簡易檢索 / 詳目顯示

研究生: 張紹甫
Shao-Fu Chang
論文名稱: 功能型陽極氧化鋁膜之製備、生成機制及其應用
Fabrication, Formation Mechanism, and Application of Functional Anodic Aluminum Oxide Films
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 曾堯宣
Yao-Hsuan Tseng
周宏隆
Hung-Lung Chou
陳士勛
Shih-Hsun Chen
陳建仲
Chien Chon Chen
陳柏均
Po-Chun Chen
吳恆良
Heng-Liang Wu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 123
中文關鍵詞: 鋁陽極氧化模板尖端彎折開裂過濾膜真空壓鑄法硫化鉛奈米線氧化鉍奈米線
外文關鍵詞: Anodic aluminum oxide template, Sharp edge cracking, Membrane filter, Vacuum die casting, PbS nanowires, Bi2O3 nanowires
相關次數: 點閱:283下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋁材料具有一系列優良的物理、化學與力學性能。為滿足特定的使用要求,一般需透過表面處理工藝來解決鋁材的保護性、裝飾性和功能性三大面向的課題。其中,鋁陽極氧化處理的工藝成熟,操作簡便,已被廣泛應用。且其氧化膜硬度高、耐磨耗,耐腐蝕、絕緣性好,並且可著色,能顯著改變和提高鋁合金的外觀及使用性能。此外,為拓展此工藝的應用,其相關的理論研究與技術研發至今仍是持續不斷地進行。本研究首先以7003鋁合金陽極處理為例,探討電解液溫度、氧化時間、電壓與電流密度等參數對於氧化膜的影響以及工件尖端彎折處的氧化膜明顯開裂之改善情況。實驗結果顯示,越高的電解液溫度,氧化膜的硬度越低,且隨氧化時間增加,膜厚增加,導致膜的拉應力增大,造成開裂縫隙增大。另外,電壓越高,膜的孔隙率越低,導致膜硬度增加。最後透過降低陽極處理時的電流密度值,降低膜的生長速率,改善氧化膜的開裂情形。再來以多元醇法製備的銀奈米線溶液為標的,探討利用陽極氧化鋁模板(Anodic Aluminum Oxide, AAO)作為過濾膜以分離溶液中銀奈米線與銀顆粒的可行性。溶液中具有線徑32~52 nm的銀奈米線以及直徑90~400 nm的銀顆粒。因此,研究中製備孔徑約300~420 nm之AAO模板,並結合循環過濾系統進行物質的物理性分離。結果顯示,過濾後之溶液含有的銀顆粒數量明顯減少,且經UV-vis分析後可知其光吸收度下降,證實利用此循環過濾系統與AAO模板的結合,可有效分離具有尺寸差異的銀奈米線與銀顆粒。最後利用真空壓鑄法製程,結合100 nm管胞孔徑的AAO模板,成功製備鉛、鉍奈米線。本製程特色在於將材料加熱熔解後,直接注入AAO模板,凝固後即為一維奈米材料。之後基於擴散理論,提出奈米線之硫化機制與氧化機制,並說明溫度與時間造成的影響。結果顯示,將鉛/AAO與鉍/AAO之複合奈米線材各別以優化後的硫化參數(500 ℃持溫5小時)及氧化參數(300 ℃持溫7小時)進行熱處理,便可獲得硫化鉛/AAO與三氧化二鉍/AAO之複合奈米線材。最後將奈米線從AAO膜板中溶出,結合掃描式電子顯微鏡、X光繞射分析與成分分析驗證硫化鉛奈米線與三氧化二鉍奈米線的存在。


    Aluminum materials have a series of excellent physical, chemical, and mechanical properties. In order to meet the specific requirements of use, surface treatments are generally needed to solve the three major problems of aluminum: protection, decoration, and functionality. Among the many treatments, aluminum anodizing has been widely used due to its technical maturity and easy operation. The aluminum oxide film is hard, wear-resistant, corrosion-resistant, insulating, and colorable. It can significantly change and improve the appearance and performance of aluminum alloy. In addition, related theoretical studies and technical research and development of aluminum anodizing have been continuously carried out so as to expand its scope of application. This study first uses the anodizing of 7003 aluminum alloy to discuss the effects that parameters such as electrolyte temperature, oxidation time, voltage, and current density, have on the oxide film, and the alleviation of the evident cracking of oxide film at a workpiece’s sharp edges. The experimental results show that the higher the electrolyte temperature, the lower the hardness of the oxide film, and the film thickness increases with the increase of oxidation time, leading to the increase of the tensile stress of the film and causing an expansion of the cracking gap. Furthermore, the higher the voltage, the lower the porosity of the film, which results in an increase in film hardness. Finally, by reducing the current density value during anodizing, the growth rate of the film was reduced, and the cracking of the oxide film was alleviated. Then, silver nanowire solution prepared by polyol method was used to investigate the feasibility of using anodic aluminum oxide (AAO) as a membrane filter to separate silver nanowires and silver particles in the solution. The solution contains silver nanowires with a diameter of 32~52 nm and silver particles with a diameter of 90~400 nm. Therefore, AAO templates with pore diameters of 300~420 nm were prepared and combined with a circulating filtration system to physically separate materials. The results show that the number of silver particles in the filtered solution are significantly reduced, and UV-vis analysis indicates a decrease in light absorption of the filtered solution, confirming that the combination of the filtering system and the AAO template can effectively separate silver nanowires and silver particles, which are different in size. To conclude, lead (Pb) and bismuth (Bi) nanowires were successfully fabricated with vacuum injection molding process (also known as vacuum die casting) and AAO templates with a pore size of 100 nm. The special feature of this process is that the material is directly injected into the AAO template after it has been heated and melted, and is an one-dimensional nanomaterial after solidification. The sulfidation and oxidation mechanism of nanowires is then proposed based on the diffusion theory, with the effect of temperature and time explained. The results show that lead sulfide (PbS) and bismuth oxide (Bi2O3) nanowires can be obtained by heat treating the Pb/AAO and Bi/AAO composites with optimized sulfurization parameters (500 ℃ for 5 h) and oxidation parameters (300 ℃ for 7 h), respectively. Finally, the nanowires were released from the AAO templates, and the presence of PbS nanowires and Bi2O3 nanowires was verified by scanning electron microscope (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS) analyses.

    中文摘要 I Abstract III 致 謝 V Content VI Figure Captions X Table Captions XIII Chapter 1 Introduction 1 1.1 General Background 1 1.2 Organization of the Dissertation 3 Chapter 2 Literature Review 5 2.1 Corrosion Resistance of Aluminum 5 2.2 Corrosion Types of Aluminum 8 2.3 Overview of Aluminum Surface Treatment 16 2.3.1 Mechanical Pre-Treatment Technology for Aluminum Surfaces 16 2.3.2 Chemical Pre-Treatment Technology for Aluminum Surfaces 17 2.3.2.1 Degreasing 17 2.3.2.2 Alkaline Cleaning 19 2.3.2.3 Ash Removal 20 2.3.3 Chemical Polishing and Electropolishing of Aluminum Surfaces 21 2.3.3.1 The Principle of Chemical Polishing 23 2.3.3.2 The Principle of Electropolishing 24 2.3.4 Chemical Conversion and Anodization of Aluminum 27 2.4 Aluminum Anodizing Technology 28 2.4.1 Formation Mechanism of Anodic Aluminum Oxide (AAO) Film 28 2.4.2 Anodizing Process Suitability of Aluminum 36 2.4.2.1 Effect of Voltage and Current Density 37 2.4.2.2 Effect of Oxidation Time 38 2.4.2.3 Effect of Sulfuric Acid Concentration 39 2.4.2.4 Effect of Electrolysis Bath Temperature 40 Reference 41 Chapter 3 Alleviation of Cracking of Anodic Aluminum Oxide Film at Sharp Edges 48 3.1 Background and Motivation 48 3.2 Experimental Procedures 49 3.3 Pre-processing of Samples 51 3.4 Results and Discussion 52 3.4.1 Effect of Electrolyte Temperature on Oxide Film Cracking Behavior 52 3.4.2 Effect of Oxidation Time on the Cracking Behavior of Oxide Film 54 3.4.3 Effect of Voltage on Oxide Cracking Behavior 57 3.5 Summary 61 Reference 62 Chapter 4 Study on Porous Anodic Aluminum Oxide Template for the Filtration of Silver Nanowires Solution 63 4.1 Background and Motivation 63 4.2 Experimental Procedures 65 4.3 Results and Discussion 65 4.3.1 Morphology of Silver Nanowires and Silver Particles in the Original Solution 65 4.3.2 Fabrication of Anodic Aluminum Oxide Templates 66 4.3.3 Design of Filtration System 70 4.3.4 Separation Effect of Silver Nanowires and Particles 72 4.4 Summary 75 Reference 76 Chapter 5 Study on the Semiconductor Nanowires Fabricated by Vacuum Die Casting Assisted with Anodic Aluminum Oxide Template 78 5.1 Background and Motivation 78 5.2 Experimental Procedures 81 5.3 Results and Discussion 82 5.3.1 Fabrication of AAO Template 82 5.3.2 Fabrication and Characterization of Lead Sulfide (PbS) Nanowires by Vacuum Die Casting and Sulfurization Treatment 83 5.3.2.1 The Preparation of PbS Nanowires (NWs) 83 5.3.2.2 Characterizations of Pb NWs in the AAO Templates 84 5.3.2.3 Reaction of Pb NWs and Sulfur Gas 85 5.3.2.4 Sulfurization Mechanism of Lead Sulfide 89 5.3.3 Study on the Bismuth Oxide (Bi2O3) Nanowires Synthesized via Different Oxidation Treatment 92 5.3.3.1 The preparation of Bi2O3 Nanowires (NWs) 92 5.3.3.2 Characterizations of Bi NWs in the AAO Templates 93 5.3.3.3 Formation of Bi2O3 NWs by Oxidation Treatment 94 5.3.3.4 Photocatalytic Effect of Bi2O3 NWs for the Degradation of Methyl Orange 96 5.4 Summary 99 Reference 100 Chapter 6 Conclusions and Suggestions for Future Work 103 6.1 Conclusions 103 6.2 Suggestions for Future Work 106

    [1]
    Revie, R. W. (2008). Corrosion and corrosion control: an introduction to corrosion science and engineering. John Wiley & Sons.
    [2] Atkins, P., Atkins, P. W., & de Paula, J. (2014). Atkins' physical chemistry. Oxford university press.
    [3]
    Vernon, W. H. J. (1927). Second experimental report to the atmospheric corrosion research committee (british non-ferrous metals research association).Transactions of the Faraday Society, 23, 113-183.
    [4]
    Hart, R. K. (1956). The oxidation of aluminium in dry and humid oxygen atmospheres. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 236(1204), 68-88.
    [5] Chen, C. C. (2005). A Study on Fabrication and Characteristics of Tin Nanowires and Nanospheres by Template Assisted Method (Doctoral dissertation) Retrieved from https://ndltd.ncl.edu.tw/.
    [6] Boag, A., Taylor, R. J., Muster, T. H., Goodman, N., McCulloch, D., Ryan, C., Rout, B., & Hughes, A. E. (2010). Stable pit formation on AA2024-T3 in a NaCl environment. Corrosion Science, 52(1), 90-103.
    [7] Boag, A., Hughes, A. E., Glenn, A. M., Muster, T. H., & McCulloch, D. (2011). Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles. Corrosion Science, 53(1), 17-26.
    [8] Hughes, A. E., Boag, A., Glenn, A. M., McCulloch, D., Muster, T. H., Ryan, C., Luo, C., Zhou, X., & Thompson, G. E. (2011). Corrosion of AA2024-T3 Part II: Co-operative corrosion. Corrosion Science, 53(1), 27-39.
    [9] Glenn, A. M., Muster, T. H., Luo, C., Zhou, X., Thompson, G. E., Boag, A., & Hughes, A. E. (2011). Corrosion of AA2024-T3 Part III: propagation. Corrosion Science, 53(1), 40-50.
    [10] Breslin, C. B., Treacy, G., & Carroll, W. M. (1994). Studies on the passivation of aluminium in chromate and molybdate solutions. Corrosion science, 36(7), 1143-1154.
    [11] Liu, T. Y., Robinson, J. S., & McCarthy, M. A. (2004). The influence of hot deformation on the exfoliation corrosion behaviour of aluminium alloy 2025. Journal of materials processing technology, 153, 185-192.
    [12] Peng, Z., & Yan, S. (2016). Research progress in stress corrosion cracking of high-strength aluminum alloy. Journal of Equipment Evironmental Engineering,13(1), 130-138.
    [13] Song, R. G., Dietzel, W., Zhang, B. J., Liu, W. J., Tseng, M. K., & Atrens, A. (2004). Stress corrosion cracking and hydrogen embrittlement of an Al–Zn–Mg–Cu alloy. Acta Materialia, 52(16), 4727-4743.
    [14] Reboul, M. C., Warner, T. J., Mayer, H., & Barouk, B. (1997). A ten step mechanism for the pitting corrosion of aluminium alloys. Corrosion Reviews, 15(3-4), 471-496.
    [15] Szklarska-Smialowska, Z. (1999). Pitting corrosion of aluminum. Corrosion science, 41(9), 1743-1767.
    [16] Zaid, B., Saidi, D., Benzaid, A., & Hadji, S. (2008). Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy. Corrosion Science, 50(7), 1841-1847.
    [17] Yi, L., Kun, L., Lidong, L., Hu, S., Tongliang, D., Chuan, W., Mingmin, P., Wenchao, L., & Jiajun, J. (2019). Corrosion Behavior of 3A12,5052,6063 Aluminum Alloys in Coastal Atmosphere. Corrosion & Protection, 40(7), 490.
    [18] Bogar, F. D., & Foley, R. T. (1972). The influence of chloride ion on the pitting of aluminum. Journal of the Electrochemical Society, 119(4), 462.
    [19] Brown, R. H., & Mears, R. B. (1938). The electrochemistry of corrosion. Transactions of the Electrochemical Society, 74(1), 495.
    [20] Godard, H. P. (1960). The corrosion behavior of aluminum in natural waters. The Canadian Journal of Chemical Engineering, 38(5), 167-173.
    [21] Han, Y. M., Gallant, D., & Chen, X. G. (2013). Galvanic corrosion associated with Al–B4C composites/SS304 and Al–B4C composites/AA6061 couples in NaCl and H3BO3 solutions. Electrochimica Acta, 94, 134-142.
    [22] Zhang, D. F., Liu, Y. P., Chen, C. G., & Xu, Y. J. (2011). Galvanic Corrosion Behavior and Three Protection Techniques of Magnesium Alloy Coupled to A6N01S-T5 Aluminum Alloy in NaCl Solution. In Materials Science Forum (Vol. 686, pp. 146-150). Trans Tech Publications Ltd.
    [23] Schneider, M., Kremmer, K., Lämmel, C., Sempf, K., & Herrmann, M. (2014). Galvanic corrosion of metal/ceramic coupling. Corrosion science, 80, 191-196.
    [24] Lacroix, L., Blanc, C., Pébère, N., Thompson, G. E., Tribollet, B., & Vivier, V. (2012). Simulating the galvanic coupling between S-Al2CuMg phase particles and the matrix of 2024 aerospace aluminium alloy. Corrosion Science, 64, 213-221.
    [25] Song, G., Johannesson, B., Hapugoda, S., & StJohn, D. (2004). Galvanic corrosion of magnesium alloy AZ91D in contact with an aluminium alloy, steel and zinc. Corrosion Science, 46(4), 955-977.
    [26] Zhiyong, L., Zongshu, L., Xiaolin, Z., Wenzhu, H., Cuiwei, D., & Xiaogang, L. (2016). Growth behavior and mechanism of stress corrosion cracks of X80 pipeline steel in simulated yingtan soil solution. Acta Metallurgica Sinica, 52(8), 965-972.
    [27] Hu, Q., Qiu, Y. B., Guo, X. P., & Huang, J. Y. (2010). Crevice corrosion of Q235 carbon steels in a solution of NaHCO3 and NaCl. Corrosion science, 52(4), 1205-1212.
    [28] Min, X. H., Emura, S., Nishimura, T., Zhang, L., Tamilselvi, S., Tsuchiya, K., & Tsuzaki, K. (2010). Effects of α phase precipitation on crevice corrosion and tensile strength in Ti–15Mo alloy. Materials Science and Engineering: A, 527(6), 1480-1488.
    [29] [20]Abdulsalam, M. I. (2002). Significance of temperature change on the behavior of crevice corrosion. Corrosion, 58(4), 364-369.
    [30] Yiquan, S., Cuiwei, D., Xin, Z., & Xiaogang, L. (2009). Influence of Cl- concentration on crevice corrosion of X70 pipeline steel. Acta Metallurgica Sinica, 45(9), 1130-1134.
    [31] Xu, C., Xiaogang, L., Cuiwei, D., & Ping, L. (2010). Effects of solution environments on corrosion behaviors of X70 steels under simulated disbanded coating. Journal of Chinese Society for Corrosion and Protection, 30(1), 35-40.
    [32] Hua, F. H. (1998). The role of galvanic coupling effect in determining crevice corrosion morphology (Doctoral dissertation).
    [33] Brown, R. H., Fink, W. L., & Hunter, M. S. (1941). Measurement of irreversible potentials as a metallurgical research tool. Trans. AIME, 143, 115-122.
    [34] Galvele, J. R., & de De Micheli, S. M. (1970). Mechanism of intergranular corrosion of Al-Cu alloys. Corrosion science, 10(11), 795-807.
    [35] Muller, I. L., & Galvele, J. R. (1977). Pitting potential of high purity binary aluminium alloys—I. Al-Cu alloys. Pitting and intergranular corrosion. Corrosion Science, 17(3), 179-193.
    [36] Mazurkiewicz, B., & Piotrowski, A. (1983). The electrochemical behaviour of the Al2Cu intermetallic compound. Corrosion Science, 23(7), 697-707.
    [37] Chaoxing, L., Jinfeng, L., Nick, B., Zhiqiang, J., & Ziquao, Z. (2010). Synergetic effect of Mg2Si and Si particles on intergranular corrosion of Al-Mg-Si alloys through multi-electrode coupling system. Journal of Chinese Society for Corrosion and Protection, 30(2), 107-113.
    [38] Moeggenborg, K., Vincer, T., Lesiak, S., & Salij, R. (2006, August). Super-polished aluminum mirrors through the application of chemical mechanical polishing techniques. In Current Developments in Lens Design and Optical Engineering VII (Vol. 6288, pp. 191-199). SPIE.
    [39] ter Horst, R., Tromp, N., de Haan, M., Navarro, R., Venema, L., & Pragt, J. (2008, July). Directly polished lightweight aluminum mirror. In Advanced Optical and Mechanical Technologies in Telescopes and Instrumentation (Vol. 7018, pp. 63-72). SPIE.
    [40] Li, X., Li, W., Yang, S., Hao, Z., & Shi, H. (2018). Study on polyurethane media for mass finishing process: dynamic characteristics and performance. International Journal of Mechanical Sciences, 138, 250-261.
    [41] Li, W., Zhang, L., Li, X., Yang, S., & Wu, F. (2017). Theoretical and simulation analysis of abrasive particles in centrifugal barrel finishing: kinematics mechanism and distribution characteristics. Powder Technology, 318, 518-527.
    [42] Tamarkin, M. A., Tishchenko, E. E., Kazakov, D. V., & Isaev, A. G. (2017). Reliability of centrifugal–rotational finishing by steel shot. Russian Engineering Research, 37(4), 326-329.
    [43] Subero-Couroyer, C., Ghadiri, M., Brunard, N., & Kolenda, F. (2005). Analysis of catalyst particle strength by impact testing: The effect of manufacturing process parameters on the particle strength. Powder technology, 160(2), 67-80.
    [44] Zanini, A. (2013). Optimizing roughness and residual stresses through controlled shot peening and isotropic finishing of surfaces. Surface Effects and Contact Mechanics XI: Computational Methods and Experiments, 78, 279.
    [45] Frutos, E., Multigner, M., & González-Carrasco, J. L. (2010). Novel approaches to determining residual stresses by ultramicroindentation techniques: Application to sandblasted austenitic stainless steel. Acta materialia, 58(12), 4191-4198.
    [46] Afseth, A., Nordlien, J. H., Scamans, G. M., & Nisancioglu, K. (2001). Influence of heat treatment and surface conditioning on filiform corrosion of aluminium alloys AA3005 and AA5754. Corrosion Science, 43(12), 2359-2377.
    [47] Zhao, B., Liu, C. S., Zhu, X. S., & Xu, K. W. (2002). Research on the vibration cutting performance of particle reinforced metallic matrix composites SiCp/Al. Journal of materials processing technology, 129(1-3), 380-384.
    [48] Murakawa, M., & Jin, M. (2001). The utility of radially and ultrasonically vibrated dies in the wire drawing process. Journal of Materials Processing Technology, 113(1-3), 81-86.
    [49] Jimma, T., Kasuga, Y., Iwaki, N., Miyazawa, O., Mori, E., Ito, K., & Hatano, H. (1998). An application of ultrasonic vibration to the deep drawing process. Journal of Materials Processing Technology, 80, 406-412.
    [50] Toyo Giken Co Ltd. (1985). Proposal of Aluminum Anodizing Line. Tokyo, Japan.
    [51] Brace A. W. The Technology of Anodizing Aluminium. Third Edition. Modena: Interall Srl, 2000: 62, 63, 71.
    [52] Strazzi E, Bianchetti D, et al. Aluminium 2000-1993 Congr Proc: Vol I. Modena: Interall Srl, 1993: 169.
    [53] Brace Arthur W. Anodic coating Defects. England: Technicopy Books, 1992: 120.
    [54] Politicky V A, Fischer H Z. Electrochem, 1951, 56 (4): 326-330.
    [55] Meyer W M, Brown S H. Proc Am Electroplat Soc, 1946, 36: 163-169.
    [56] Culpan E A, Arrowsmith D J. Trans Institute Metal Finishing, 1973,51 (1): 17-22.
    [57] Arthur W Brace. The Technology of Anodizing Aluminium. Modena: Interall Srl, 2000.
    [58] Voort, G. F. V. (1984). Metallography: principles and practice. McGraw-Hill Book Company, 1984,, 752.
    [59] Hahn, T. S., & Marder, A. R. (1988). Effect of electropolishing variables on the current density-voltage relationship. Metallography, 21(4), 365-375.
    [60] Bauer O, Vogel O. BP, 226776. 1916.
    [61] Bauer O, Vogel O. GP, 423758. 1923.
    [62] Brown, G. M., Shimizu, K., Kobayashi, K., Thompson, G. E., & Wood, G. C. (1993). The development of chemical conversion coatings on aluminium. Corrosion science, 35(1-4), 253-256.
    [63] Keller, F., Hunter, M. S., & Robinson, D. L. (1953). Structural features of oxide coatings on aluminum. Journal of the Electrochemical Society, 100(9), 411.
    [64] Thompson, G. E., Furneaux, R. C., Wood, G. C., Richardson, J. A., & Goode, J. S. (1978). Nucleation and growth of porous anodic films on aluminium. Nature, 272(5652), 433-435.
    [65] Masuda, H., Hasegwa, F., & Ono, S. (1997). Self‐ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution. Journal of the electrochemical society, 144(5), L127.
    [66] Despić, A., & Parkhutik, V. P. (1989). Electrochemistry of aluminum in aqueous solutions and physics of its anodic oxide. In Modern aspects of electrochemistry No. 20 (pp. 401-503). Springer, Boston, MA.
    [67] O'sullivan, J. P., & Wood, G. C. (1970). The morphology and mechanism of formation of porous anodic films on aluminium. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 317(1531), 511-543.
    [68] Jessensky, O., Müller, F., & Gösele, U. (1998). Self-organized formation of hexagonal pore arrays in anodic alumina. Applied physics letters, 72(10), 1173-1175.
    [69] Thompson, G. E. (1997). Porous anodic alumina: fabrication, characterization and applications. Thin solid films, 297(1-2), 192-201.
    [70] Suleiman, A., Hashimoto, T., Skeldon, P., Thompson, G. E., Echeverria, F., Graham, M. J., G. I. Sproule., Moisa, S., Habazaki, H., Bailey, P., & Noakes, T. C. Q. (2008). Barrier and porous anodic oxides on InSb. Corrosion science, 50(5), 1353-1359.
    [71] Su, Z., & Zhou, W. (2008). Formation mechanism of porous anodic aluminium and titanium oxides. Advanced materials, 20(19), 3663-3667.
    [72] Su-wei, Y., Ya-xi, K., & Lu, Z. (2006). Forming mechanisms of highly ordered porous anodic aluminum oxide membranes. Functional Materials, 37(1), 113-116.
    [73] Su, Z., Bühl, M., & Zhou, W. (2009). Dissociation of water during formation of anodic aluminum oxide. Journal of the American Chemical Society, 131(24), 8697-8702.
    [74] Zhu, X., Liu, L., Song, Y., Jia, H., Yu, H., Xiao, X., & Yang, X. (2008). Oxygen bubble mould effect: serrated nanopore formation and porous alumina growth. Monatshefte für Chemie-Chemical Monthly, 139(9), 999-1003.
    [75] Zhu, X. F., Song, Y., Liu, L., Wang, C. Y., Zheng, J., Jia, H. B., & Wang, X. L. (2009). Electronic currents and the formation of nanopores in porous anodic alumina. Nanotechnology, 20(47), 475303.
    [76] Yang, X., Zhu, X., Jia, H., & Han, T. (2009). Oxygen evolution: the mechanism of formation of porous anodic alumina. Monatshefte für Chemie-Chemical Monthly, 140(6), 595-600.
    [77] Lee, W., Ji, R., Gösele, U., & Nielsch, K. Nature Mater. 5, 741 (2006). CrossRef| PubMed| CAS| Web of Science® Times Cited, 157.
    [78] Nielsch, K., Choi, J., Schwirn, K., Wehrspohn, R. B., & Gösele, U. (2002). Self-ordering regimes of porous alumina: the 10 porosity rule. Nano letters, 2(7), 677-680.
    [79] Hunter M S, Fowle P E. J Electrochem Soc, 1954, 101: 139.
    [80] アルミニウム表面处理の理论と实务.第3版.东京:日本轻金属制品协会编集发行,1994.
    [81] Biestek, T., & Weber, J. (1976). Electrolytic and chemical conversion coatings: a concise survey of their production, properties and testing. Portcullis Press Limited.
    [82] Spooner, R. C. (1955). The anodic treatment of aluminum in sulfuric acid solutions. Journal of The Electrochemical Society, 102(4), 156.
    [83] Sautter W. Aluminium, 1978, 54: 636.

    無法下載圖示 全文公開日期 2025/07/25 (校內網路)
    全文公開日期 2027/07/25 (校外網路)
    全文公開日期 2027/07/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE