簡易檢索 / 詳目顯示

研究生: 黃冠傑
Guan-Jie Huang
論文名稱: 超寬鎖頻範圍之除三注入鎖定除頻器與左手共振腔架構多頻帶壓控振盪器之設計
Design of Ultra Wide-Band Divide-by-3 Injection-Locked Frequency Divider and Multi-Band Oscillator Using Left-Handed Resonator
指導教授: 張勝良
Sheng-Lyang Jang
徐敬文
Ching-Wen Hsue
口試委員: 馮武雄
Wu-Shiung Feng
陳國龍
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 83
中文關鍵詞: 壓控振盪器注入鎖定除頻器
外文關鍵詞: voltage-controlled oscillator, injection-locked frequency divider
相關次數: 點閱:255下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出三個電路,第一個電路先描述一個超寬鎖頻範圍除三注入鎖定
    除頻器,是使用TSMC 0.18 μm CMOS 製程。此注入鎖定除頻器是使用雙諧振
    LC 共振腔以及線性混波器來擴展鎖頻範圍。量測結果為供應電壓0.85 V,而高
    頻和低頻分別在3.79 和2.37 GHz,核心功耗為7.39 mW。注入訊號為0 dBm 時,
    其除三鎖頻範圍為6.1 至12.9 GHz (71.58%)。
    第二個電路描述一個除三寬鎖頻範圍注入鎖定除頻器,此電路是使用TSMC
    3P6M BiCMOS 0.18 μm 製程所實現,量測結果為供應電壓0.85 V,而可調範圍
    則是使用電壓來改變可變電容,達到頻率可調的機制。可調範圍由3.4 GHz 至
    3.853 GHz,當注入訊號功率為0 dBm 時,其總鎖頻範圍為10.1 GHz 至12.3 GHz
    (19.64%),總功耗為8.56 mW。
    最後一個電路是描述一個左手LC 網路架構的多頻帶壓控振盪器,是使用
    TSMC 0.18 μm CMOS 製程,此電路以兩對交叉耦合器來補償左手共振腔的阻
    抗,至於多頻帶的產生是先以電壓控制變容器來產生雙頻帶,再藉由電晶體切換
    II
    方式產生另外兩個頻帶。量測數據結果,輸出訊號分別為3.77 GHz、4.19 GHz、
    5.03 GHz、5.9 GHz。


    range. The
    core power consumption of the ILFD core is 7.39 mW. The divider’s free-running
    frequency has dual-bands at 3.79 and 2.37 GHz by switching the varactor’s control
    bias, and at the incident power of 0 dBm the locking range is 6.8 GHz (71.58%), from
    the incident frequency 6.1 to 12.9 GHz.
    The second circuit is a wide locking range divide-by-3 injection-locked
    frequency divider (ILFD) using a TSMC 0.18 μm SiGe 3P6M BiCMOS technology is
    presented. The BiCMOS ILFD circuit is realized with a MOS divide-by-3 ILFD, with
    two HBT pre-amplifiers used to amplify the input signal. The injection MOS can be
    biased in sub or above-threshold region depending upon the output signal strength of
    pre-amplifiers. The core power consumption of the ILFD core is 8.56 mW. The
    divider’s free-running frequency is tunable from 3.4 to 3.853 GHz by tuning the
    varactor’s control bias, and at the incident power of 0 dBm the maximum locking
    range is 2.2 GHz (19.64%), from the incident frequency 10.1 to 12.3 GHz. The
    operation range is 3.2 GHz (29.91%), from 9.1 to 12.3 GHz.
    Finally, an oscillator with multi frequency band outputs. The proposed VCO has
    been implemented with the TSMC 0.18μm 1P6M CMOS technology and the die area
    of the oscillator is 0.43 × 0.82 mm2. The oscillator uses a CMOS cross-coupled VCO
    as the core and a left-handed (LH) LC network so that the resonator has dual resonant
    IV
    frequencies. The oscillator can generate differential signals at the frequencies of 3.77
    GHz, 4.19 GHz, 5.03 GHz, and 5.9GHz by using concurrent varactor and tail
    switching.

    誌 謝 ..................................................................................................................V List of Contents .......................................................................................................... VI List of Figures ......................................................................................................... VIII List of Tables............................................................................................................... XI Chapter 1 Introduction .............................................................................................. 1 1.1 BACKGROUND ................................................................................................... 1 1.2 THESIS ORGANIZATION ..................................................................................... 3 Chapter 2 Design of Voltage Controlled Oscillators .................................................4 2.1 INTRODUCTION.................................................................................................. 4 2.2 THE OSCILLATOR THEORY ................................................................................ 4 2.3 QUALALITY FACTOR .......................................................................................... 8 2.4 SORTS OF OSCILLATORS .................................................................................. 10 2.4.1 RESONATORLESS OSCILLATORS ............................................................ 10 I. RING OSCILLATOR ............................................................................. 10 II. RELAXATION OSCILLATOR ................................................................ 12 2.4.2 LC-TANK OSCILLATORS ....................................................................... 13 I. COLPITTS AND HARTLEY OSCILLATORS ............................................. 13 II. NEGATIVE -GM OSCILLATORS ........................................................... 14 2.5 VARACTORS ..................................................................................................... 16 2.5.1 JUNCTION VARACTORS ......................................................................... 16 2.5.2 MOS VARACTORS ................................................................................ 16 I. INVERSION-MODE PMOS VARACTOR (I-MOS) ................................. 18 II.ACCUMULATION-MODE PMOS VARACTOR (A-MOS)......................19 2.6 INDUCTOR AND TRANSFORMERS ..................................................................... 19 2.6.1 SPIRAL INDUCTOR ................................................................................ 20 2.6.2 THE TRANSFORMER ............................................................................. 26 2.7 DESIGN CONCEPTS OF VCO ............................................................................ 31 2.7.1 VCO CHARACTERISTIC PARAMETERS .................................................. 32 2.8 INJECTION LOCKING FREQUENCY DIVIDER ..................................................... 39 2.8.1 PRINCIPLE OF INJECTION LOCKED FREQUENCY DIVIDER ..................... 40 2.8.2 LOCKING RANGE .................................................................................. 42 2.8.3 SWITCH ILFD ...................................................................................... 45 Chapter 3 An Ultra Wide-Band Divide-by-3 Injection-Locked Frequency Divider ................................................................................................................. 47 VII 3.1 INTRODUCTION................................................................................................ 47 3.2 CIRCUIT DESIGN .............................................................................................. 49 3.3MEASUREMENT RESULTS ................................................................................ 51 Chapter 4 A Wide-Band Divide-by-3 Injection-Locked Frequency Divider With Injection MOS DC-Biased in Above- and Sub-threshold Regions ......56 4.1 INTRODUCTION................................................................................................ 56 4.2 CIRCUIT DESIGN.............................................................................................. 57 4.3MEASUREMENT RESULTS ................................................................................ 59 Chapter 5 Multi-Band Oscillator Using Left-Handed Resonator ..........................65 5.1 INTRODUCTION................................................................................................ 65 5.2 CIRCUIT DESIGN.............................................................................................. 66 5.3MEASUREMENT RESULTS ................................................................................ 70 Chapter 6 Conclusion ..............................................................................................77 References .................................................................................................................79

    [1] J. Roggers, C. Plett, Radio Frequency Integrated Circuit Design, Artech House,
    2003.
    [2] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [3] B. Razavi, “A study of phase noise in CMOS oscillators, ” IEEE J. Solid-State
    Circuits, vol. 31, p.p. 331-343 Mar. 1996.
    [4] K. Shu, E. Sanchez-Sinencio, CMOS PLL Synthesizers : Analysis and Design,
    Springer, 2005.
    [5] A. Porret, T. Melly, C. Enz, and E, Vittoz, “Design of high-Q varactors for
    low-power wireless applications using a standard CMOS process,” IEEE J.
    Solid-State Circuits, vol. 35, pp. 337-345, Mar. 2000.
    [6] F. Svelto, P. Erratico, S. Manzini, and R. Castello, “A metal oxide semiconductor
    varactor,” IEEE Electron Device Lett., vol. 20, pp. 164-166, Apr. 1999.
    [7] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCO’s,”
    IEEE J. Solid-State Circuits, vol. 35, pp. 905-910, Jun. 2000.
    [8] T. Soorapanth, C. Yue, D. Shaeffer, T. Lee, and S. Wong, “Analysis and
    optimization of accumulation-mode varactor for RF ICs,” in 1998 Symp. VLSI
    Circuits Dig. Tech. Papers, , pp. 22-23. Jun. 1998.
    [9] J. Aguilera, and R. Berenguer, “Design and test of integrated inductors for RF
    applications,” Kluwer Academic Publishers, 2004.
    [10] J. Craninckx, and M. S. J. Steyaert, “A fully integrated CMOS DCS-1800
    frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp.
    2054-2065, 1998.
    [11] Y. K. Koutsoyannopoulos and Y. Papananos, “Systematic analysis and modeling
    of integrated inductors and transformers in RF IC design,” IEEE Trans. Circuits
    and System-II, vol. 47, no. 8, pp. 699-713, 2000.
    [12] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in
    CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628,
    Apr. 2001.
    [13] Y. Koutsoyannopoulos, “Novel Si integrated inductor and transformer structure
    for RF IC design,” Proc. ISCAS , vol. 2, pp. 573-576, June. 1999.
    [14] C. Tang, C. Wu, and S. Liu, “Miniature 3-D inductors in standard CMOS
    80
    process,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 471-480, 2002
    [15] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,”
    IEEE Trans. on Parts, Hybrids and Packaging, vol. PHP-10, no.2, pp. 101-109,
    1974.
    [16] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J.
    Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [17] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz
    VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits
    Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
    [18] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [19] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus
    divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits,
    vol. 31, pp. 890-897, July 1996.
    [20] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS
    circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31,
    pp. 456-463, Mar. 1996.
    [21] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS
    technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [22] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency
    dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [23] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider
    up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits
    Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [24] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25
    um standard CMOS,” IEEE International Symposium on Circuit and System
    (ISCAS), vol. 5, pp. 741-744, May 2000.
    [25] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider
    with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech.
    Papers, pp. 412-413, Feb. 2001.
    [26] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS
    injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits,
    pp. 47-50, June 2001.
    [27] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking
    Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol.
    37, pp. 845-851, July 2002.
    [28] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic
    injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid
    State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    81
    [29] H. Wu, “Signal generation and processing in high-frequency/high-speed siliconbased
    integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [30] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61,
    pp.1380-1385, Oct. 1973.
    [31] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3
    injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, Feb.
    2006, pp.27–29.
    [32] S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-F. Huang, “Divide-by-3 LC injection
    locked frequency divider implemented with 3D inductors,” IEICE Trans.
    Electron., vol. E91-C, no. 6, pp. 956–962, Jun. 2008.
    [33] S.-L. Jang, C.-Y. Lin, and C.-F. Lee, “A low voltage 0.35 μm CMOS frequency
    divider with the body injection technique,” IEEE Microw. Wireless Compon.
    Lett., vol. 18, no. 7, pp.470–472, July 2008.
    [34] S.-L. Jang, C.-C. Liu, and J.-F. Huang, ” Divide-by-3 injection-locked frequency
    divider using two linear mixers,” IEICE Trans. on Electron.,
    Vol.E93-C,No.1,pp.136-139, Jan. 2010.
    [35] S.-L. Jang, and C.-W. Chang, ” A 90nm CMOS LC-tank divide-by-3
    injection-locked frequency divider with record locking range,” IEEE Microw.
    Wireless Compon. Lett., vol. 20, pp.229-231, April, 2010.
    [36] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, ” A wide-locking range ÷3
    injection-locked frequency divider using linear mixer,” IEEE Microw. Wireless
    Compon. Lett., vol. 20, pp.390-392, July, 2010.
    [37] S.-L. Jang, Y.-S. Chen, C.-W. Chang and C.-C. Liu,” injection-locked frequency
    dividing apparatus”, US patent # US008305116B2, 2012.
    [38] Y.-T. Chen, M.-W. Li, H.-C. Kuo, T.-H. Huang, and H.-R. Chuang,
    “Low-voltage K-band divide-by-3 injection-locked frequency divider with
    floating-source differential injector,” IEEE Trans. Microw. Theory Tech., vol. 60,
    no. 1, pp. 160–67, 2012.
    [39] S.-L. Jang, and J.-Hs. Hsieh, ” A wide-locking range ÷3 injection-locked
    frequency divider using concurrent injection mechanisms,” Analog Integr Circ
    Sig Process, Vol. 77, Issue 3, pp 593-598., Dec. 2013.
    [40] S.-L. Jang, C.-W. Tai, and C.-F. Lee, “Divide-by-3 injection locked frequency
    divider implemented with active inductor,” Microw. Opt. Technol. Lett., vol. 50,
    no. 6, pp. 1682–1685, June, 2008.
    [41] S.-L. Jang and C.-Y. Chuang, ” Wide-locking range ÷3 series-tuned
    injection-locked frequency divider,” Analog Integr Circ Sig Process, Vol. 76, 1,
    pp. 111-116., Jan. 2013.
    [42] C.-C. Liu, C.-C. Wang, S.-L. Jang, and M.-H. Juang,” A SiGe
    82
    injection-locked-oscillator using HBT injector operated in saturation region,”
    Microwave Opt Tech Lett., pp.734-737, April, 2011.
    [43] S.-L. Jang, C.-W. Chang, C.-L. Cheng, C.-W. Hsue, and C.-W. Hsu, " A
    wide-locking range divide-by-3 LC-tank injection-locked frequency divider,” pp.
    1-4, IEEE Int. VLSI- DAT, 2011.
    [44] S.-L. Jang, C.-W. Hsu, C.-W. Chang and C.-W. Hsue, ” Wide-band  3 injection
    locked frequency divider in 0.35 μm SiGe BiCMOS,” Microwave Opt Tech
    Lett., pp.609-611, March, 2011.
    [45] C.-C.Wang, Z. Chen, V. Jain, and P. Heydari, “Design and analysis of a
    silicon-based millimeter-wave divide-by-3 injection-locked frequency divider,”
    in Proc. IEEE Silicon Monolithic Integrated Circuits in RF Systems, Jan. 2009.
    [46] S.-L. Jang, C.-W. Huang, C.-W. Chang, and C.-W. Hsue, ” A parallel-injection
    Injection locked frequency divider in 0.35 μm SiGe HBT process,” Microwave
    Opt Tech Lett ., pp.379-383, Feb., 2012.
    [47] S.-L. Jang, J.-F. Huang, C.-W. Huang C.-W. Hsue and C.-W. Chang, ”
    Low-voltage wide-locking range LC-tank divide-by-3 injection-locked
    frequency divider” Int. J. Electron. Letts. Vol. 1, pp.62-68, 2013.
    [48] S.-L. Jang, R.-K. Yang, C.-C. Liu, and C.-W. Hsue, "A low power SiGe
    BiCMOS series-tuned divide-by-3 injection locked oscillators," Microwave Opt
    Tech Lett 51, 2239–2242, 2009.
    [49] S.-L. Jang, Y.-H. Chuang, C.-C. Chen, J.-F. Lee, and S.-H. Lee, “A CMOS
    dual-band voltage controlled oscillator,” in Proc. IEEE APCCAS, Dec. 2006, pp.
    514–517
    [50] A. Kral, F. Behbahani, and A. A. Abidi, “RF-CMOS oscillators with switched
    tuning,” in Proc. IEEE CICC, May 1998, pp. 555–558.
    [51] S.-M. Yim and K. O. Kenneth, “Demonstration of a switched resonator concept
    in a dual-band monolithic CMOS LC-tuned VCO,” in Proc. IEEE CICC, May
    2001, pp. 205–208.
    [52] S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, " A dual-band CMOS
    voltage-controlled oscillator implemented with dual-resonance LC tank, " IEEE
    Microw. Wireless Compon. Lett., vol. 19, pp.816-818, Dec. 2009.
    [53] N. T. Tchamov, S. S. Broussev, I. S. Uzunov, and K. K. Rantala, “Dualband LC
    VCO architecture with a fourth-order resonator,” IEEE Trans. Circuits Syst. II,
    vol. 54, no. 3, pp. 277–281, Mar. 2007.
    [54] S.-L. Jang, H.-H. Lin and C.-W. Hsue,” Mode-switching left-handed standing
    wave voltage-controlled oscillator,” Microw. Opt. Technol. Lett. vol. 55, 9, pp.
    1977–2244, Sept. 2013.
    [55] S.-L. Jang, Y.-T. Chen, C.-W. Chang and M.-H. Juang, " Triple-band CMOS
    83
    voltage-controlled oscillator, " Microw. Opt. Technol. Lett., vol. 55, 4,
    pp.737-740, Apr. 2013.
    [56] S.-L. Jang, D.-A. Tu, C.-W. Chang and J.-F. Huang, "Dual-band CMOS
    voltage-controlled oscillator with comparable outpower at both bands, "
    Microw. Opt. Technol. Lett.,vol. 54, pp.2349-2352, Oct., 2012.
    [57] S. Rong and H. C. Luong, "Analysis and design of transformer-based dual-band
    VCO for software-defined radios," IEEE Trans. Circuits Syst. I, Reg. Papers,
    vol. 59, no. 3, pp. 409–462, Mar. 2009.

    無法下載圖示 全文公開日期 2019/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE