簡易檢索 / 詳目顯示

研究生: 陳漢昇
Han-Sheng Chen
論文名稱: 新型四相位壓控振盪器與注入鎖定除頻器之設計
Design of Novel Quadrature Voltage-Controlled Oscillators and Injection Locked Frequency Dividers
指導教授: 莊敏宏
Miin-Horng Juang
張勝良
Sheng-Lyang Jang
口試委員: 黃柏仁
Bohr-Ran Huang
陳凰美
Hwan-Mei Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 108
中文關鍵詞: 四相位壓控振盪器. 注入鎖定除頻器電感電容共振腔
外文關鍵詞: Voltage-Controlled Oscillator(VCO), Injection Locked Frequency Divider(ILFD)
相關次數: 點閱:230下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出二個除頻器與三個壓控振盪器,第一個電路先描述一個使用線性混波器架構的除三注入鎖定除頻器,且使用 TSMC 0.35 μm CMOS 2P4M製程。此注入鎖定除頻器是由nMOS cross-coupled LC振盪器與二個注入MOSFETs串聯而成。量測結果為供應電壓1.2 V,而可調範圍3.73至3.92 GHz,核心功耗為6.9 mW。注入訊號為0 dBm時,其除二鎖頻範圍為10.99 GHz至11.68 GHz。
    第二個電路描述一個低功耗寬鎖頻除三注入鎖定除頻器,此電路是使用TSMC 0.18 μm CMOS製程,此注入鎖定除頻器是使用push-push cross-coupled n-core MOS LC共振腔振盪器架構,而可調範圍則是使用電壓來改變可變電容,達到頻率可調的機制。可調範圍由4.50 GHz至5.15 GHz,當入射功率為0 dBm時,最大鎖頻範圍為14.9 GHz至16.3 GHz (9%)其總鎖頻範圍為13.7 GHz至16.3 GHz (17.3%),總功耗為5.88 mW。
    設計一個使用TSMC 0.18 μm CMOS製程的Colpitts差動壓控振盪器,其架構是由全部是nMOS LC共振腔 Colpitts 壓控振盪器組成;一個gate-connected LC共振腔與一個drain-connected LC共振腔。偏壓0.7 V時操作在4.51 GHz,頻帶在1Hz偏移頻率下的相位雜訊為-119.47 dBc/Hz。電路的功率消耗為3.34 mW,可調電壓由0 V至2 V,可調範圍從4.51 GHz至4.71 GHz約為0.2 GHz。
    設計另外一個使用TSMC 0.18 μm CMOS製程的Colpitts差動壓控振盪器,其架構是由全部是nMOS LC串聯型式的共振腔 Colpitts 壓控振盪器組成;使用基底順向偏壓MOSFET與閘極電感提升技術。偏壓0.7V時操作在6.9 GHz,頻帶在1Hz偏移頻率下的相位雜訊為-117.46 dBc/Hz。FOM為-187.42 dBc/Hz。電路的功率消耗為4.4 mW,可調電壓由0 V至2 V,可調範圍從6.51 GHz至7.13 GHz約為0.62 GHz。
    最後一個電路是描述一個新的全積體化CMOS Clapp 四相位壓控振盪器,由二個差動n-core Clapp壓控振盪器與四個耦合pMOSFETs組成,使用TSMC 0.18 μm CMOS製程。電源0.9 V時電路的功率消耗為12.2 mW,晶片面積為0.574 × 0.866 mm2。可調電壓由0 V至2 V,可調範圍從7.89 GHz至9.3 GHz。頻帶在1Hz偏移頻率下的相位雜訊為-119.47 dBc/Hz。FOM為-185.71 dBc/Hz。


    This thesis presents two divide-by-3 frequency dividers and three VCOs. Firstly, the circuit is a divide-by-3 frequency divider employing the linear mixer topology, the divider was fabricated in the 0.35 μm CMOS 2P4M CMOS technology. The divider consists of an nMOS cross-coupled LC oscillator and two injection MOSFETs in series with the cross-coupled nMOSFETs. At the drain bias voltage of 1.2 V, the divider free-running frequency is tunable from 3.73 to 3.92 GHz, and at the incident power of 0 dBm the operational locking range is about 0.69 GHz, from the incident frequency 10.99 to 11.68 GHz. The core power consumption is 6.9 mW. The die area is 0.83 × 0.94 mm2.
    The second circuit is a new low power wide locking range divide-by-3 injection-locked frequency divider (ILFD) using a standard 0.18 μm CMOS process is presented. The push-push ILFD circuit is realized with a push-push cross-coupled n-core MOS LC-tank oscillator. The core power consumption of the ILFD core is 5.88 mW. The divider’s free-running frequency is tunable from 4.50 GHz to 5.15 GHz by tuning the varactor’s control bias, and at the incident power of 0 dBm the maximum locking range is 1.4 GHz (9.0%), from the incident frequency 14.9 GHz to 16.3 GHz. The operation range is 2.6 GHz (17.3%), from 13.7 GHz to 16.3 GHz.
    A differential Colpitts voltage-controlled oscillator (VCO) is designed and implemented in a 0.18 μm CMOS 1P6M process. The designed circuit topology is an all nMOS LC-tank Colpitts VCO, which uses a composite LC resonator consisted of one gate-connected tunable LC resonator and one drain connected LC resonator. At the supply voltage of 0.7 V, the output phase noise of the VCO is -119.47 dBc/Hz at 1 MHz offset frequency from the carrier frequency of 4.51 GHz, and the figure of merit is -187.31 dBc/Hz. The core power consumption is 3.34 mW. Tuning range is about 0.2 GHz, from 4.51 to 4.71 GHz, while the control voltage was tuned from 0 to 2 V.
    The other one low voltage differential Colpitts voltage-controlled oscillator (VCO) is designed and implemented in a 0.18 μm CMOS 1P6M process. The designed circuit topology is an all nMOS LC-tank VCO using a series inductor-varactor configuration, it uses forward-biased body MOSFET and inductive gate boosting technique. At the supply voltage of 0.7 V, the output phase noise of the VCO is -117.46 dBc/Hz at 1 MHz offset frequency from the carrier frequency of 6.9 GHz, and the figure of merit is -187.42 dBc/Hz. The core power consumption is 4.4 mW. Tuning range is 0.62 GHz, from 6.51 GHz to 7.13 GHz, while the control voltage was tuned from 0 V to 2 V.
    Finally, a new fully integrated, CMOS Clapp quadrature voltage-controlled oscillator (QVCO) is presented. The QVCO is composed of two differential n-core Clapp VCOs coupled by 4 pMOSFETs and was implemented in the 0.18 μm CMOS technology with 0.9 V supply voltage. The die area is 0.574 × 0.866 mm2. At the supply voltage of 0.9 V, the total power consumption is 12.2 mW. The free-running frequency of the QVCO is tunable from 7.89 GHz to 9.3 GHz as the tuning voltage is varied from 0 V to 2 V. The measured phase noise at 1 MHz frequency offset is -118.65 dBc/Hz at the oscillation frequency of 7.89 GHz and the figure of merit (FOM) of the proposed QVCO is about -185.71 dBc/Hz.

    中文摘要 I Abstract III 誌謝 V List of Contents VI List of Figures IX List of Tables XII Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 4 Chapter 2 Design of Voltage Controlled Oscillators 6 2.1 Introduction 6 2.2 The Oscillator Theory 6 2.3 Quality Factor 10 2.4 Sorts of Oscillators 12 2.4.1 Resonatorless Oscillators 13 I. Ring Oscillator 13 II. Relaxation Oscillator 15 2.4.2 LC-Tank Oscillators 16 I. Colpitts and Hartley Oscillators 16 II. Negative -Gm Oscillators 17 2.5 Varactors 19 2.5.1 Junction Varactors 19 2.5.2 MOS Varactors 19 I. Inversion-Mode PMOS Varactor (I-MOS) 21 II. Accumulation-Mode PMOS Varactor (A-MOS) 21 2.6 Inductor and Transformers 22 2.6.1 Spiral Inductor 23 2.6.2 The Transformer 29 2.7 Design Concepts of VCO 34 2.8 Quadrature Oscillator 42 2.9 Injection Locking Frequency Divider 48 Chapter 3 CMOS Divide-by-3 LC Injection Locked Frequency Divider 55 Section 3.1 A 0.35 μm CMOS Divide-by-3 LC Injection Locked Frequency Divider Using Linear Mixers 55 3.1.1 Introduction 55 3.1.2 Circuit Design 57 3.1.3 Measurement Results 58 Section 3.2 Fully-Integrated Wide-Locking Range ÷3 Push-Push Injection-Locked Frequency Divider 65 3.2.1 Introduction 65 3.2.2 Circuit Design 67 3.2.3 Measurement Results 70 Chapter 4 Differential Colpitts VCO in 0.18 μm CMOS Technology 74 Section 4.1 A 0.18 μm CMOS Differential Colpitts VCO Using Gate-Connected LC Resonator 74 4.1.1 Introduction 74 4.1.2 Circuit Design 76 4.1.3 Measurement Results 79 Section 4.2 A Low-Voltage Inductive gm-Boosted Colpitts VCO in 0.18 μm CMOS Technology 83 4.2.1 Introduction 83 4.2.2 Circuit Design 84 4.2.3 Measurement Results 87 Chapter 5 A Quadrature CMOS Clapp Voltage-Controlled Oscillator 92 5.1 Introduction 92 5.2 Circuit Design 93 5.3 Measurement Results 96 Chapter 6 Conclusion 100 References 103

    [1] J. Roggers, C. Plett, Radio Frequency Integrated Circuit Design, Artech House, 2003.
    [2] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [3] B. Razavi, “A study of phase noise in CMOS oscillators, ” IEEE J. Solid-State Circuits, vol. 31, p.p. 331-343 Mar. 1996.
    [4] K. Shu, E. Sanchez-Sinencio, CMOS PLL Synthesizers : Analysis and Design, Springer, 2005.
    [5] A. Porret, T. Melly, C. Enz, and E, Vittoz, “Design of high-Q varactors for low-power wireless applications using a standard CMOS process,” IEEE J. Solid-State Circuits, vol. 35, pp. 337-345, Mar. 2000.
    [6] F. Svelto, P. Erratico, S. Manzini, and R. Castello, “A metal oxide semiconductor varactor,” IEEE Electron Device Lett., vol. 20, pp. 164-166, Apr. 1999.
    [7] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCO’s,” IEEE J. Solid-State Circuits, vol. 35, pp. 905-910, Jun. 2000.
    [8] T. Soorapanth, C. Yue, D. Shaeffer, T. Lee, and S. Wong, “Analysis and optimization of accumulation-mode varactor for RF ICs,” in 1998 Symp. VLSI Circuits Dig. Tech. Papers, , pp. 22-23. Jun. 1998.
    [9] J. Aguilera, and R. Berenguer, “Design and test of integrated inductors for RF applications,” Kluwer Academic Publishers, 2004.
    [10] J. Craninckx, and M. S. J. Steyaert, “A fully integrated CMOS DCS-1800 frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 2054-2065, 1998.
    [11] Y. K. Koutsoyannopoulos and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans. Circuits and System-II, vol. 47, no. 8, pp. 699-713, 2000.
    [12] A . Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, Apr. 2001.
    [13] Y. Koutsoyannopoulos, “Novel Si integrated inductor and transformer structure for RF IC design,” Proc. ISCAS , vol. 2, pp. 573-576, June. 1999.
    [14] C. Tang, C. Wu, and S. Liu, “Miniature 3-D inductors in standard CMOS process,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 471-480, 2002.
    [15] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Trans. on Parts, Hybrids and Packaging, vol. PHP-10, no.2, pp. 101-109, 1974.
    [16] J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
    [17] P.-C. Huang, M.-D. Tsai, H. Wang, C.-H. Chen, and C.-S. Chang, “A 114GHz VCO in 0.13μm CMOS technology,” IEEE International Solid-State Circuits Conference, vol. 1, pp.404-606, 6-10 Feb. 2005.
    [18] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [19] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [20] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [21] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [22] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [23] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [24] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
    [25] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [26] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
    [27] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
    [28] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [29] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon- based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [30] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
    [31] J. J. Kim, B. Kim, “A low-phase-noise CMOS LC oscillators with a Ring Structure,” ISSCC Digest of Technical Papers, pp.430-431, Feb. 2000.
    [32] J. Savoj, B. Razavi, High-Speed CMOS Circuits For Optical Receivers, Kluwer Academic Publishers, 2001.
    [33] S.-L. Jang, C.-Y. Lin, and C.-F. Lee, “A low voltage 0.35 μm CMOS frequency divider with the body injection technique,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 470–472, Jul. 2008.
    [34] S.-L. Jang, W.-C. Chen, and C.-F. Lee, “Divide-by-3 LC injection locked frequency divider with inductor over MOS topology,” Microwave and Optical Technology Lett., vol. 50, no. 4, pp. 988–992, Apr. 2008.
    [35] S.-L. Jang, P.-X. Lu, C.-F. Lee, and M.-H. Juang, “Divide-by-3 LC injection locked frequency divider with a transformer as an injector’s load,” Microwave and Optical Technology Lett., vol. 50, no.10, pp. 2722–2725, Oct. 2008.
    [36] S.-L. Jang, C.-C. Liu, and J.-F. Huang, “Divide-by-3 injection-locked frequency divider using two linear mixers,” IEICE Trans. on Electron., vol. E93-C, no.1, pp. 136–139, Jan. 2010.
    [37] H. Wu and L. Zhang, “A 16-to-18GHz 0.18μm epi-CMOS divide-by-3 injection-locked frequency divider,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp.27–29.
    [38] S.-L. Jang, C.-W. Chang, C.-F. Lee, and J.-F. Huang, “Divide-by-3 LC injection locked frequency divider implemented with 3D inductors,” IEICE Trans. Electron., vol. E91-C, no. 6, pp. 956–962, Jun. 2008.
    [39] X. P. Yu, H. M. Cheema, R. Mahmoudi, A. V. Roermund, and X. L. Yan, “A 3 mW 54.6 GHz divide-by-3 injection locked frequency divider with resistive harmonic enhancement,” IEEE Microw. Wireless Compon. Lett., pp.575-577, Sept. 2009.
    [40] S.-L. Jang, C.-W. Tai, and C.-F. Lee, “Divide-by-3 injection locked frequency divider implemented with active inductor,” Microwave and Optical Technology Lett., vol. 50, no. 6, pp. 1682–1685, June, 2008.
    [41] S.-L. Jang and C.-W. Chang, ” A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, pp.229-231, April, 2010.
    [42] S.-L. Jang, Y.-S. Chen, C.-W. Chang, and C.-C. Liu, ” A wide-locking range ÷3 injection-locked frequency divider using linear mixer,” in press, IEEE Microw. Wireless Compon. Lett., July, 2010.
    [43] S.-L. Jang, C.-C. Liu, and C.-W. Hsue, “LC-tank injection locked frequency divider with variable division ratio,” Microwave and Optical Tech. Lett., vol. 50, no. 12, pp. 3232–3236, Dec. 2008.
    [44] S.-L. Jang, J.-C. Luo, C.-W. Chang, C.-F. Lee, and J.-F. Huang, “LC-tank Colpitts injection-locked frequency divider with even and odd modulo,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 113–115, Feb. 2009.
    [45] A. Rofougaran, J. Rael, M. Rofougaran, and A. Abidi, “A 900 MHz CMOS LC-oscillator with quadrature outputs,” in IEEE ISSCC Dig. Tech. Papers, Feb. 1996, pp. 392–393.
    [46] S.-L. Jang, S.-H. Huang, C.-C. Liu and M.-H. Juang, ” CMOS Colpitts quadrature VCO using the body injection-locked coupling technique,” IEEE Microw. Wireless Compon. Lett., pp. 230–232, April, 2009.
    [47] X. Li, S. Shekhar, D. J. Allstot, “ Gm-boosted common-gate LNA and differential colpitts VCO/QVCO in 0.18-μm CMOS,” IEEE J. of Solid-State Circuits, vol. 40, no. 12, Dec. 2005.
    [48] M.-D. Tsai, Y.-H. Cho and H. Wang, “A 5-GHz low phase noise differential colpitts CMOS VCO,” IEEE Microwave Wireless Compon. Lett., vol. 15, no. 5, pp. 327–329, May 2005.
    [49] D. Baek, T. Song, E. Yoon, and S. Hong “8-GHz CMOS quadrature VCO using transformer-based LC tank” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 10, pp. 446–448, Oct. 2003.
    [50] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, and M.-H. Juang, “A low-voltage quadrature CMOS VCO based on voltage-voltage feedback topology,” IEEE Microw. Wireless Compon. Lett., vol. 16, no.12, pp. 696–698, Dec. 2006.
    [51] S.-L. Jang, C.-W. Chang, S.-C. Wu, C.-F. Lee, L.-Y. Tsai, and J.-F. Huang, “Quadrature Hartley VCO and injection-locked frequency divider,” IEICE Trans. Electron., vol. E91-C, no.8, pp.1371–1374, Aug. 2008.
    [52] P. Andreani and X. Wang, “On the phase-noise and phase-error performances of multiphase LC CMOS VCOs,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1883–1893, Nov. 2004.
    [53] H.-R. Kim, C.-Y. Cha, S.-M. Oh, M.-S. Yang, and S.-G. Lee, “A very low-power quadrature VCO with back-gate coupling,” IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 952–955, June 2004.
    [54] S.-L. Jang, Y.-J. Song, and C.-C. Liu, ” A differential Clapp VCO in 0.13 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., pp. 404–406, June 2009.
    [55] S.-L. Jang, C.-C. Liu, Y.-J. Song, and M.-H. Juang , ” A low voltage balanced Clapp VCO in 0.13 μm CMOS Technology,” Microwave and Optical Technology Lett., vol. 52, no. 7, pp. 1623–1625, 2010.
    [56] D. Ham and A. Hajimiri, “Concepts and methods in optimization of integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, pp. 896–909, June 2001.
    [57] J. Kim, J.-O. Plouchart, N. Zamdmer, R. Trzcinski, K.Wu, B. J. Gross, and M. Kim, “A 44 GHz differentially tuned VCO with 4 GHz tuning range in 0.12 μm SOI CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC), 2005, pp. 416–417.
    [58] A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. of Solid-State Circuits, vol. 34, no. 5, pp. 717-724, May 1999.
    [59] R. Aparicio and A. Hajimiri, “A noise-shifting differential Colpitts VCO,” IEEE J. of Solid-State Circuits, vol. 37, no. 12, pp. 1728-1736, Dec. 2002.
    [60] C.-Y. Cha and S.-G. Lee, “A complementary Colpitts oscillator in CMOS technology,” IEEE Trans.on Microw. Theory and Tech., vol. 53, no. 3, pp. 881-887, Mar. 2005.
    [61] S.-H. Lee, Y.-H. Chuang, S.-L. Jang, and C.-C. Chen, “Low-phase noise Hartley differential CMOS voltage controlled oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 2, pp. 145-147, Feb. 2007.
    [62] C. M. Hung, B. Floyd and K. K. O, “A fully integrated 5.35-GHz CMOS VCO and a prescaler,” IEEE Trans. Microwave Theory Tech., vol. 49, no. 1, pp. 17-22, Jan. 2001.
    [63] J.-A. Hou and Y.-H. Wang, “A 7.9 GHz low-power PMOS Colpitts VCO using the gate inductive feedback,” IEEE Microwave Wireless Compon. Lett., vol. 20, no 4, pp. 223-225, April 2010.
    [64] H. L. Kao, D.Y. Yang, Y.C. Chang, B.S. Lin, C.H. Kao, “Switched resonators using adjustable inductors in 2.4/5 GHz dual-band LC VCO,” IEEE Electronics Letters, vol. 44, no. 4, pp. 299-300, Feb. 2008.
    [65] J.-A. Hou and Y.-H. Wang, “A 5 GHz differential Colpitts CMOS VCO using the bottom PMOS cross-coupled current source,” IEEE Microwave Wireless Compon. Lett., vol. 19, no 6, pp. 401-403, April 2009.
    [66] A. Bonfanti, S. Levantino, C. Samori, and A. L. Lacaita, “A varactor configuration minimizing the amplitude-to-phase noise conversion in VCOs,” IEEE Trans. Circuits Syst. I, vol. 53, no. 3, pp. 481–488, Mar. 2006.
    [67] M.-D. Wei, S.-F. Chang, Y.-J. Yang, "A CMOS backgate-coupled QVCO based on back-to-back series varactor configuration for minimal AM-to-PM noise conversion," IEEE Microwave Wireless Compon. Lett., vol. 19, no 5, pp. 320-322, May 2009.

    無法下載圖示 全文公開日期 2015/08/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE