簡易檢索 / 詳目顯示

研究生: 邱廷瑋
Ting-Wei Chiu
論文名稱: 開發聚脲塗層應用在醋酸纖維素膜對羅丹明6G染料的螢光強度提升
Development of polyurea coating on cellulose acetate membrane to enhance the fluorescent intensity of rhodamine 6G dye
指導教授: 李篤中
Duu-Jong Lee
口試委員: 鄭智嘉
Chih-Chia Cheng
Christopher George Whiteley
Christopher George Whiteley
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 85
中文關鍵詞: 超分子過濾膜複合氫鍵螢光強度羅丹明6G
外文關鍵詞: supramolecularsmembrane, multipleshydrogensbonds, fluorescentsintensity, srhodamine 6G
相關次數: 點閱:353下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 薄膜分離程序在現今被廣泛運用在許多化學、環境處理、生物技術等技術及研發處理上面。而這些程序在能源上的節省是很重要的一環,本實驗利用一項簡單、省能源又不涉及相變化的物理操作來達到此目的。有別於常見的薄膜過濾,本實驗著重在超分子過濾的研究上面,運用含氮鹼基超分子獨特的非共價鍵的氫鍵鍵結系統,製作出組裝、拆解可輕易調控的層狀組織結構。實驗設計了一種新型的超分子合成,稱作 UrCy-PU,是利用胞嘧啶此類的含氮鹼基在合成上形成聚脲結構,彼此靠著分子間氫鍵作用力建構出一個超分子網絡結構,藉由此網絡的孔洞來達到過濾物質的特性。
    本實驗分成了兩部分,第一部分為研究新型合成的超分子其基本材料性質,第二部分為利用 R6G 螢光粉來測試經過 PU 層過濾後的螢光效應。實驗結果顯示,經過此 PU 層的 R6G 溶液在固態狀態下,螢光光譜強度有所提升,然而 PU 與 R6G 的作用機制需要更深入了解,希望本實驗可以使後續的研究有另一個嶄新的研究思維與方向。


    Membrane filtration processes are currently used in a wide range of applications in chemical, environmental and biological industries. Energy savings can be achieved by utilizing physical operations that do not change phase characteristics, in this study.Unlike common practices, this study does not focus on the filtration membrane but a supramolecular polymer based on non-covalent interactions. The goal of the
    study is to develop a novel filtration system. Non-covalent systems are based on complementary nucleobase-pair interactions which can regulate the assembly/disassembly process and control hierarchical organization structures.
    The experiment focused on exploring a new synthetic, UrCy-PU, which uses cytosine nucleobase-pair interactions as the basic core of supramolecular materials.To form a three-dimensional material constructed using various supramolecular polymer networks (SPNs) that may enable the creation of different types of secondary structures to achieve the required performance within filtration materials.The strength of the hydrogen bonds can be easily tuned by altering the donor (D) and acceptor (A) sites to obtain the desired functional structures without using covalent polymerization.
    This study found a situation by pass through membrane to enhance the PL intensity to achieve the effect of increasing brightness of R6G. However, need to explore the mechanism of intensity change to understand the mechanism of PU and the fluorescent material in the process. This will serve as an area of exploration in future studies.

    Acknowledgements.............................................. I Abstract .................................................... II 摘要......................................................... III Table of contents ........................................... IV List of figures............................................... VI List of tables ............................................. VIII Chapter1. Introduction ....................................... 1 Chapter2. Literature review .................................. 5 2.1 Nucleobase ............................................... 5 2.2 Supramolecular polymer ................................... 7 2.3 Fluorescent material use in white light emitting diodes and application ............................................................. 12 2.4 Rhodamine ............................................... 14 2.5 Fluorescent ............................................. 18 Chapter3. Experiment materials and the methods .............. 22 3.1 Synthetic supramolecular material ....................... 22 3.2 Syntheses ............................................... 23 3.3 Analysis equipment for supramolecule .................... 26 3.4 Produce the coating layer................................ 33 3.5 Filtrate the R6G standard solution on membrane coating layer ............................................................. 34 3.6 Prepare the R6G tiny powder on solid slide .............. 35 3.7 Analyze the R6G solution on glass ....................... 36 3.8 Supplementary test ...................................... 38 3.8.2.1 The time effect of R6G .............................. 38 3.8.2.2 Zeta-potential Analyzer (zeta potential) ............ 38 3.8.2.3 Mixed analysis (R6G/PU) ............................. 39 Chapter4. Results and Discussion ............................ 40 4.1 UrCy-PU analysis ........................................ 40 4.2 PU coating test (thickness test) ........................ 56 4.3 R6G Analysis ............................................ 57 4.3.1.1 liquid analysis ..................................... 57 4.3.1.2 Membrane filtration analysis ........................ 59 4.3.1.3. PU coating layer on CA membrane .................... 60 4.3.1.4 UV attenuation coefficient .......................... 61 4.3.1.5 Relative Fluorescence quantum yield (QY) .............62 4.3.1.6 Summary for liquid analysis ......................... 64 4.3.2.1 PL analysis for solid thin film surface ............. 65 4.3.3.1 R6G unfiltrate ...................................... 67 4.3.3.2 R6G pass through CA membrane ........................ 69 4.3.3.3 R6G pass through PTFE filter......................... 70 4.3.3.4 R6G Pass through PU/CA membrane ..................... 71 4.3.3.5 Summary for SEM& DLS ................................ 74 4.3.4.1 The time effect of R6G .............................. 75 4.3.4.2 Zeta potential analysis ............................. 77 4.3.4.3 FTIR for R6G/ UrCy-PU mixed ......................... 79 Chapter5. Conclusions and Future Prospects .................. 81 References and notes......................................... 83

    1. R.F. Kubin, A.N.F., Fluorescence quantum yields of some rhodamine dyes. Journal of Luminescence, 1982. 27(4): p. 455-462.
    2. ten Brinke, G., J. Ruokolainen, and O. Ikkala, Supramolecular materials based on hydrogen-bonded polymers, in Hydrogen Bonded Polymers, W. Binder,
    Editor. 2007, Springer-Verlag Berlin: Berlin. p. 113-177.
    3. Sijbesma, R.P., et al., Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science, 1997. 278(5343): p. 1601-1604.
    4. Greco, E., et al., Cytosine modules in quadruple hydrogen bonded arrays. New Journal of Chemistry, 2010. 34(11): p. 2634-2642.
    5. Cheng, C.C., et al., Large-scale production of ureido-cytosine based supramolecular polymers with well-controlled hierarchical nanostructures. Rsc Advances, 2015. 5(93): p. 76451-76457.
    6. Cho, S.H., S.R. White, and P.V. Braun, Self-Healing Polymer Coatings. Advanced materials, 2009. 21(6): p. 645-+.
    7. Wang, C., et al., Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nature Chemistry,
    2013. 5(12): p. 1042-1048.
    8. White, S.R., et al., Autonomic healing of polymer composites. Nature, 2001. 409(6822): p. 794-797.
    9. Cheng, C.C., et al., Bio-complementary supramolecular polymers with effective self-healing functionality. RSC Advances, 2015. 5(110): p. 90466-90472.
    10. Cheng, C.C., et al., Highly efficient drug delivery systems based on functional supramolecular polymers: In vitro evaluation. Acta Biomaterialia, 2016. 33: p.
    194-202.
    11. Li, M., et al., Topological Analysis of Metal-Organic Frameworks with Polytopic Linkers and/or Multiple Building Units and the Minimal Transitivity Principle.
    Chemical Reviews, 2014. 114(2): p. 1343-1370.
    12. Cai, H., et al., Spatial, Hysteretic, and Adaptive Host-Guest Chemistry in a Metal-Organic Framework with Open Watson-Crick Sites. Angewandte Chemie-International Edition, 2015. 54(36): p. 10454-10459.
    13. Krieg, E., et al., Supramolecular Gel Based on a Perylene Diimide Dye: Multiple Stimuli Responsiveness, Robustness, and Photofunction. Journal of the American Chemical Society, 2009. 131(40): p. 14365-14373.
    14. Krieg, E., et al., A recyclable supramolecular membrane for size-selective separation of nanoparticles. Nature Nanotechnology, 2011. 6(3): p. 141-146.
    15. Keller, U., et al., Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers. Ieee Journal of Selected Topics in Quantum Electronics, 1996. 2(3): p. 435-453.
    16. Liu, R.-S., Discussion on the thermal characteristics of the phosphor light-emitting diode. 2013.
    17. Gavrilenko, V.I. and M.A. Noginov, Ab initio study of optical properties of rhodamine 6G molecular dimers. Journal of Chemical Physics, 2006. 124(4): p. 6.
    18. Zehentbauer, F.M., et al., Fluorescence spectroscopy of Rhodamine 6G: Concentration and solvent effects. Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 2014. 121: p. 147-151.
    19. NECKERS, O.V.-A.a.D.C., Aggregation Phenomena in Xanthene Dyes. Acc. Chem. Res. , 1989. 22: p. 171-177.
    20. Kubista, M., et al., EXPERIMENTAL CORRECTION FOR THE INNER-FILTER EFFECT IN FLUORESCENCE-SPECTRA. Analyst, 1994. 119(3): p. 417-419.
    21. Griffiths, P. and J.A. de Hasseth, Fourier Transform Infrared Spectrometry (2nd ed.). 18 May 2007: John Wiley & Sons.
    22. O'Neill, M.J., The Analysis of a Temperature-Controlled Scanning Calorimeter. Anal. Chem, 1964. 36 (7): p. 1238-1245.
    23. Socrates, G., Infrared and Raman Characteristic Group Frequencies: Tables and Charts. 2004.
    24. Lafitte, V.G.H., et al., Quadruply hydrogen bonded cytosine modules for supramolecular applications. Journal of the American Chemical Society, 2006. 128(20): p. 6544-6545.
    25. Liana Annunziata, a.A.K.D., a Stéphane Fouquay,b Guillaume Michaud,c, c.J.-M.B. Frédéric Simon, d Jean-François Carpentiera and, and S.M. Guillaume*a, α,ω-Di(glycerol carbonate) telechelic polyesters and polyolefins as precursors to polyhydroxyurethanes: an isocyanate-free approach†. Green Chemistry, 2014.
    26. Bradley, M. Advantages of FT-IR in Polymer Manufacturing. 2016.
    27. Marvel, C.S. Synthesis of Thermally Stable Polymers. 1972.
    28. Scherman, O.A., et al., A selectivity-driven supramolecular polymerization of an AB monomer. Angewandte Chemie-International Edition, 2006. 45(13): p.
    2072-2076.
    29. Botterhuis, N.E., et al., Self-assembly and morphology of polydimethylsiloxane supramolecular thermoplastic elastomers. Journal of Polymer Science Part a-Polymer Chemistry, 2008. 46(12): p. 3877-3885.
    30. Lakowicz, J.R., Principles of Fluorescence Spectroscopy. 2006.
    31. Mitani, Y., et al., Role of adsorbed water in diffusion of rhodamine 6G on glass surface. Chemical Physics Letters, 2006. 431(1-3): p. 164-168.
    32. Taguchi, T., S. Hirayama, and M. Okamoto, NEW SPECTROSCOPIC EVIDENCE FOR MOLECULAR AGGREGATES OF RHODAMINE 6G IN AQUEOUS-SOLUTION AT HIGH-PRESSURE. Chemical Physics Letters, 1994. 231(4-6): p. 561-568.
    33. Kirby, B.J., Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. 2010: Cambridge University Press.

    無法下載圖示 全文公開日期 2021/07/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE