] D. B. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, no. 2, pp. 329–330, Feb. 1966.
    [12] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000.
    [13] A. Hajimiri and T. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [14] T. H. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuit, vol. 35, no. 3, pp. 326–336, Mar. 2000.
    [15] A. Hajimiri and T. H. Lee, “Design Issues in CMOS differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999.
    [16] E. Hegazi, H. Sjöland, and A. A. Abidi, “A filtering technique to lower LC oscillator phase noise,” IEEE J. Solid-State Circuits, vol. 36, no. 12, pp. 1921–1930, Dec. 2001.
    [17] R. Adler, “A study of locking phenomena in oscillators,” in Proceedings of the IRE, vol. 34, no. 6, pp. 351–357, June 1946.
    [18] K. Kurokawa, “Injection locking of microwave solid-state oscillators,” in Proceedings of the IEEE, vol. 61, no. 10, pp. 1386–1410, Oct. 1973.
    [19] M. E. Heidari and A. A. Abidi, “Behavioral models of frequency pulling in oscillators,” in Proc. IEEE International Behavioral Modeling and Simulation Workshop, 2007, pp. 100–104, Sept. 2007.
    [20] B. Razavi, “A study of injection locking and pulling in oscillators,” IEEE J. Solid-State Circuit, vol. 39, no. 9, pp. 1415–1424, Sept. 2004.
    [21] X. Lai and J. Roychowdhury, “Capturing oscillator injection locking via nonlinear phase-domain macromodels,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 9, pp. 2251–2261, Sep. 2004.
    [22] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. Solid-State Circuit, vol. 35, no. 6, pp. 905–910, Jun. 2000.
    [23] J. Maget, M. Tiebout, and R. Kraus, “MOS varactors with n- and p-type gates and their influence on an LC-VCO in digital CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1139–1147, Jul. 2003.
    [24] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, no. 2, pp. 101–109, Jun 1974.
    [25] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368–1382, Sept. 2000.
    [26] E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, pp. 661–664, June 1989.
    [27] C. Plett, G. Tarr, and L. Wagner, “A low-voltage 40-GHz complementary VCO with 15% frequency tuning range in SOI CMOS technology,” IEEE J. Solid-State Circuit, vol. 39,no. 5, pp. 841–846, May 2004.
    [28] A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS oscillators with switched tuning,” in Proc. IEEE Custom Integr. Circuits Conf., Sep.1998, pp. 555–558.
    [29] A. D. Berny, A. M. Niknejad, and R. G. Meyer, “A 1.8-GHz LC VCO with 1.3-GHz tuning range and digital amplitude calibration,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 909–917, Apr. 2005.
    [30] B. Sadhu, U. Omole, and R. Harjani, “Modeling and synthesis of wideband switched-resonators for VCOs,” 2008 CICC, pp. 225–228.
    [31] M. Demirkan, S. P. Bruss, and R. R. Spencer, “Design of wide tuningrange CMOS VCOs using switched coupled-inductors,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1156–1163, May 2008.
    [32] H. M. Wang, “A 50 GHz VCO in 0.25-μm CMOS,” in IEEE Int. Solid-State Circuit Conf., 2001, pp. 372–373.
    [33] O. H. Murphy, K. G. McCarthy, C. J. P. Delabie, A. C. Murphy, and P. J. Murphy, “Design of multiple-metal stacked inductors incorporating an extended physical model,” IEEE Trans. Microwave Theory and Tech., vol. 53, no. 6, pp. 2063–2072, June 2005.
    [34] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, pp. 896–909, June 2001.
    [35] J. L. González, F. Badets, B. Martineau, and D. Belot, “A 56-GHz LC-Tank VCO with 17% tuning range in 65-nm bulk CMOS for wireless HDMI,” IEEE Trans. Microwave Theory and Tech., vol. 58, no. 5, pp. 1359–1365, May 2010.
    [36] W.-C. Cheng, C.-F. Chan, K.-P. Pun, and C.-S. Choy, “0.8 V GPS band CMOS VCO with 29% tuning range,” in IEEE Asia Pacific Conf. Circuits and Systems, 2006, pp. 522–525.
    [37] J. Kim, J.-O. Plouchart, N. Zamdmer, R. Trzcinski, K.Wu, B. J. Gross, and M. Kim, “A 44 GHz differentially tuned VCO with 4 GHz tuning range in 0.12 μm SOI CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2005, pp. 416–417.
    [38] B. Min and H. Jeong, “5-GHz CMOS LC VCOs with wide tuning ranges,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 5, pp. 336–338, May 2005.
    [39] S.-L. Jang, Y.-J. Song, and C.-C. Liu, “A differential Clapp VCO in 0.13 μm CMOS Technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 6, pp. 404–406, June, 2009.
    [40] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp.27–29.
    [41] S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-F. Huang, “Divide-by-3 LC injection locked frequency divider implemented with 3D inductors,” IEICE Trans. Electron., vol. E91-C, no. 6, pp. 956–962, Jun. 2008.
    [42] X. P. Yu, H. M. Cheema, R. Mahmoudi, A. v. Roermund, and X. L. Yan, “A 3 mW 54.6 GHz divide-by-3 injection locked frequency divider with resistive harmonic enhancement,” IEEE Microw. Wireless Compon. Lett., pp.575–577, Sept. 2009.
    [43] S.-L. Jang, C.-W. Tai, and C.-F. Lee, “Divide-by-3 injection locked frequency divider implemented with active inductor,” Microwave and Optical Technology Lett., vol. 50, no. 6, pp. 1682–1685, June, 2008.
    [44] S.-L. Jang, C.-Y. Lin, and C.-F. Lee, “A low voltage 0.35 μm CMOS frequency divider with the body injection technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp.470–472, July 2008.
    [45] S.-L. Jang, C.-C. Liu, and J.-F. Huang, ” Divide-by-3 injection-locked frequency divider using two linear mixers,” IEICE Trans. on Electron., Vol.E93-C,No.1,pp. 136–139, Jan. 2010.
    [46] P. W. Lai, L. Dobos, and S. Long, “A 2.4 GHz SiGe low phase-noise VCO using on chip tapped inductor,” in Proc. IEEE ESSIRC, 2003, pp. 505–508.
    [47] S.-L. Jang, C.-C. Liu and C.-W. Hsue, “LC-tank injection locked frequency divider with variable division ratio,” Microwave and Optical Tech. Lett., vol. 50, no. 12, pp. 3232–3236, Dec. 2008.
    [48] T.-N. Luo, S.-Y. Bai, and Y.-J. E. Chen, “A 60-GHz 0.13-μm CMOS divide-by-three frequency divider,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 11, pp. 2409–2415, Nov. 2008.
    [49] S.-L. Jang, J.-C. Luo, C.-W. Chang, C.-F. Lee and J.-F. Huang, “LC-tank Colpitts injection-locked frequency divider with even and odd modulo,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 113–115, Feb. 2009.
    [50] S.-L. Jang, R.-K. Yang, C.-W. Chang and M.-H. Juang, “Multi-modulus LC injection-locked frequency dividers using single-ended injection,” IEEE Microw. Wireless Compon. Lett., pp. 311–313, May, 2009.

    QR CODE