簡易檢索 / 詳目顯示

研究生: 劉韋志
Wei-chih Liu
論文名稱: 新式互補式金氧半壓控振盪器與環型四相位電壓控制振盪器之研究
Design of Novel CMOS Voltage Controlled Oscillators and Ring Quadrature Voltage Controlled Oscillators
指導教授: 黃進芳
Jhin-Fang Huang
張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
馮武雄
Wu-Shiung Feng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 101
中文關鍵詞: 電壓控制振盪器四相位電壓控制振盪器
外文關鍵詞: VCO, QVCO
相關次數: 點閱:223下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電壓控振盪器與除頻器是鎖相迴路電路中,重要的電路之一。鎖相迴路電路大部分的功率消耗都消耗在壓控振盪器與除頻器中,而壓控振盪器被要求一低相位雜訊,用以避免相鄰雜訊訊號經由混波轉換的干擾,經由壓控振盪器的優質指數來判斷振盪器性能的優劣;故本論文呈現一個新式電壓控制振盪器以及一種新型四相位電壓中振盪器。
    首先,本論文呈現一個優質指數佳的LC-tank 差動輸出壓控振盪器,在電源 2V時其操作頻率為6.417GHz 採用互補式考畢子交錯耦合PMOS電晶體,以實現更快的啟動震盪,其功率消耗為6.16 mW 且可調變範圍從 6.16 GHz至 6.5 GHz為 5.3 %,其輸出之相位雜訊在距離載波頻率1MHz 處所量測之結果可達-121.12dBc/Hz,其優質指數FOM為-189.37 dBc/Hz。
    其次,另一個優質指數佳的LC-tank為差動輸出壓控振盪器,在電源 1.15V時其操作頻率為18GHz,其電路是由cross-coupled的Colpitts負電阻分流平行調變 LC振盪器,其尾端自我偏壓pMOS是做為low phase noise設計。其功率消耗為 8.13 mW 且可調變範圍從 18 GHz至 20.25 GHz為 11.76%,其輸出之相位雜訊在距離載波頻率1MHz 處所量測之結果可達-117.34dBc/Hz,其優質指數FOM為-193.24 dBc/Hz。
    最後,一個新式四相位壓控振盪器亦呈現,此電路提出了一種新型的四相位壓控振盪器,它由兩個 n-core交叉耦合壓控振盪器(VCO)與底部串聯的pMOSFET LC環振盪器。在電源 1.24V時其操作頻率為9.25 GHz,功率消耗為9.47 mW 且可調變範圍從9.01 GHz至9.34 GHz為3.6%,其輸出之相位雜訊在距離載波頻率1 MHz 處所量測之結果可達-119.54 dBc/Hz,其優質指數FOM為-189.1 dBc/Hz。


    The important blocks in the phase locked loop (PLL) are the voltage controlled oscillator (VCO) and the divider circuit. The most power consumption of PLL consumes in VCO and divider. The VCO is requested a low phase-noise to avoid corrupting the mixer-converted signal by close interfering tones for VCO circuit, and the Figure of Merit (FOM) of VCO can be determined by it’s performance.

    First, this thesis describes a differential cross-coupled complementary Colpitts CMOS voltage-controlled oscillator (VCO). Adopts a pair of cross-coupled PMOS transistors to achieve faster start-up oscillation. The VCO operates from 6.16 GHz to 6.5 GHz with 5.3 % tuning range. The measured phase noise at 1 MHz offset is -121.12 dBc/Hz at 6.417 GHz. The power consumption of the VCO core is 6.16 mW. The figure of merit is -189.37 dBc/Hz.

    Second, this thesis describes a new fully integrated CMOS voltage-controlled oscillator (VCO) is presented. The VCO is composed of cross-coupled Colpitts negative resistance cell in shunt with a parallel-tunerd LC resonator and the negative resistance cell uses bias-free pMOS tail for low-phase noise design. With the supply voltage of 1.15 V, the VCO is tunable from 18 GHz to 20.25 GHz. while the tuning voltage varies from 0 V to 1.4 V. The phase noise of the VCO operating at 18 GHz is -117.34 dBc/Hz at 1 MHz offset, while the VCO draws 7.07 mA and uses 8.13 mW consumption. The figure of merit is -193.24 dBc/Hz.

    Finally, a novel quadrature VCO (QVCO) is showed, This design presents a new quadrature voltage-controlled oscillator (QVCO), which consists of two n-core cross-coupled voltage-controlled oscillators (VCOs) with a bottom-series pMOSFET LC ring. At the supply voltage of 1.24 V, the output phase noise of the QVCO is -119.54 dBc/Hz at 1MHz offset frequency from the carrier frequency of 9.25 GHz, and the figure of merit (FOM) is -189.1 dBc/Hz. The power consumption of QVCO core is 9.47 mW. The free-running frequency of the QVCO is tunable from 9.01 GHz to 9.34 GHz as the tuning voltage is varied from 0.0 V to 1.1 V.

    中文摘要 I Abstract III 致 謝 V Table of Contents VI List of Figures VIII List of Tables X Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 4 Chapter 2 Overview of the Voltage-Controlled Oscillators 5 2.1 Introduction 5 2.2 Basic Theory of Oscillators 6 2.3 Classification of Oscillators 9 2.3.1 LC-Tank Oscillator 10 2.3.2 Ring Oscillator 14 2.4 Inductor and Varactor Design in VCO 16 2.4.1 Inductor Design 16 2.4.2 Transformer 25 2.4.3 Capacitor 29 2.4.4 Varactor Design 31 2.5 Important Parameters of VCO 36 2.5.1 Phase Noise 36 2.5.2 Tuning Range 39 2.5.3 Figure of Merit (FOM) 40 2.5.4 RF Frequency [Hz]: 41 2.5.5 RF Power [dBm]: 41 2.5.6 Tuning Sensitivity [Hz/V]: 41 2.5.7 Power Dissipation [mW]: 42 2.5.8 Harmonic/spurious [dBc]: 42 2.5.9 Quality Factor: 42 2.6 Quadrature VCO Design 45 Chapter 3 A 0.35 μm CMOS Cross-Coupled Complementary Colpitts Voltage Controlled Oscillator 51 3.1 Introduction 51 3.2 Circuit Design 53 3.3 Measurement Results 57 Chapter 4 A CMOS Colpitts Voltage-Controlled Oscillator With Bias-Free pMOSFET Tails 61 4.1 Introduction 61 4.2 Circuit Design 64 4.3 Measurement Results 67 Chapter 5 A 0.18 μm CMOS Quadrature VCO Coupled by a Bottom-Series pMOSFET Ring 71 5.1 Introduction 71 5.2 Circuit Design 73 5.3 Measurement Results 76 Chapter 6 Conclusion 80 References 82

    [1] B. Razavi, RF Microelectronics, Upper Saddle River, NJ: Prentice Hall, 1998.
    [2] N. M. Nguyen, and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuits, vol. 27, no. 5, pp. 810−820, May 1992.
    [3] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [4] T. H. Lee, The design of CMOS radio frequency integrated circuits, Cambridge University Press 1998.
    [5] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, no. 2, pp. 101−109, Jun. 1974.
    [6] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736−744, May 1997.
    [7] P. Yue, C. Ryu, J. Lau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” International Electron Devices Meeting Technical Digest, pp. 155−158, Dec. 1996.
    [8] J. R. Long, “Monolithic transformers for silicon RF IC design," IEEE J.Solid-State Circuits, vol. 35, pp. 1368-1382, 2000.
    [9] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628,2001.
    [10] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE J. Solid-State Circuits, vol. 35, no. 6, pp. 905−910, Jun. 2000.
    [11] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, 2000, pp. 569−572.
    [12] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326−336, Mar. 2000.
    [13] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998.
    [14] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [15] D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
    [16] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
    [17] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [18] Peter Kinget, “A Fully Integrated 2.7V 0.35 μm CMOS VCO for 5GHz Wireless Applications,” in Proc. ISSCC, 1998, pp. 226-227.
    [19] C. Yul Cha and S. Lee, “A complementary Colpitts oscillator based on 0.35 μm CMOS technology,” Solid State Circuits conference, Proceedings of the 29th European, Pages: 691–694, 16-18 Sept. 2003
    [20] S.-L. Jang, C.-F. Lee, and C.-W. Chang , " A K-band differential colpitts cross-coupled VCO in 0.13 μm CMOS," Solid-State Electron., vol. 53, No. 9, pp. 931-934, Sept., 2009.
    [21] Y.-B. Choi, T.-H. Teo, and H. Liao, “Symmetrical spiral inductor design and optimization for VCO design in 0.35 μm CMOS technology,” in Proc. IEEE Int. Conf. ASIC, vol. 2, 2003, pp. 1066–1069.
    [22] T. P. Liu, “A 6.5-GHz monolithic CMOS voltage-controlled oscillator,” in Proc. ISSCC, 1999, pp. 404-405.
    [23] C. Lam and B. Razavi, “A 2.6-GHz/5.2-GHz CMOS voltage-controlled oscillator,” in Proc. ISSCC, 1999, pp. 402-403.
    [24] C.-Y. Cha and S.-G. Lee “A complementary Colpitts oscillator in CMOS technology,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 3, pp. 881 - 887, Mar. 2005.
    [25] T. N. Nguyen and J.-W. Lee, “Low phase noise differential vackar VCO in 0.18 μm CMOS technology,” IEEE Microwave Wireless Compon. Lett., vol. 20, no 2, pp. 88-90, Feb. 2010.
    [26] J. Park, J. Park, Y. Choi, K. Sim, and D. Baek, “A fully-differential complementary Hartley VCO in 0.18 μm CMOS technology,” IEEE Microwave Wireless Compon. Lett., vol. 20, no 2, pp. 91-93, Feb. 2010.
    [27] X. Li, S. Shekhar, and D. J. Allstot, “Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609–2619, Dec. 2005.
    [28] J.-A. Hou and Y.-H. Wang, “A 5 GHz differential Colpitts CMOS VCO using the bottom PMOS cross-coupled current source,” IEEE Microw. Wireless Compon. Lett.,vol. 19, no. 6, pp. 401–403, Nov. 2009.
    [29] S.-L. Jang, C.-F. Lee, and C.-W. Chang , " A K-band differential Colpitts cross-coupled VCO in 0.13 μm CMOS," Solid-State Electron., vol. 53, No. 9, pp. 931-934, Sept., 2009.
    [30] H.-H. Hsieh, and L.-H. Lu, “A low-phase-noise K-band CMOS VCO, “ IEEE Microwave Wireless Compon. Lett., vol. 16, no. 10, pp. 552-554, Oct. 2006.
    [31] C.-C. Li, T.-P. Wang, C.-C. Kuo, M.-C. Chuang, and H. Wang, “A 21 GHz complementary transformer coupled CMOS VCO,” IEEE Microwave Wireless Compon. Lett., vol. 18, no. 4, pp. 278-2804, April 2008.
    [32] G. Le Grand de Mercey, A 18GHz rotary travelling wave VCO in CMOS with I/Q outputs, in Proc. European Solid-State Circuits Conf, pp: 489-492, 2003.
    [33] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in IEEE ISSCC Dig. Tech. Papers, pp. 392-393, Feb. 1996.
    [34] P. Andreani and X. Wang, “On the phase-noise and phase-error performances of multiphase LC CMOS VCOs,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1883–1893, Nov. 2004.
    [35] J.-H. Chang and C.-K. Kim, “A symmetrical 6-GHz fully integrated cascode coupling CMOS LC quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 670-672, Oct. 2005.
    [36] J. Tang, P. Ven, D. Kasperkovitz, and A. Roermund, “Analysis and design of an optimally coupled 5-GHz quadrature LC oscillator,” IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 657-661, May 2002.
    [37] S.-L. Jang,T.-S. Lee, C.-W. Hsue and C.-C. Liu, ” A low voltage quadrature VCO implemented with series frequency doublers,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.819-821, Dec. 2009.
    [38] S.-L. Jang, T.-S. Lee, C.-W. Hsue and C.-W. Chang, ” A low voltage and low power bottom-series coupled quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 11, 722-724, Nov., 2009.
    [39] H.-R. Kim, C.-Y. Cha, S.-M. Oh, M.-S. Yang, and S.-G. Lee, “A very low-power quadrature VCO with back-gate coupling,” IEEE J. Solid-State Circuits, vol.39, no.6, pp.952-955, Jun. 2004.
    [40] S. L. J. Gierkink, S. Levantino, R. C. Frye, C. Samori, and V. Boccuzzi, “A low-phase-noise 5-GHz CMOS quadrature VCO using superharmonic coupling,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1148-1154, Jul. 2003.
    [41] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, and M.-H. Juang, “A low-voltage quadrature CMOS VCO based on voltage-voltage feedback topology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no.12, pp. 696-698, Dec. 2006.
    [42] A. Mazzanti, P. Uggetti, and F. Svelto, “Analysis and design of injection- locked LC dividers for quadrature generation,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1425-1433, Sep. 2004.
    [43] J.-H. Chang and C.-K. Kim, “A symmetrical 6-GHz fully integrated cascode coupling CMOS LC Quadrature VCO,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 670-672, Oct. 2005.
    [44] S.-L. Jang, C.-C. Liu, S.-H. Huang, and M.-H. Juang, ” quadrature cross-coupled VCO implemented with body injection-locked frequency dividers ,” Microwave and Optical Technology Lett., vol. 51, No.8, pp. 1918-1921, 2009.

    無法下載圖示 全文公開日期 2016/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE