簡易檢索 / 詳目顯示

研究生: 吳志宏
Zhi-hong Wu
論文名稱: 熱載子效應與雙頻帶注入鎖定除頻器之設計
Hot-Carrier Effects and Design of Dual Band Injection-Locked Frequency Divider
指導教授: 徐敬文
Ching-wen Hsue
張勝良
Sheng-lyang Jang
口試委員: 黃進芳
Jhin-fang Huang
馮武雄
Wu-shiung Feng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 99
中文關鍵詞: 熱載子雙頻帶注入鎖定除頻器電壓控制振盪器
外文關鍵詞: hot carrier, dual-band, injection-locked frequency divider, voltage-controlled oscillator
相關次數: 點閱:235下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無線通訊系統中,頻率合成器是用來做訊號頻率的升降之用。在頻率合成器電路裡,壓控振盪器與除頻器是重要的核心電路之ㄧ。對壓控振盪器而言,必須提供低相位雜訊的輸出,以避免相鄰雜訊訊號經由混波轉換產生干擾。而振盪器的輸出則經由除頻器來達成降頻的工作,因此,除頻器需具有高頻操作、寬的操作頻寬及低功率消耗。
    首先,本論文呈現一個雙頻帶注入鎖定除頻器,完成於台積電零點一八微米製程,此供應電壓0.8V,功率消耗為9.5mW。電路的高頻的可調範圍為3.571至3.974 GHz與低頻的可調範圍為2.278至2.349 GHz。在注入0dBm功率時,低頻除二除頻鎖定範圍從2.87 GHz至5.2 GHz,其百分比為57.7%。高頻除二除頻鎖定範圍從7.1GHz至9.2 GHz,其百分比為25.7%。而高頻除四除頻鎖定操作範圍從13.88GHz至15.94 GHz。晶片面積為0.996*0.868 mm2。
    其次,我們呈現一個雙頻帶注入鎖定除頻器上的熱載子效應,完成於台積電零點一八微米製程,此電路的加壓電壓為2.3 V,其量測時間為5個小時。量測結果顯示,隨加壓時間的增加,高頻帶與低頻帶的鎖定範圍會變小,導致電路失去功能。
    最後,呈現一個電容開關雙頻帶壓控振盪器,完成於台積電零點一八微米矽鍺製程,此電路供應電壓為0.6 V,功率消耗為4.68 mW。電路的高頻的可調範圍為5.46至5.68 GHz與低頻的可調範圍為2.73至3.44 GHz。高頻帶與低頻帶的FOM分別為-188.4 dBc/Hz及-186.6 dBc/Hz,晶片面積為1 × 0.861 mm2。


    In wireless communication system, frequency synthesizers are used to implement the frequency up/down conversion of signal. In a frequency synthesizer, voltage-controlled oscillator (VCO) and divider are the key blocks. For VCOs, low phase-noise output is required to avoid corrupting the mixer-converted signal caused by close interfering tones. The output of the VCO is divided down by the frequency divider which requires operating at high frequencies, wide operating range and lower power consumption.
    First, this thesis presents a dual-band CMOS injection locked frequency divider, using the TSMC 0.18um 1P6M CMOS process. Measurement results show that at the supply voltage of 0.8 V, the core power consumption is 9.5mW. The free-running frequencies are from 3.571 to 3.974 GHz for the higher-frequency band and the free-running frequencies are from 2.278 to 2.349 GHz for the lower-frequency band. An external injected signal power of 0 dBm provides a low-band divide-by-2 locking range (57.7%) from 2.87 to 5.2GHz and a high-band divide-by-2 locking range (25.7%) from 7.1~9.2GHz. The divide-by-4 operation range is from 13.88 to 15.94GHz. The die area is 0.996 × 0.868 mm2.
    Secondly, we present the hot carrier effect on a dual-resonance injection-locked frequency divider. The ILFD was implemented in the TSMC 0.18 μm 1P6M CMOS process and it was stressed at the supply voltage of 2.3V for 5 hours. It is shown that both the high-frequency and low-frequency band locking range decrease as the stress time increases. The measured data shows that the narrow locking range likely leads to circuit failure as RF stress enhances.
    Finally, presents a dual-band VCO using varactor-swiching mode, using the TSMC 0.18um SiGe BiCMOS process. Measurement results show that at the supply voltage of 0.6 V, the core power consumption is 4.68 mW. The free-running frequencies are from 5.46 to 5.68 GHz for the higher-frequency band and the free-running frequencies are from 2.73 to 3.44 GHz for the lower-frequency band. The figure of merit is -188.4/-186.6 dBc/Hz at high/low band at 1MHz offset frequency. The die area of the dual-band VCO is 1 × 0.861 mm2.

    中文摘要 I Abstract III 誌謝 V Table of Content VI Figure of Table VIII List of Table XII Chapter1 Introduction 1 1.1 Research Background 1 1.2 Thesis Organization 4 Chapter 2 Principles and Design Concepts of Voltage-Controlled Oscillators 6 2.1 Introduction 6 2.2 The Oscillator Theory 7 2.2.1 One-Port (Negative Resistance) View 8 2.2.2 Two-Port (Feedback) View 11 2.3 The Classification of Oscillators 13 2.3.1 Ring Oscillators 13 2.3.2 LC-Tank Oscillator 16 2.3.3 Cross-coupled Oscillator 21 2.4 Design Concepts of Voltage-Controlled Oscillator 25 2.4.1 Parameters of a Voltage-Controlled Oscillator 26 2.4.2 Phase Noise in Oscillator 27 2.4.3 Kinds of Noise 35 2.5 RLC-Tank research 38 2.5.1 Quality Factor 39 2.5.2 Resistors 41 2.5.3 Inductor and Transformer 42 2.5.4 Capacitors and Varactors 50 2.6 Dual-Band VCO Design 56 Chapter 3 Principles and Design Concepts of Injection Locking Frequency Divider 59 3.1 Principle of Injection Locked Frequency Divider 60 3.2 Locking Range 62 3.3 Direct ILFD 64 Chapter 4 Dual-Band CMOS Injection-Locked Frequency Divider Using a Dual-resonance Resonator 65 4.1 Introduction 65 4.2 Circuit Design 66 4.3 Measurement Results 68 Chapter 5 Reliability Study on the RF Performance of a CMOS Dual-Resonance Injection-Locked Frequency Divider 74 5.1 Introduction 74 5.2 Circuit Design 75 5.3 Measurement Results 78 Chapter 6 A CMOS Oscillator Using the Varactor-Switching Dual-band Function 86 6.1 Introduction 86 6.2 Circuit Design 87 6.3 Measurement Results 92 Chapter 7 Conclusion 94 References 96

    [1] B. Razavi, “RF Microelectronics”, Upper Saddle River, NJ: Prentice Hall, 1998
    [2] N. M.Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
    [3] B. Razavi, “Design of Analog CMOS Integrated Circuit”,Mc Graw Hill,2008.
    [4] J. Roggers, C. Plett, Radio frequency integrated circuit design, Artech House, 2003.
    [5] B. Razavi , Design of Integrated Circuits for Optical Communications”, Mc Graw Hill.
    [6] B. Razavi, “Design of Analog CMOS Integrated Circuits”, Mc Graw Hill, 2001.
    [7] J. van der Tang, and D. Kasperkovitz, “Oscillator design efficiency: a new figure of merit for oscillator benchmarking,” IEEE International Symposium on Circuit and System (ISCAS), vol. 2, pp. 533-536, May 2000.
    [8] J.J. Rael, and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000.
    [9] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000.
    [10] D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
    [11] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
    [12] T. H. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuit, vol. 35, no. 3, pp. 326–336, Mar. 2000.
    [13] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [14] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
    [15] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [16] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.
    [17] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
    [18] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [19] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS
    circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [20] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-um CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [21] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [22] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [23] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
    [24] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [25] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
    [26] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking
    Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
    [27] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [28] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon-based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [29] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
    [30] S.-L. Jang, C. Y. Lin and C.-F. Lee, “A 0.35μm CMOS switched-inductor dual-band LC-tank frequency divider,” IEEE Int. VLSI- DAT, pp.240-242 Apr. 2008.
    [31] S.-L. Jang, Y.-K. Wu, C.-W. Chang, J.-F. Huang, and C.-C. Liu, ” A 90nm CMOS dual-band divide-by-2 and -4 injection-locked frequency Divider,” Microw. Opt. Technol. Lett. vol. 52, no. 6, pp.1421-1425, 2010.
    [32] C.-W. Chang, S.-L. Jang, C.-W. Huang, and C.-C. Shih, " Dual-resonance LC-tank frequency divider implemented with switched varactor bias,” IEEE Int. VLSI- DAT, 2011. pp.1 – 4.
    [33] S.-L. Jang, C.-C. Shih, C.-W. Chang, C.-C. Liu, and J.-F. Huang, ” A dual-band divide-by-2 injection locked frequency divider in 0.35 μm SiGe BiCMOS,” Microw. Opt. Technol. Lett., pp.2762-2765, Dec., 2010.
    [34] S.-L. Jang and C.-F. Lee, “A wide locking range LC-tank injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 613-615, Aug. 2007.
    [35] J. T. Park, B. J. Lee, D. W. Kim, C. G. Yu, and H. K. Yu, “RF performance degradation in nMOS transistors due to hot carrier effects,” IEEE Trans. Electron Devices, vol. 47, no. 5, pp. 1068–1072, May 2000.
    [36] D. Stephens, T. Vanhoucke, and J. J. T. M. Donkers, “RF reliability of short channel NMOS devices,” in Proc. RFIC, 2009, pp. 343–346.
    [37] M. M. Kuo, K. Seki, P. M. Lee, J. Y. Choi, P. K. Ko, and C. Hu, “Simulation of MOSFET lifetime under AC stress hot-electron stress,” IEEE Trans. Electron Devices, vol. 35, no. 7, pp. 1004–1011, Jul. 1988.
    [38] H. Tsai and T. P. Ma, “l/f noise in hot carrier damaged MOSFETs: Effects of oxide charge and interface traps,” IEEE Electron Device Lett., vol. 14, pp. 256-258, 1993
    [39] H. Fang, S. Christoloveanu, and A. Chovet, “Analysis of hot-camer induced aging from 1/ f noise in short-channel MOSFETs,” IEEE Trans. Electron Device Lett., vol. EDL-7, pp. 371-373, 1986.
    [40] M. Stegherr, “Flicker noise in hot electron degraded short channel MOSFETs,” Solid-State Electron., vol. 27, pp. 1055-1056, 1984.
    [41] J. P. Xu, P. T. Lai, and Y. C. Cheng, ” Dynamic-stress-induced enhanced degradation of 1/f Noise in n-MOSFETs, s,” IEEE Trans. Electron Devices vol.47(1),109-112, 2000.
    [42] S.-F. R. Chang et al., “A dual-band RF transceiver for multistandard WLAN applications,” IEEETrans. on Microwave Theory Tech., Vol.53, No.3, pp.1048-1055, March, 2005.
    [43] T. Maeda, et al., “A low-power dual-band triple-mode WLAN CMOS transceiver,” IEEE J. Solid-State Circuits, Vol.41, No.11, pp.2481-2490, Nov.,2006.
    [44] Z. Li and K. K.O “A 900MHz 1.5-V CMOS Voltage Controlled Oscillator using switched resonators with a wide tuning range,” IEEE Microwave Wireless Compon Lett, Vol. 13, No. 4, April 2003.
    [45] B. Banerjee, C.- H. Lee, B. Matinpour and J. Laskar, “A SiGe dual-band dual-mode RF front end with a novel architecture for IEEE 802.11a/b/g wireless LAN applications,” Proc. Bipolar/BiCMOS Circuits and Tech., pp.124-127, 2004.
    [46] D. M. Pozar, “Microwave Engineering,” 3rd ed., Wiley 2005.
    [47] S.-W. Tam, H.-T. Yu, Y. Kim, E. Socher, M.C. F. Chang, T. Itoh, "A dual band mm-wave CMOS oscillator with lefthanded resonator," IEEE RFIC Symp. Dig. Papers., pp.477-480, 7-9 June 2009.
    [48] D. Baek, J. Kim, and S. Hong, “A dual-band (13/22-GHz) VCO based on resonant mode switching,” IEEE Microwave Wireless Compon Lett. vol. 13, No. 10, pp. 443–445, Oct 2003.

    無法下載圖示 全文公開日期 2018/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE