簡易檢索 / 詳目顯示

研究生: 吳元凱
Yuan-kai Wu
論文名稱: 新式雙頻注入鎖定除頻器及 電壓控制振盪器之設計
Design of Novel Dual Band Injection-Locked Frequency Divider and Voltage-Controlled Oscillator
指導教授: 黃進芳
Jhin-Fang Huang
張勝良
Sheng-Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
陳凰美
Hwan-Mei Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 93
中文關鍵詞: 雙頻帶注入鎖定除頻器電壓控制振盪器
外文關鍵詞: Dual band, Injection-Locked Frequency Divider( ILFD), Voltage-Controlled Oscillator(VCO)
相關次數: 點閱:385下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 壓控振盪器與除頻器是頻率合成器電路中主要的電路之一。對壓控振盪器而言,低相位雜訊可避免相鄰雜訊訊號經由混波轉換的干擾。而振盪器的輸出則經由除頻器來達成降頻的工作,因此,除頻器需具有高頻操作,寬的操作頻寬及低功率消耗。

    第一部分我們提出了一個使用矽-鍺雙極性電晶體來研製除4的8相位注入鎖定除頻器電路,此除頻器電路以4級環形振盪器為架構,使用台積電的矽鍺0.35μm雙載子互補式金屬氧化半導體製程研製。此電路使用尾端注入訊號到雙極性電晶體的基極端方式來達到除4的功能。

    第二部分我們提出了一個新式雙頻多模的LC-tank注入鎖定除頻器電路,是使用台積電所提供之零點一八微米互補式金氧半製程所製造,此除頻器使用一組nMOS交錯耦合的LC-tank振盪器,加上一組電感開關來做為頻帶上的選擇。利用橫跨在串聯電感上的開關的開/關,讓共振器可操作在串聯可調區或是並聯可調區。此電路中心頻率在高頻從8.7~10.07 GHz;低頻從4.29~4.93 GHz。

    最後,設計一個雙頻帶電壓控制振盪器,此電壓控制振盪器使用一組nMOS交錯耦合的考畢子電壓控制振盪器,電路使用台積電所提供之零點一八微米互補式金氧半製程所製造,使用0.8伏特的供應電壓。此電路允許電壓控制振盪器使用共同的LC-tank來操作於兩個共振腔頻率。此電壓控制振盪器有兩組輸入控制,一組是用來當輸出頻率的連續控制;另一組是用來當頻帶上的選擇開關。這電壓控制振盪器是設計在5 GHz和12 GHz不同的輸出頻帶。


    The key building blocks in the frequency synthesizer are the voltage controlled oscillator (VCO) and the high frequency divider circuit. Most importantly, low phase-noise is required to avoid corrupting the mixer-converted signal by close interfering tones for VCO circuit. The output of the VCO is divided down by the frequency divider which requires operating at high frequencies, wide operating range and lower power consumption.

    The first part proposes an 8-phase divide-by-4 silicon–germanium (SiGe) heterojunction bipolar transistor (HBT) injection locked frequency divider (ILFD). The ILFD is based on a 4-stage ring oscillator, and was fabricated in the 0.35μm SiGe 3P3M BiCMOS technology. The divide-by-4 function is performed by injecting a signal to the base of the tail HBT.

    The second part of this thesis proposes a new dual band multi-modulus CMOS LC-tank injection locked frequency divider (ILFD) is proposed and implemented in a 0.18μm CMOS process, it is realized with a cross-coupled nMOS LC-tank oscillator with an inductor switch for frequency band selection. The resonator can be a series-tuned or parallel-tuned depending upon the on/off state of a switch across a series-tuned inductor. The free-running frequency is from 4.29 (8.7) GHz to 4.93 (10.07) GHz for the low- (high-) frequency band.

    Finally, presents a dual-band CMOS voltage controlled oscillator (VCO).The VCO is composed of n-core cross-coupled Colpitts VCOs and was implemented in 0.18μm CMOS technology with 0.8V supply voltage. The circuit allows the VCO to operate at two resonant frequencies with a common LC tank. The VCO has two control inputs, one for continuous control of the output frequency and one for band switching. This VCO is configured with 5 GHz and 12 GHz frequency bands with differential outputs.

    中文摘要 I Abstract III 誌 謝 V Table of Contents VI List of Figures VIII List of Tables XI Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis organization 3 Chapter 2 Overviews of Voltage-Controlled Oscillators and Injection Locked Frequency Divider 5 2.1 The Oscillator 5 2.1.1 Negative Resistance (NR) 5 2.1.2 NEGATIVE-GM OSCILLATORS 8 2.1.3 Positive Feedback (PFB) 9 2.2 All Types of Oscillators 10 2.2.1 Ring Oscillator 11 2.2.2 LC-Tank Oscillator 14 2.3 Voltage-Controlled Oscillator 17 2.4 The Parameters of VCOs 18 2.4.1 Center Frequency 18 2.4.2 Tuning Range 18 2.4.3 Tuning Linearity 19 2.4.4 Output Amplitude 20 2.4.5 Power Dissipation 20 2.4.6 Supply and Common-Mode Rejection 20 2.4.7 Output Signal Purity 21 2.5 Phase noise 21 2.5.1 Definition of Phase Noise 22 2.5.2 Existing Models of Phase Noise 24 2.5.2.1 Time-invariant phase noise model 24 2.5.3 Noise Sources 26 2.5.3.1 Thermal noise 26 2.5.3.2 Flicker noise 28 2.5.4 Phase Noise in Wireless Communication 30 2.5.5 Previous Models of Phase Noise 32 2.6 On-Chip Inductor Research 33 2.7 Varactor 41 2.7.1 P-N Junction Varactor 42 2.7.2 MOS Varactor 42 2.7.2.1 Accumulation-mode MOS varactor 44 2.7.2.2 Inversion-mode MOS varactor 46 2.8 Resistors 47 2.9 Principle Of Injection Locked Frequency Divider 48 2.9.1 Locking Range 50 2.9.2 Switch ILFD 52 Chapter 3 An 8-phase 4 SiGe HBT Ring-Oscillator-Based Injection Locked Frequency Divider 55 3.1 INTRODUCTION 55 3.2 CIRCUIT DESIGN 56 3.3 MEASUREMENT RESULTS 58 3.4 CONCLUSION 63 Chapter 4 Dual-Band CMOS Frequency Divider Using a Switched Series- and Parallel-Tuned Resonator 64 4.1 INTRODUCTION 64 4.2 CIRCUIT DESIGN 65 4.3 MEASUREMENT RESULTS 69 4.4 CONCLUSION 74 Chapter 5 A Dual-Band CMOS Voltage-Controlled Oscillator Implemented with Dual-Resonance LC Tank 75 5.1 INTRODUCTION 75 5.2 CIRCUIT DESIGN 76 5.3 MEASUREMENT RESULTS 80 5.4 CONCLUSION 83 References 84

    [1] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [2] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
    [3] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [4] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [5] J. Craninckx, and M. S. J. Steyaert, “A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE Journal of Solid-State Circuits,vol. 32, pp. 736-744, May 1997.
    [6] H.R. Rategh, H. Samavati, T.H. Lee, “A 5 GHz, 1 mW CMOS voltage controlled differential injection locked frequency divider,” Custom Integrated Circuits Conference, pp. 517-520 May 1999
    [7] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
    [8] J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
    [9] P. Yue, C. Ryu, JackLau, T. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
    [10] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [11] B. Razavi, “A study of injection locking and pulling in oscillator,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, 2004.
    [12] H. Wu and A. Hajimiri, “A 19GHz 0.5mW 0.35μm CMOS frequency divider with shunt-peaking locking-range enhancement and slides,” Solid-State Circuits Conf., 2001.
    [13] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [14] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [15] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon- based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [16] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
    [17] A. Joseph, J. Dunn, G. Freeman, D. Harame, D. Coolbaugh, R. Groves, K. Stein, R. Volant, S. Subbanna, V. Marangos, S. St. Onge, E. Eshun, P. Cooper, J. Johnson, J.-S. Rieh, B. Jagannathan, V. Ramachandran, D. Ahlgren, D. Wang, and X. Wang, “Product applications and technology directions with SiGe BiCMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1471–1478, Sep. 2003.
    [18] A. Rylyakov and T. Zwick, “96-GHz static frequency divider in SiGe bipolar technology,” IEEE J. Solid-State Circuits, vol. 39, no. 10, pp.1712–1715, Oct. 2004.
    [19] H. Knapp, M. Wurzer, T. F. Meister, K. Aufinger, J. Böck, S. Boguth, and H. Schäfer, “86 GHz static and 110 GHz dynamic frequency dividers in SiGe bipolar technology,” in IEEE MTT-S Int. Dig., 2003, pp. 1067–1070.
    [20] J. C. Chien, C. S. Lin, L. H. Lu, H. Wang, J. Yeh, C. Y. Lee, and J. Chern, “A harmonic injection-locked frequency divider in 0.18 μm SiGe BiCMOS,” IEEE Microw. Wireless Compon. Lett., vol. 10, no. 10, pp. 561-563, Oct. 2006.
    [21] J. K. Nakaska, and J. W. Haslett, “An integrated 6.2-11GHz SiGe inductorless injection locked frequency divider”, 2005 European Microwave Conf., pp.669-672, 2005.
    [22] S.-L. Jang, K.-C. Shen, C.-W. Chang, and M.-H. Juang” A 6-phase ÷3 injection locked frequency divider in SiGe BiCMOS technology,” Microwave and Optical Technology Lett., pp. 1555-1557, June, 2009.
    [23] S.-L. Jang, C. C. Liu and C.-W. Chung ” A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., pp. 236-238, April, 2009.
    [24] F. Herzel and W. Winkler, “A 2.5 GHz eight-phase VCO in SiGe BiCMOS technology,” IEEE Tran. Circuits and Systems II, vol.52, no. 3, pp.140-144, Mar. 2005.
    [25] X. Guan, H. Hashemi and A. Hajimiri, “A fully integrated 24-GHz eight-element phased-array receiver in silicon,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2311-2320, Dec. 2004.
    [26] J. J. Kim and B. Kim, “A low-phase-noise CMOS LC oscillator with a ring structure,” IEEE ISSCC Dig. Tech. Papers, pp. 430-431, Feb. 2000.
    [27] Y.-H. Chuang, S.-H. Lee, S.-L. Jang, J.-J. Chao and M.-H. Juang,” A ring-oscillator-based wide locking range frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 470-472, Aug. 2006.
    [28] R. Tang and Y.-B. Kim, “A novel 8-phase PLL design for PWM scheme in high speed I/O circuits,” IEEE Int. SOC Conf., pp.119-122, Sept. 2006.
    [29] S.-L. Jang, Y.-H. Chuang, C.-C. Chen, J.-F. Lee and S.-H. Lee, “A CMOS dual-band voltage controlled oscillator,” IEEE Asia Pacific Conf. Circuits and Systems, pp.514-517, 2006.
    [30] S.-M. Yim and K. K. O, “Switched resonators and its applications in a dual-band monolithic CMOS LC-tuned VCO,” IEEE Trans. on Microwave Theory and Techniques, vol. 54, no. 1, pp. 74-81, Jan. 2006.
    [31] Z.-B. Li and K. K. O, “A low phase noise and low power multi-band CMOS voltage controlled oscillator,” IEEE J. of Solid-State Circuits, vol. 40, no. 6, pp. 1296-1302, Jun. 2005.
    [32] S.-L. Jang and C.-F. Lee, “A wide locking range LC-tank injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 613-615, Aug. 2007.
    [33] S.-L. Jang, C. Y. Lin and C.-F. Lee, “A 0.35μm CMOS switched-inductor dual-band LC-tank frequency divider,” IEEE Int. VLSI- DAT, pp.240-242 Apr. 2008.
    [34] V. Araiia, A. Suhrez and P. Dorta, “Dual-band frequency divider based on oscillation control,” IEEE Microwave Symp. Dig., vol.3, pp:1501-1504, Jun. 2004
    [35] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. of Solid-State Circuits, vol. 39, no. 7, pp. 1170-1174, Jul. 2004.
    [36] H.Wu and A. Hajimiri, “A 19 GHz 0.5mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuits Conf., pp. 412-413, Feb. 2001.

    [37] A. Kral, F. Behbahani and A. A. Abidi, “RF-CMOS oscillators with Switched Tuning,” in Proc. IEEE CICC, May 1998, pp. 555–558.
    [38] L. Jia, J. G. Ma, K. S. Yeo, X. P. Yu, M. A. Do and W. M. Lim, “A 1.8-V 2.4/5.15-GHz dual-band LC VCO in 0.18-um CMOS technology,” IEEE Microwave Wireless Compon. Lett., vol. 16, no. 4, pp. 194–196, Apr. 2006.
    [39] S.-M. Yim and Kenneth K. O, “Demonstration of a switched resonator concept in a dual-band monolithic CMOS LC-tuned VCO,” in Proc. IEEE CICC, May 2001, pp. 205–208.
    [40] Z. Li and K. K. O, “A low-phase-noise and low-power multiband CMOS voltage-controlled oscillator,” IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1296–1302, Jun. 2005.
    [41] H.-L. Kao, D. Y. Yang, Y. C. Chang, B. S. Lin, and C. H. Kao, “Switched resonators using adjustable inductors in a 2.4/5 GHz dual-band LC VCO,” IEE Electronics Lett., vol. 44, no. 4, pp.299–301, Feb. 2008,
    [42] N. T. Tchamov, S. S. Broussev, I. S. Uzunov, and K. K. Rantala, “Dual-band LC VCO architecture with a fourth-order resonator,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 3, pp. 277–281, Mar. 2007.
    [43] J. Borremans, A. Bevilacqua,S. Bronckers, M. Dehan, M. Kuijk, P. Wambacq, and J. Craninckx, “A compact wideband front-end using a single-inductor dual-band VCO in 90 nm digital CMOS,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2693–2619, Dec. 2008.
    [44] X. Li, S. Shekhar, and D. J. Allstot, “Gm-boosted common-gate LNA and differential Colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2609–2619, Dec. 2005.
    [45] Y. Li, Y.-O. Jing, Y.-H. Shen, and Z.-S. Lai, “A stack-mode dual-band voltage-controlled oscillator multistandard wireless applications,” in ICSICT, Oct. 2006, pp. 1925-1927.
    [46] H. Shin, Z. Xu, and M. F. Chang, “A 1.8-V 6/9-GHz switchable dual-band quadrature LC VCO in SiGe BiCMOS technology,” in IEEE RFIC Symp. Jun. 2002, pp. 71–74.
    [47] N.H.W. Fong, J.-O. Plouchart, N. Zamdmer, D. Liu, L.F. Wagner, C. Plett, and N.G. Tarr, “Design of wide-band CMOS VCO for multiband wireless LAN applications,” IEEE J. Solid-State Circuits, vol. 38, no. 8, pp. 1333–1342, Aug. 2003.

    無法下載圖示 全文公開日期 2014/07/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE