簡易檢索 / 詳目顯示

研究生: 陳彥勳
Yen-Hsun Chen
論文名稱: 使用疊接組態壓控振盪器與以新型8字形變壓器為諧振器之低相位雜訊和低功耗電路設計
Low Phase Noise and Low Power Consumption Circuit Design Using Cascode Configuration Voltage-Controlled Oscillator and a New 8-shaped Transformer as Resonator
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 張勝良
Sheng-Lyang Jang
莊敏宏
Miin-Horng Juang
宋峻宇
Jiun-Yu Sung
黃進芳
Jin Fang Huang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 159
中文關鍵詞: 異質接面雙極性電晶體壓控振盪器LC共振腔推輓式壓控振盪器八字形變壓器注入鎖定除頻器
外文關鍵詞: Heterojunction Bipolar Transistor, voltage-controlled oscillator, LC-tank, Push-Pull VCO, 8-shaped transformer, injection-locked frequency divider
相關次數: 點閱:373下載:37
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,無線通訊的快速發展,各種新穎晶片不斷產出,然而統整各系統子電路時,常會碰到操作時脈的不同,導致資料出現偏差,鎖相迴路在此扮演著重要的角色,典型的鎖相迴路由相位偵測器或相位頻率偵測器、充電汞、迴路濾波器、壓控振盪器和除頻器所構成。其中,壓控振盪器與除頻器的特性影響之重,使其成為核心電路,鎖相迴路藉由調整壓控振盪器產生穩定波形,來完成鎖定功能,故此,本論著重於設計高性能的壓控振盪器與注入鎖定除頻器。

    在章節四中,講述了使用BiCMOS的製程設計的異質接面雙極性電晶體(HBT)壓控振盪器,並分析了所使用來抑制相位雜訊的技術,主要是靠著減少與LC共振腔並聯的HBT基-射極的寄生電容與使用疊接架構的電路,而不用去減少跨導體的元件尺寸,寄生電容的減少會造成AM-PM轉換時,閃爍雜訊因為上變頻,而對相位雜訊的貢獻成分減少,另外,疊接架構能增大電路增益,降低雜訊因子,以此得到更低的相位雜訊,並在0.18 μm BiCMOS的模擬環境中描述模擬結果,且與實際量測的相互驗證。
    在章節五中,描述一個採用TSMC 0.18μm CMOS製程的LC共振腔的N/PMOSFET疊接的交錯耦合VCO,可稱為Push-Pull VCO,晶片面積為0.798 × 0.762 mm2,該VCO採用一種新設計的8字形變壓器用於提高PMOSFET的電壓振幅來實現低功耗。變壓器使用了2個各3匝線圈的電感串聯為主要電感,佈局時減少了交叉金屬線,用來減少寄生電容。單圈的8字形的次要電感與主要電感有著相當高的耦合係數,3比1圈的變壓器架構能夠更對稱的佈局,將8字形由中間劃分,會形成兩個波辦形狀,會輻射遠端磁場用來抑制磁場幅射。量測結果為在2.99 GHz時,相位雜訊為-124.9 dBc/Hz,FOM為-198.05 dBc/Hz。

    在章節六中,描述了一個使用TSMC 0.18 μm CMOS製程的注入鎖定除頻器(ILFD),該除頻器為除2且使用4個相互耦合的電感作為諧振器,且該除頻器可藉由切換VT的偏壓,會產生高頻、中頻、低頻的振盪頻率,藉此去創造寬的鎖定範圍,晶片面積為1.2×0.954 mm2,在VDD = 0.9 V時,功耗為8.8983 mW,最後,在注入0 dBm的外部訊號時,除二鎖定範圍為4.69 GHz,由2.79 GHz到7.48 GHz,鎖定範圍的百分比為91.3%。


    In recent years, with the rapid development of wireless communication, a variety of novel chips have been continuously produced. However, the integration of various system sub-circuits often encounter different operating clocks, resulting in data deviations. Phase-locked loops play an important role here. Typical the phase-locked loop is composed of phase detector or phase frequency detector, charge pump, loop filter, voltage-controlled oscillator and frequency divider. Among them, the characteristics of the voltage-controlled oscillator and the frequency divider are so important that they become the core circuit. The phase-locked loop adjusts the voltage-controlled oscillator to generate a stable waveform to complete the lock function. Therefore, this thesis focuses on the design of high-performance voltage-controlled oscillator and injection locked frequency divider.

    In Chapter 4, the Heterojunction Bipolar Transistor (HBT) voltage-controlled oscillator designed using the BiCMOS process is described, and the technology used to suppress phase noise is analyzed. Mainly by reducing the parasitic capacitance of the HBT base-emitter in parallel with the LC resonant cavity and the circuit using the stack structure, without reducing the component size of the transconductor. The reduction of parasitic capacitance will cause the flicker noise to reduce the contribution of phase noise due to the up-conversion during AM-PM conversion. In addition, the cascode structure can increase the circuit gain, reduce the noise factor, and obtain a lower phase noise. The simulation results are described in the simulation environment of 0.18 μm BiCMOS, and they are mutually verified with actual measurements.

    In Chapter 5, a cross-coupled VCO with stacked N/PMOSFETs of LC resonator using TSMC 0.18μm CMOS process is presented, which can be called Push-Pull VCO, with a wafer area of 0.798 × 0.762 mm2. The VCO uses a newly designed 8-shaped transformer to increase the voltage swing of the PMOSFET to achieve low power consumption. The transformer uses two inductances of each 3-turn coil in series as the primary inductance, and the cross metal lines are reduced during the layout to reduce parasitic capacitance. The single-turn 8-shaped secondary inductor has a very high coupling coefficient with the first-stage inductor, and the 3:1-turn transformer architecture can be more symmetrical. The lobes at both ends of the 8-shaped radiate the far-end magnetic field to suppress the radiation of the magnetic field. The measurement result is that at 2.99 GHz, the phase noise is -124.9 dBc/Hz, and the FOM is -198.05 dBc/Hz.

    In Chapter 6, an injection-locked frequency divider (ILFD) using TSMC 0.18 μm CMOS process is described. The frequency divider is divided-by-2 and uses 4 mutually coupled inductors as resonators. And the frequency divider can generate high frequency band, middle frequency band, and low frequency band oscillation frequencies by switching the bias voltage of VT to create a wide locking range. The chip area is 1.2×0.954 mm2, and when VDD = 0.9 V, the power consumption is 8.8983 mW. Finally, when an external signal of 0 dBm is injected, the locking range is 4.69 GHz, from 2.79 GHz to 7.48 GHz., the locking range percentage is 91.3%.

    摘要 Abstract 誌謝 Table of Contents List of Figures List of Tables Chapter 1 Introduction 1.1 Background 1.2 Thesis Organization Chapter 2 Overview of Voltage-Controlled Oscillators 2.1 Introduction 2.2 The Oscillators Theory 2.2.1 Two-Port Oscillator (Feedback Oscillator) 2.2.2 One-Port Oscillator (Negative Resistance) 2.3 Category of Oscillators 2.3.1 Ring Oscillator 2.3.2 LC-Tank Oscillator 2.4 Design Index of Voltage-Controlled Oscillator 2.4.1 Center Frequency [Hz] 2.4.2 Output Signal Power [dBm] 2.4.3 Power Dissipation [mW] 2.4.4 Harmonic/spurious [dBc] 2.4.5 Tuning Range [Hz] 2.4.6 Tuning Sensitivity [Hz/V] 2.4.7 Phase Noise [dBc/Hz] 2.4.8 Quality Factor 2.4.9 Figure of Merit 2.5 Passive Components Design in VCO 2.5.1 Resistor Design 2.5.2 Inductor Design 2.5.3 Capacitor Design 2.5.4 Transformer Design 2.5.5 Varactor Design Chapter 3 Overview of Injection Locking Frequency Divider 3.1 Introduction 3.2 Principle of Injection Locked Frequency Divider 3.3 Locking Range Chapter 4 A Low-Phase Noise Technique for Voltage-Controlled-Oscillator by Lowering Parasitic Varactor to LC Tank 4.1 Introduction 4.2 Circuit Design 4.3 Phase noise simulation 4.4 Measurement and Discussion Chapter 5 Low Phase Noise and Low Power Consumption CMOS Using a New 8-shaped Transformer Resonator 5.1 Introduction 5.2 Circuit Design 5.3 Measurement and Discussion Chapter 6 2:1 Injection-Locked Frequency Divider Using Transformer-Coupled Transmission-Line 6.1 Introduction 6.2 Circuit Design 6.3 Measurement and Discussion Chapter 7 Conclusions References

    [1] B. Razavi, “RF Microelectronics”, Upper Saddle River, NJ: Prentice Hall, 1998
    [2] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
    [3] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
    [4] B. Razavi, Design of Analog CMOS Integrated Crcuits, MC Graw Hall,2001.
    [5] B. Razavi, “Design of Integrated Circuits for Optical Communications”, Mc Graw Hill.
    [6] S.Levantino, C. Samori, A. Bonfanti, S. L. J. Gierkink, A. L. Lacaita, and V. Boccuzzi, “Frequency dependence on bias current in 5GHz CMOS VCOs:impact on tuning range and flicker noise upconversion”, IEEE J. Solid-State Circuits, vol. 37, pp.1001-1003, 2002.
    [7] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press, 1998.
    [8] T. H. Lee, “The design of CMOS radio frequency integrated circuits”, Cambridge University Press, 1998.
    [9] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998.
    [10] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569−572, 2000.
    [11] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326−336, Mar. 2000.

    [12] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [13] D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
    [14] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [15] Y. K. Koutsoyannopoulos, and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans. Crcuits and System-II, vol. 47, no. 8, pp. 699-713, 2000.
    [16] A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, 2001.
    [17] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
    [18] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
    [19] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [20] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [21] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [22] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [23] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [24] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [25] M. Tiebout, “A 480 uW 2 GHz ultra-low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
    [26] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [27] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection-locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
    [28] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An injection locking scheme for precision quadrature generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
    [29] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [30] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid-State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.

    [31] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [32] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
    [33] I. Nam and K. Lee, “High-performance RF mixer and operational amplifier BiCMOS circuits using parasitic vertical bipolar transistor in CMOS technology,” IEEE J. Solid-State Circuits, vol. 40, pp. 392–402, Feb. 2006.
    [34] G. Niu, Z. Jin, J. Cressler, R. Rapeta, A. Joseph, and D. Harame, “Transistor noise in SiGe HBT RF technology,” IEEE J. Solid-State Circuits, vol. 36, no. 9, pp. 1424–1427, Sep. 2001.
    [35] V. Jain, B. Javid, and P. Heydari, “A BiCMOS dual-band millimeterwave frequency synthesizer for automotive radars,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2100–2113, Aug. 2009.
    [36] H. Moon, S. Kang, Y. T. Kim, and K. Lee, “A fully differential LC-VCO using a new varactor control structure,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 9, pp. 410–412, Sep. 2004.
    [37] H. Shin, Z. Xu, and M. F. Chang, “A 1.8-V 6/9-GHz reconfigurable dual-band quadrature LC VCO in SiGe BiCMOS technology,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1028–1032, Jun. 2003.
    [38] A. Thakkar, S. Theertham, P. Mirajkar, J. C. Goyal and S. Aniruddhan, "A 27.2GHz bipolar LC-VCO using class-C biasing to maximize achievable Fosc in 130nm BiCMOS," 2018 IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 2018, pp. 1-5, doi: 10.1109/ISCAS.2018.8351527.

    [39] B. Sadhu, T. Anand, and S. K. Reynolds, “A fully decoupled LC tank VCO topology for amplitude boosted low phase noise operation,” IEEE J. Solid-State Circuits, vol. 53, no. 9, pp. 2488–2499, Sep. 2018.
    [40] A. Bonfanti, S. Levantino, C. Samori, and A. L. Lacaita, “A varactor configuration minimizing the amplitude-to-phase noise conversion in VCOs,” IEEE Trans. Circuits Syst. I, vol. 53, no. 3, pp. 481–488, Mar. 2006.
    [41] S. Levantino, C. Samori, A. Zanchi, and A. L. Lacaita, “AM-to-PM conversion in varactor-tuned oscillators,” IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process, vol. 49, no. 7, pp. 509–513, 2002.
    [42] S. Levantino, C. Samori, A. Bonfanti, S. Gierkink, and A. L. Lacaita, “Frequency dependence on bias current in 5-GHz CMOS VCO’s: impact of tuning range and flicker noise up-conversion,” IEEE J. Solid- State Circuits, vol. 37, no. 8, pp. 1003–1011, Aug. 2002.
    [43] E. Hegazi and A. A. Abidi, “Varactor characteristics, oscillator tuning curves, and AM-FM conversion,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 1033–1039, Jun.
    [44] M. Shahmohammadi, M. Babaie, and R. B. Staszewski, “A 1/f noise upconversion reduction technique for voltage-biased RF CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 51, no. 11, pp. 2610–2624, Nov. 2016.
    [45] F. Pepe, A. Bondanti, S. Levantino, C. Samori, and A. L. Lacaita, “Suppression of flicker noise up-conversion in a 65-nm CMOS VCO in the 3.0-to-3.6 GHz band,” IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2375–2389, Oct. 2013.

    [46] K. Huijung, K. Woonyun, R. Seonghan, K. Sanghoon, P. ByeongHa, and K. Bumman, “A low phase noise LC VCO in 65 nm CMOS process using rectangular switching technique,” IEEE Microwave Wireless Comp. Lett., vol. 17, no. 8, pp. 610–612, 2007.
    [47] S. Levantino, C. Samori, A. Zanchi, and A. L. Lacaita, “AM-to-PM conversion in varactor-tuned oscillators,” IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., vol. 49, no. 7, pp. 509–513, Jul. 2002.
    [48] T. H. Lee and A. Hajimiri, “Oscillator phase noise: A tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000.
    [49] B. Razavi, “A study of phase noise in CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 31, no. 3, pp. 331–343, Mar. 1996.
    [50] Wang Y, Xu J, He K, Wu M, Zhang R, “A 67.4-71.2-GHz nMOSOnly complementary VCO with buffer-reused feedback technique,” IEEE Microw Wirel Compon Lett. 2019;29(12):810-813.
    [51] W. Zou, X. Zou, D. Ren, K. Zhang, D. Liu, and Z. Ren, “2.49-4.91 GHz wideband VCO with optimised 8-shaped inductor,” Electron. Lett., vol. 55, no. 1, pp. 55–57, Jan. 2019.
    [52] N. Itoh, Hideaki, Masuoka, S.-i. Fukase, K.-i. Hirashiki, and M. Nagata, “Twisted inductor VCO for supressing on-chip interferences,” in Proc. Asia-Pacific Microwave Conf. (APMC 2007), Dec. 2007, pp. 1–4.
    [53] N. M. Neihart, D. J. Allstot, M. Miller and P. Rakers, "Twisted transformers for low coupling RF and mixed signal applications," 2009 IEEE International Symposium on Circuits and Systems, Taipei, 2009, pp. 429-432, doi: 10.1109/ISCAS.2009.5117777.

    [54] P. Wang et al., "A low phase-noise class-C VCO using novel 8-shaped transformer," 2015 IEEE International Symposium on Circuits and Systems (ISCAS), Lisbon, 2015, pp. 886-889, doi: 10.1109/ISCAS.2015.7168776.
    [55] A. Ximenes, G. Vlachogiannakis, and R. B. Staszewski, “An ultracompact 9.4–14.8-GHz transformer-based fractional-N all-digital PLL in 40-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 11, pp. 4241–4254, Nov. 2017.
    [56] X. Chen, Y. Hu, T. Siriburanon, J. Du, R. B. Staszewski and A. Zhu, "A tiny complementary oscillator with 1/f3 noise reduction using a triple-8-shaped transformer," in IEEE Solid-State Circuits Letters, vol. 3, pp. 162-165, 2020, doi: 10.1109/LSSC.2020.3009205.
    [57] W. Zhuo, X. Li, S. Shekhar, S. H. K. Embabi, J. Pineda de Gyvez, D. J. Allstot, and E. Sanchez-Sinencio, “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE Transactions on Circuits and Systems—II: Express Briefs, vol. 52, no. 12, Dec. 2005.
    [58] Y. Cheng, C.-H. Chen, M. Matloubian, and M. J. Deen, “Highfrequency small-signal ac and noise modeling of MOSFETs for RFIC design,” IEEE Trans. Electron Devices, vol. 49, no. 3, pp. 400–408, Mar. 2002.
    [59] L. Jia, J.-G. Ma, K. S. Yeo, and M. A. Do, “9.3–10.4 GHz-band cross-coupled complementary oscillator with low phase-noise performance,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 4, pp. 1273–1278, Apr. 2004.
    [60] S.-L. Jang and Y.–C. Lin,” Low power three-path inductor Class-C VCO without any dynamic bias circuit,” Electron. Lett., vol. 53, 1186 – 1188, 2017.
    [61] S. L. Jang, Y. K. Wu, C. C. Liu, and J. F. Huang, “A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wirel. Compon. Lett., vol. 19, pp. 816-818, Dec. 2009.
    [62] X. Wang, X. Yang, X. Xu, and T. Yoshimasu, “2.4-GHz-band low-voltage LC-VCO IC with simplified noise filtering in 180-nm CMOS,” IEEE MTT-S International Wireless Symposium (IWS), 2016.
    [63] J. Chen, F. Jonsson, M. Carlsson, C. Hedenäs, L. Zheng, “A low power, startup ensured and constant amplitude class-C VCO in 0.18 μm CMOS, “IEEE Microw. Wirel. Compon. Lett. 21 (8) (2011) 427–429.
    [64] H. Kim, S. Ryu, Y. Chung, J. Choi, and B. Kim, “A low phase-noise CMOS VCO with harmonic tuned LC tank,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 7, pp. 2917–2924, Jul. 2006.
    [65] T. Y. Kim,“High performance SOI and bulk CMOS 5GHz VCO’s,” in IEEE Radio Freq. Integr. Circuits Symp., Philadelphia, PA, Jun. 2003, pp. 93–96.
    [66] M. Babaie and R. Staszewski, “A class-F CMOS oscillator,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3120–3133, Dec. 2013.
    [67] W. Zou, D. Ren, K. Zhang and X. Zou, “4.02-5.48 GHz wideband VCO with coupling reduction and small Kvco variation,” Int. J. Electronics, 107:11, 1808-1821. 2020.
    [68] M. Hossain and A. Chan Carusone, “CMOS oscillators for clock distribution and injection-locked deskew,” IEEE J. Solid-State Circuits, vol. 44, no. 8, pp. 2138–2153, Aug. 2009.
    [69] C. T. C. Nguyen, Katehi, L.P.B, and G. M. Rebeiz, “Micromachined devices for wireless communications,” Proceedings of the IEEE, vol. 86, no. 8, pp. 1756-1768, Aug. 1998.

    [70] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee, and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299–301, May 2006.
    [71] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, Jun. 1999.
    [72] D. Melendy, P. Francis, C. Pichler, Hwang Kyuwoon, G. Srinivasan, and A. Weisshaar, ,” Wide-band compact modeling of spiral inductors in RFICs,” Digest of Microwave Symposium, Pages 717–720, June 2002.
    [73] S.-L. Jang, C.-C. Shih, C.-C. Liu, and M.-H. Juang,” CMOS injection-locked frequency divider with two series-LC resonators,” Microw. Opt. Technol. Lett., pp.290-293, Feb., 2011.
    [74] N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014.
    [75] S.-L. Jang, F.-B. Lin, and J.-F. Huang,” Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region,” Int. J. Circ Theor App, 43, 2081-2088, 2015.
    [76] S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang," Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March 2015.
    [77] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006
    [78] S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang,” LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
    [79] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999.

    QR CODE