簡易檢索 / 詳目顯示

研究生: Wodaje Addis Tegegne
Wodaje Addis Tegegne
論文名稱: 發展用於實際樣品化學分析的表面增強拉曼光譜分析法
Development of Surface Enhanced Raman Spectroscopy Analytical Methods for the Chemical Analysis of Real Samples
指導教授: 蘇威年
Wei-Nien Su
黃炳照
Bing-Joe Hwang
口試委員: 杜景順
Jing-Shan Do
周澤川
Chou Tse-Chuan
王迪彥
Di-Yan Wang
黃炳照
BING-JOE HWANG
蘇威年
WEI-NIEN SU
蔡孟哲
Meng-Che Tsai
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 170
中文關鍵詞: 表面增強拉曼光譜(SERS)銀奈米立方體聚多巴胺1T-MoS2奈米片濾紙羅丹明6G (R6G)脫氧雪茄烯醇 (DON)腐絕 (thiabendazole)噻菌靈(thiram)腺嘌呤 (adenine)豬飼料蘋果汁尿液
外文關鍵詞: Surface enhanced Raman spectroscopy (SERS), silver nanocubes, polydopamine, 1T-MoS2 nanosheet, filter paper, rhodamine 6G (R6G), deoxynivalenol, thiram, thiabendazole, adenine, pig feed, apple juice, urine
相關次數: 點閱:362下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 表面增強拉曼光譜(SERS)是一種靈敏且快速的分析技術,用於分析物的分子指紋檢測。對於化學和生物樣品分析中廣泛需要的應用,SERS基材的選擇和製造是一個關鍵問題。本論文就濾紙上製備的新型SERS基材的製備,表徵及其應用,以三種方式進行探討。在第一種方法中,以多元醇方法合成銀奈米立方體(AgNCs),並對其進行了少量修飾,然後用聚多巴胺(PDA)在立方體結構表面進行超薄塗層。通過抽濾將所得的核殼AgNCs@PDA組裝在濾紙上,並用於分析豬飼料中的脫氧雪腐烯醇(DON)黴菌毒素。由於濾紙固有的纖維結構,改進了銀奈米立方體的組合,從而通過電漿耦合提高了SERS活性。有趣的是,超薄PDA塗層的AgNCs基材通過π-π堆積相互作用和氫鍵提高了DON的吸收。PDA塗層還提高了基材的穩定性,使其表現出較佳的SERS分析性能,分析增強因子(AEF)為1.82 × 107,偵測低限(LOD)可達飛摩爾範圍(0.82 fM)。 用於DON分析的AgNCs @ PDA基材的檢測限比裸AgNCs還低1.8倍。而且,AgNCs@ PDA基材是穩定的,在儲存90天后仍可保持原始拉曼強度的88.24%。因此,所提出的方法顯示,SERS基材在分析其他黴菌毒素和食品安全性問題中所可扮演的重要功用。
    第二種策略涉及用AgNCs修飾的二硫化鉬奈米片的製備,以檢測食物農藥殘留。在這裡,我們發展新穎的銀奈米立方體修飾1T相MoS2奈米片(1T-MoS2/AgNCs)的SERS活性感測器負載在濾紙上,用於無標籤和農藥殘留的超靈敏檢測。1T-MoS2可提高1T-MoS2奈米片的SERS活性。將AgNCs錨定在MoS2奈米片表面上。所得的混合(hybrid)材料實現了顯著的SERS活性,AEF為1.78 × 107,比2H-MoS2/AgNCs或裸AgNCs高一個數量級,並且對於羅丹明6G的LOD為1×10-12 M,腐絕 (thiabendazole)為 10 ppb,噻菌靈(thiram)為0.15 ppb。出色的SERS性能歸因於(i)目標分子與1T-MoS2奈米片之間的電荷轉移共振,以及(ii)AgNCs的“間隙”和“尖端”周圍的電磁增強的協同效應。此外,混合基材具有出色的SERS信號均勻性,點對點可重複性實驗的相對標準偏差(RSD)為9.46%的點對點可重複性,以及11.17%的基材可重複性。此外,1T-MoS2/AgNCs奈米混合材料基材穩定,可在保存兩個月後保持原始拉曼信號強度的72.59%,並且該基質還可用於檢測真實蘋果汁樣品中的多成分農藥。因此,我們的研究提出了一種快速,靈敏和低成本的SERS感測器,適用於食品安全,其他實際樣品分析和現場檢測技術。
    第三種方法展示了柔性和疏水性AgNCs @ SiO2 / PMHS修飾的濾紙基材的製備,及其在尿液樣品中腺嘌呤(adenine)敏感分析的應用。近年來,基於紙的柔軟性與便利性,SERS基底在分析物的靈敏檢測中引起了極大的關注。然而,由於紙本身的親水特性,奈米顆粒不會很好地聚集在紙表面上。這降低了運用紙基基材時的再現性和靈敏度。在本文中這裡,我們演示了基於疏水性紙基的柔性基材,該基材使用負載銀奈米立方體在聚甲基氫矽氧烷改質紙(AgNCs @ SiO2/PMHS改性紙)來實現超高靈敏度和重現性。通過將濾紙浸塗到PMHS溶液中獲得疏水性濾紙,從而使接觸角增加到〜112.5°。 AgNCs@SiO2/改性紙基材顯示出6.55 × 106的高分析增強因子(AEF),是AgNCs@ SiO2 /普通紙基材的2.2倍強,偵測低限至0.1 nM R6G和0.89 nM腺嘌呤。由於其均勻性和比常規濾紙基材更優異的樣品採集能力,因疏水性表面產生的高密度熱點新高,使得SERS增強因子和靈敏度達到新高。此外,在基材對基材和點對點的再現實驗均顯示出優異的結果,相對標準偏差(RSD)分別為9.22%和6.05%。而且,AgNCs@SiO2/PMHS改性紙基材具有良好的穩定性,即使在暴露於空氣三個月後,拉曼信號強度僅下降了25.88%。
    本論文中所探索的方法是為發展成一種無標記,低成本,可重現和靈敏的SERS分析檢測方法,透過π-π堆疊相互作用,氫鍵作用,SERS增強機制的協同作用來提高SERS靈敏度,以及通過改善濾紙的疏水性。實現可對實際樣品進行化學分析。


    Surface enhanced Raman spectroscopy (SERS) is a sensitive and rapid analytical technique for the molecular fingerprint detection of analytes. The choice and fabrication of SERS substrate is a critical issue for the wide spread point-of-need applications in the detection of chemical and biological molecules in the analysis of real samples. Three approaches about the fabrication and characterization of novel SERS substrates fabricated on flexible paper as well as their applications in real sample analysis are presented in this dissertation.
    In the first approach, silver nanocubes (AgNCs) were synthesized based on a polyol method with minor modification followed by ultrathin coating with polydopamine (PDA). The resulting core-shell AgNCs@PDA were assembled on filter paper by suction filtration and applied for the analysis of deoxynivalenol (DON) mycotoxin in pig feed. Due to the fibrous structure of the filter paper, the assemblages of the silver nanocubes were improved, rendering enhanced SERS activity through plasmon coupling. Interestingly, ultrathin PDA coated AgNCs substrate improves the absorption of DON via π–π stacking interactions and hydrogen bonding. PDA coating also improves the stability of the substrate. The substrate showed high analytical SERS performance with analytical enhancement factor (AEF) of 1.82×107 and a low limit of detection (LOD) down to femtomolar range (0.82 fM). The detection limit of AgNCs@PDA substrate for DON analysis is 1.8 fold lower than the bare AgNCs. Moreover, the AgNCs@PDA substrate is stable which maintains 88.24% of the original Raman intensity after storage for 90 days. Thus, the proposed method indicates the utility of the SERS substrate for point-of-need application in the analysis of other mycotoxin and food safety issues.
    The second approach deals with the preparation of molybdenum disulphide nanosheets decorated with AgNCs for the detection of pesticide residues. Herein, we report novel 1T-phase MoS2 nanosheets decorated silver nanocubes (1T-MoS2/AgNCs) SERS-active sensor loaded on filter paper for label-free and ultrasensitive detection of pesticide residues. The resulting hybrid material achieves a significant SERS activity with AEF of 1.78 × 107 which is one order of magnitude higher than either of the 2H-MoS2/AgNCs counterparts or the bare AgNCs, and a very low LOD of 1×10−12 M for rhodamine 6G, 10 ppb for thiabendazole and 0.15 ppb for thiram. This extraordinary SERS performance can be ascribed to the synergistic effects of (i) charge transfer resonance between the target molecules and 1T-MoS2 nanosheets, and (ii) electromagnetic enhancement around the “gap” and “tip” of AgNCs. In addition, the substrate achieves excellent SERS signal uniformity with a relative standard deviation (RSD) of 9.46% spot-to-spot reproducibility, and 11.17% substrate-to-substrate reproducibility. Furthermore, the 1T-MoS2/AgNCs nanocomposite substrate is stable which maintains 72.59% of the original Raman signal intensity after two months of storage, and the substrate is also employed for detection of multi-component pesticides in real apple juice samples.
    The third approach demonstrates the fabrication of flexible and hydrophobic AgNCs@SiO2/PMHS decorated filter paper substrate and its application for the sensitive analysis of adenine in urine sample. However, due to its inherent hydrophilic surface, the nanoparticles will not be concentrated very well on the paper surface. This reduces the reproducibility and sensitivity of the paper based substrate. In this approach, a flexible hydrophobic filter paper based SERS substrate using silver nanocubes loaded on polymethylhydrosiloxane (PMHS) modified filter paper (AgNCs@SiO2/PMHS modified paper) to realize ultrahigh sensitivity and reproducibility. The hydrophobic filter paper was obtained by dip-soaking the filter paper into PMHS solution, resulting in an increased contact angle to ~112.5°. The AgNCs@SiO2/modified paper substrate shows high analytical enhancement factor (AEF) of 6.55×106, which is 2.2-fold enhancement compared to AgNCs@SiO2/normal paper substrate, LOD down to 0.1 nM R6G and 0.89 nM adenine. The record SERS enhancement factor and sensitivity is attributed to the high hot spots density created in the hydrophobic surface as a result of the excellent uniformity and superior sample collection ability than the normal filter paper based substrate. Besides, the substrate shows excellent reproducibility both substrate-to-substrate and spot-to-spot, with relative standard deviation (RSD) of 9.22% and 6.05%, respectively. Moreover, the AgNCs@SiO2/PMHS modified paper substrate achieved good stability, the Raman signal intensity drops by 25.88% after 3 months of exposure to air.
    The approaches explored in this dissertation developed as label free, low-cost, reproducible and sensitive analytical SERS detection methods for the analysis of real samples by improving the SERS performance of the substrates through π–π stacking interactions, hydrogen bonding, synergistic effect of the SERS enhancement mechanisms, and by improving the hydrophobicity of the filter paper.

    Table of content 中文摘要 i Abstract v Acknowledgement viii List of figures xiii List of tables xix Acronyms xx Chapter 1 Introduction 1 1.1 Background of the study 1 1.2 Motivation 5 1.3 Objectives 6 1.4 Significance of the study 6 1.5 Structure of the dissertation 7 Chapter 2 Literature review 9 2.1 Background of Raman spectroscopy 9 2.2 Basic principles of Raman scattering 9 2.3 Instrumentation of Raman spectroscopy 10 2.4 Surface enhanced Raman spectroscopy (SERS) 12 2.5 Mechanisms of SERS enhancement 13 2.5.1 Electromagnetic enhancement mechanism of SERS 14 2.5.2 Chemical enhancement mechanism of SERS 16 2.6 SERS substrates 17 2.6.1 Colloidal substrates 19 2.6.2 Solid substrates 19 2.6.3 Flexible plasmonic substrates 20 2.6.4 Paper based flexible substrate 21 2.7 Key factors to boost SERS 22 2.7.1 SERS enhancement factor 22 2.7.2 Reproducibility 23 2.7.3 Stability 24 2.7.4 Selectivity 25 2.8 Selection of Ag material for SERS substrate 26 2.9 Synthesis of silver nanoparticles 28 2.9.1 Silver mirror reaction 28 2.9.2 Citrate reduction method 29 2.9.3 Polyol method 29 2.9.4 Seed-mediated growth method 31 2.9.5 Shape controlled synthesis of AgNPs 31 2.10 Synthesis of Ag nanocubes and reason of choice 32 2.11 Synthesis mechanisms of silver nanocubes 33 2.12 Surface coating for preparation of nanoparticles 34 2.12.1 Silica coating of plasmonic metal nanoparticles 34 2.12.2 Polymer coating of plasmonic metal nanoparticles 35 2.13 Principles of shell-isolated nanoparticles-enhanced Raman spectroscopy 35 2.14 Applications of surface enhanced Raman spectroscopy 37 Chapter 3 Experimental section 41 3.1 Chemicals and materials 41 3.2 Synthesis of AgNCs 41 3.3 Synthesis of AgNCs@PDA 42 3.4 Synthesis of 1T-MoS2 and 2H-MoS2 nanosheets 43 3.5 Preparation of 1T-MoS2/AgNCs and 2H-MoS2/AgNCs nanocomposites 44 3.6 Preparation of AgNCs@SiO2 44 3.7 Fabrication of paper based SERS substrate 44 3.8 Characterization 45 3.9 Preparation of analyte solutions 46 3.10 SERS measurement 48 Chapter 4 Silver nanocubes@polydopamine surface enhanced Raman scattering substrate as ultrasensitive and stable detection of trace deoxynivalenol 49 4.1 Scope of the study 49 4.2 Results and discussion 51 4.2.1 Morphology and characterization of AgNCs and AgNCs@PDA substrate 51 4.2.2 FT-IR spectra analysis 54 4.2.3 The effect of shell thickness of PDA 55 4.2.4 SERS activity of the substrate 56 4.2.5 Reproducibility and stability of SERS substrate 58 4.2.6 SERS quantitative analysis of DON 59 4.2.7 DON analysis in pig feed 61 4.3 Summary 63 Chapter 5 Ag nanocubes decorated on 1T-MoS2 nanosheets SERS substrate for reliable and ultrasensitive detection of pesticides 65 5.1 Scope of the study 65 5.2 Results and discussion 68 5.2.1 Characterization 68 5.2.2 SERS activity of the substrate 77 5.2.3 Quantitative analysis of pesticides 87 5.2.4 Analysis of thiram and thiabendazole in real samples 90 5.2.5 Multiplex analysis of pesticide residues 94 5.3 Summary 96 Chapter 6 Flexible hydrophobic filter paper decorated with silver nanocubes substrate for sensitive and rapid surface enhanced Raman spectroscopy detection 97 6.1 Scope of the study 97 6.2. Results and discussion 98 6.2.1 SERS substrate characterization 98 6.2.2 FTIR analysis 104 6.2.3 Sensitivity of the SERS substrate 105 6.2.4 Reproducibility of the SERS substrate 108 6.2.5 Stability test 110 6.2.6 SERS analysis of adenine 111 6.2.7 Analysis of adenine in real sample 114 6.3 Summary 116 Chapter 7 Conclusion and future outlook 117 7.1 Conclusion 117 7.2 Future outlook 119 References 121 List of publications 143 List of conference presentations 145

    1. Dincer, C.; Bruch, R.; Costa-Rama, E.; Fernandez-Abedul, M. T.; Merkoci, A.; Manz, A.; Urban, G. A.; Guder, F., Disposable sensors in diagnostics, food, and environmental monitoring. Adv. Mater. 2019, 31 (30), e1806739.
    2. Zheng, J.; He, L., Surface-enhanced Raman spectroscopy for the chemical analysis of food. Compr. Rev. Food Sci. Food Saf. 2014, 13 (3), 317-328.
    3. Law, J. W.; Ab Mutalib, N. S.; Chan, K. G.; Lee, L. H., Rapid methods for the detection of foodborne bacterial pathogens: principles, applications, advantages and limitations. Front. Microbiol. 2014, 5, 770.
    4. Lin, Z.; He, L., Recent advance in SERS techniques for food safety and quality analysis: a brief review. Curr. Opin. Food Sci. 2019, 28, 82-87.
    5. Fan, M.; Andrade, G. F. S.; Brolo, A. G., A review on recent advances in the applications of surface-enhanced Raman scattering in analytical chemistry. Anal. Chim. Acta 2020, 1097, 1-29.
    6. Halvorson, R. A., Vikesland, P.J, Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environ. Sci. Technol. 2010, 44 (20), 7749-7755.
    7. Cialla-May, D.; Zheng, X.-S.; Weber, K.; Popp, J., Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: from cells to clinics. Chem. Soc. Rev. 2017, 46 (13), 3945-3961.
    8. Pérez-Jiménez, A. I.; Lyu, D.; Lu, Z.; Liu, G.; Ren, B., Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem. Sci. 2020, 11 (18), 4563-4577.
    9. Choi, J. R.; Yong, K. W.; Choi, J. Y.; Cowie, A. C., Emerging point-of-care technologies for food safety analysis. Sensors 2019, 19, 817.
    10. Liu, Z.; Zhang, Y.; Xu, S.; Zhang, H.; Tan, Y.; Ma, C.; Song, R.; Jiang, L.; Yi, C., A 3D printed smartphone optosensing platform for point-of-need food safety inspection. Anal. Chim. Acta 2017, 966, 81-89.
    11. Shin, J. H.; Hong, J.; Go, H.; Park, J.; Kong, M.; Ryu, S.; Kim, K. P.; Roh, E.; Park, J. K., Multiplexed detection of foodborne pathogens from contaminated lettuces using a handheld multistep lateral flow assay device. J. Agric. Food. Chem 2018, 66 (1), 290-297.
    12. Zeng, F.; Duan, W.; Zhu, B.; Mu, T.; Zhu, L.; Guo, J.; Ma, X., Paper-based versatile surface-enhanced Raman spectroscopy chip with smartphone-based Raman analyzer for point-of-care application. Anal. Chem. 2019, 91 (1), 1064-1070.
    13. Panneerselvam, R.; Liu, G. K.; Wang, Y. H.; Liu, J. Y.; Ding, S. Y.; Li, J. F.; Wu, D. Y.; Tian, Z. Q., Surface-enhanced Raman spectroscopy: bottlenecks and future directions. Chem. Commun. 2017, 54 (1), 10-25.
    14. Fan, M.; Andrade, G. F.; Brolo, A. G., A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 2011, 693 (1-2), 7-25.
    15. Sharma, B.; Frontiera, R. R.; Henry, A.-I.; Ringe, E.; Van Duyne, R. P., SERS: materials, applications, and the future. Mater. Today 2012, 15 (1-2), 16-25.
    16. Kobayashi, Y.; Katakami, H.; Mine, E.; Nagao, D.; Konno, M.; Liz-Marzan, L. M., Silica coating of silver nanoparticles using a modified Stober method. J. Colloid. Interface Sci. 2005, 283 (2), 392-396.
    17. Xia, X.; Zeng, J.; Zhang, Q.; Moran, C. H.; Xia, Y., Recent developments in shape-controlled synthesis of silver nanocrystals. J. Phys. Chem. C 2012, 116 (41), 21647-21656.
    18. Polavarapu, L.; Liz-Marzan, L. M., Towards low-cost flexible substrates for nanoplasmonic sensing. Phys. Chem. Chem. Phys. 2013, 15 (15), 5288-5300.
    19. Prikhozhdenko, E. S.; Bratashov, D. N.; Gorin, D. A.; Yashchenok, A. M., Flexible surface-enhanced Raman scattering-active substrates based on nanofibrous membranes. Nano Res. 2018, 11 (9), 4468-4488.
    20. Ngo, Y. H.; Li, D.; Simon, G. P.; Garnier, G., Paper surfaces functionalized by nanoparticles. Adv. Colloid Interface Sci. 2011, 163 (1), 23-38.
    21. Lee, C. H.; Hankus, M. E.; Tian, L.; Pellegrino, P. M.; Singamaneni, S., Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Anal. Chem. 2011, 83 (23), 8953-8958.
    22. Bumbrah, G. S.; Sharma, R. M., Raman spectroscopy-basic principle, instrumentation and selected applications for the characterization of drugs of abuse. Egypt. J. Forensic Sci. 2016, 6 (3), 209-215.
    23. Raman, C. V. F. R. S., A new radiation. Indian J. Phys. 1928, 2, 387-398
    24. Raman, C. V., The Raman effect: investigation of molecular structure by light scattering. Trans. Faraday Soc. 1929, 25, 781-792
    25. Baena, J. R.; Lendl, B., Raman spectroscopy in chemical bioanalysis. Curr. Opin. Chem. Biol. 2004, 8 (5), 534-539.
    26. Kudelski, A., Analytical applications of Raman spectroscopy. Talanta 2008, 76 (1), 1-8.
    27. Smith, W. D., G., Modern Raman spectroscopy-a practical approach. John Wiley and Sons,Ltd 2005, 113-127.
    28. Lam, Z.; Kong, K. V.; Olivo, M.; Leong, W. K., Vibrational spectroscopy of metal carbonyls for bio-imaging and-sensing. Analyst 2016, 141 (5), 1569-1586.
    29. Sun, D.-W., Modern techniques for food authentication. First Edition 2008, 69-70.
    30. Nazarov, M. N., D. Y., New generation of europium and terbium activated phosphors from syntheses to applications. First Edition 2011, 93-98.
    31. Hargreaves, M. D.; Burnett, A. D.; Munshi, T.; Cunningham, J. E.; Linfield, E. H.; Davies, A. G.; Edwards, H. G. M., Comparison of near infrared laser excitation wavelengths and its influence on the interrogation of seized drugs-of-abuse by Raman spectroscopy. J. Raman Spectros. 2009, 40 (12), 1974-1983.
    32. Ferraro, J. R. N., K.; Brown, C.W., Introductory Raman spectroscopy. Second Edition 2003, 95-116.
    33. Fleischmann, M. H., P.J.; Mcquillan, A.J., Raman spectra of pyridine adsorbed at a silver electrode. Chem.Phys.Lett. 1974, 26 (2), 163-166.
    34. Sui, M.; Kunwar, S.; Pandey, P.; Lee, J., Strongly confined localized surface plasmon resonance (LSPR) bands of Pt, AgPt, AgAuPt nanoparticles. Sci. Rep. 2019, 9 (1), 16582.
    35. Botta, R.; Eiamchai, P.; Horprathum, M.; Limwichean, S.; Chananonnawathorn, C.; Patthanasettakul, V.; Nuntawong, N., Investigation of silver nanorods as reusable SERS-active substrates for trace level detection of 2-MIB volatile organic compound. Sens. Actuators B: Chem. 2018, 271, 122-127.
    36. Lee, H. K.; Lee, Y. H.; Koh, C. S. L.; Phan-Quang, G. C.; Han, X.; Lay, C. L.; Sim, H. Y. F.; Kao, Y. C.; An, Q.; Ling, X. Y., Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Chem. Soc. Rev. 2019, 48 (3), 731-756.
    37. Guo, H.; He, L.; Xing, B., Applications of surface-enhanced Raman spectroscopy in the analysis of nanoparticles in the environment. Environ. Sci.: Nano 2017, 4 (11), 2093-2107.
    38. Dick, L. A. M., A.D.; Haynes, C.L.; Van Duyne, R.P., Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): improvements in surface nanostructure stability and suppression of irreversible loss. J. Phys. Chem. B 2002, 106, 853-860.
    39. Albella, P.; Shibanuma, T.; Maier, S. A., Switchable directional scattering of electromagnetic radiation with subwavelength asymmetric silicon dimers. Sci. Rep. 2015, 5, 18322.
    40. Hossain, M. K.; Kitahama, Y.; Huang, G. G.; Han, X.; Ozaki, Y., Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Anal. Bioanal. Chem. 2009, 394 (7), 1747-1760.
    41. Bruzas, I.; Lum, W.; Gorunmez, Z.; Sagle, L., Advances in surface-enhanced Raman spectroscopy (SERS) substrates for lipid and protein characterization: sensing and beyond. Analyst 2018, 143 (17), 3990-4008.
    42. Fong, K. E.; Yung, L.-Y. L., Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale 2013, 5 (24), 12043-12071.
    43. Xia, M., A review on applications of two-dimensional materials in surface-enhanced Raman spectroscopy. Int. J. Spectrosc. 2018, 2018, 1-9.
    44. Tang, H.; Zhu, C.; Meng, G.; Wu, N., Review-surface-enhanced Raman scattering sensors for food safety and environmental monitoring. J. Electrochem. Soc. 2018, 165 (8), B3098-B3118.
    45. Wang, H. X.; Zhao, Y. W.; Li, Z.; Liu, B. S.; Zhang, D., Development and application of aptamer-based surface-enhanced Raman sensors in quantitative analysis and biotherapy. Sensors 2019, 19 (17), 3806.
    46. Guo, L.; Jackman, J. A.; Yang, H.-H.; Chen, P.; Cho, N.-J.; Kim, D.-H., Strategies for enhancing the sensitivity of plasmonic nanosensors. Nano Today 2015, 10 (2), 213-239.
    47. Le Ru, E. C., Blackie, E., Meyer,M., Etchegoin, P.G, Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C 2007, 111 (37), 13794-13803.
    48. Li, M.; Cushing, S. K.; Wu, N., Plasmon-enhanced optical sensors: a review. Analyst 2015, 140 (2), 386-406.
    49. Kneipp, K., Kneipp, H., Itzkan, H. I., Dasari, R.R., Feld, M.S., Surface-enhanced Raman scattering and biophysics. J. Phys.: Condens. Mater. 2002, 14, R597–R624.
    50. Campion, A. K., P., Surface-enhanced Raman scattering. Chem. Soc. Rev. 1998, 27, 241-250.
    51. Kannan, P. K.; Shankar, P.; Blackman, C.; Chung, C.-H., Recent advances in 2D inorganic nanomaterials for SERS sensing. Adv. Mater. 2019, 31 (34), e1803432.
    52. Fong, K. E.; Yung, L. Y., Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale 2013, 5 (24), 12043-71.
    53. Wei, W.; Du, Y.; Zhang, L.; Yang, Y.; Gao, Y., Improving SERS hot spots for on-site pesticide detection by combining silver nanoparticles with nanowires. J. Mater. Chem. C 2018, 6 (32), 8793-8803.
    54. Tian, Z.-Q., Bin Ren, B., Wu,D,-Y., Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 2002, 106 (37), 9463-9483.
    55. Cong, S.; Yuan, Y.; Chen, Z.; Hou, J.; Yang, M.; Su, Y.; Zhang, Y.; Li, L.; Li, Q.; Geng, F.; Zhao, Z., Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies. Nat. Commun. 2015, 6, 7800.
    56. Alessandri, I.; Lombardi, J. R., Enhanced Raman scattering with dielectrics. Chem. Rev. 2016, 116 (24), 14921-14981.
    57. Lin, X. M.; Cui, Y.; Xu, Y. H.; Ren, B.; Tian, Z. Q., Surface-enhanced Raman spectroscopy: substrate-related issues. Anal. Bioanal. Chem. 2009, 394 (7), 1729-1745.
    58. Jana, N. R., Silver coated gold nanoparticles as new surface enhanced Raman substrate at low analyte concentration. Analyst 2003, 128 (7), 954-956.
    59. Yaseen, T.; Pu, H.; Sun, D.-W., Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: a review of recent research trends. Trends Food Sci. Technol. 2018, 72, 162-174.
    60. Park, M.; Jung, H.; Jeong, Y.; Jeong, K. H., Plasmonic schirmer strip for human tear-based gouty arthritis diagnosis using surface-enhanced Raman scattering. ACS Nano 2017, 11 (1), 438-443.
    61. Li, L.; Chin, W. S., Rapid fabrication of a flexible and transparent Ag nanocubes@PDMS film as a SERS substrate with high performance. ACS Appl. Mater. Interfaces 2020, 12 (33), 37538-37548.
    62. Chen, W.; Gui, X.; Zheng, Y.; Liang, B.; Lin, Z.; Zhao, C.; Chen, H.; Chen, Z.; Li, X.; Tang, Z., Synergistic effects of wrinkled graphene and plasmonics in stretchable hybrid platform for surface-enhanced Raman spectroscopy. Adv. Optical Mater. 2017, 5 (6), 1600715.
    63. Cui, H.; Li, S.; Deng, S.; Chen, H.; Wang, C., Flexible, transparent, and free-standing silicon nanowire SERS platform for in situ food inspection. ACS Sens. 2017, 2 (3), 386-393.
    64. Xu, K.; Zhou, R.; Takei, K.; Hong, M., Toward flexible surface-enhanced Raman scattering (SERS) sensors for point-of-care diagnostics. Adv. Sci. 2019, 6 (16), 1900925.
    65. Li, Z.; Huang, X.; Lu, G., Recent developments of flexible and transparent SERS substrates. J. Mater. Chem. C 2020, 8 (12), 3956-3969.
    66. Tang, R. H.; Liu, L. N.; Zhang, S. F.; He, X. C.; Li, X. J.; Xu, F.; Ni, Y. H.; Li, F., A review on advances in methods for modification of paper supports for use in point-of-care testing. Mikrochim. Acta 2019, 186 (8), 521.
    67. Lee, C. H.; Tian, L.; Singamaneni, S., Paper-based SERS swab for rapid trace detection on real-world surfaces. ACS Appl. Mater. Interfaces 2010, 2 (12), 3429-3435.
    68. Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L., Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem. Commun. 2007, (34), 3514-3534.
    69. Natan, M. J., Surface enhanced Raman scattering. Faraday Discuss. 2006, 132, 321-328.
    70. Zong, C.; Xu, M.; Xu, L. J.; Wei, T.; Ma, X.; Zheng, X. S.; Hu, R.; Ren, B., Surface-enhanced Raman spectroscopy for bioanalysis: reliability and challenges. Chem. Rev. 2018, 118 (10), 4946-4980.
    71. Banholzer, M. J.; Millstone, J. E.; Qin, L.; Mirkin, C. A., Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37 (5), 885-897.
    72. Zapata-Urzua, C.; Perez-Ortiz, M.; Acosta, G. A.; Mendoza, J.; Yedra, L.; Estrade, S.; Alvarez-Lueje, A.; Nunez-Vergara, L. J.; Albericio, F.; Lavilla, R.; Kogan, M. J., Hantzsch dihydropyridines: privileged structures for the formation of well-defined gold nanostars. J. Colloid. Interface Sci. 2015, 453, 260-269.
    73. Ward, D. R., Grady, N.K., Levin, C.S., Halas, N.J., Wu, Y., Norlander, P., Natelson, D., Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano Lett. 2007, 7 (5), 396-1400.
    74. Alvarez-Puebla, R. A.; Contreras-Caceres, R.; Pastoriza-Santos, I.; Perez-Juste, J.; Liz-Marzan, L. M., Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. Angew Chem. Int. Ed. Engl. 2009, 48 (1), 138-143.
    75. Phan, H. T.; Haes, A. J., What does nanoparticle stability mean? J. Phys. Chem. C 2019, 123 (27), 16495-16507.
    76. Danzer, K., Selectivity and specificity in analytical chemistry. General considerations and attempt of a definition and quantification. Fresenius J. Anal. Chem. 2001, 369, 397–402.
    77. Wang, F.; Cao, S.; Yan, R.; Wang, Z.; Wang, D.; Yang, H., Selectivity/specificity strategies in surface-enhanced Raman spectroscopy analysis. Sensors 2017, 17, 2689.
    78. Chorsi, H. T.; Lee, Y.; Alu, A.; Zhang, J. X. J., Tunable plasmonic substrates with ultrahigh Q-factor resonances. Sci. Rep. 2017, 7 (1), 15985.
    79. Quynh, L.-V.; Zoethout, E.; Geluk, E.-J.; Ramezani, M.; Berghuis, M.; Rivas, J. G., Enhanced quality factors of surface lattice resonances in plasmonic arrays of nanoparticles. Adv. Optical Mater. 2019, 7, 1801451.
    80. Le Ru E.L.; Etchegoin, P. G., Principles of surface-enhanced Raman spectroscopy and related plasmonic effects. First Edition 2009.
    81. Hu, L.; Liu, Y. J.; Han, Y.; Chen, P.; Zhang, C.; Li, C.; Lu, Z.; Luo, D.; Jiang, S., Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications. J. Mater. Chem. C 2017, 5 (16), 3908-3915.
    82. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y., Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111 (6), 3669-3712.
    83. Chen, C.; Tang, Y.; Vlahovic, B.; Yan, F., Electrospun polymer nanofibers decorated with noble metal nanoparticles for chemical sensing. Nanoscale Res. Lett. 2017, 12 (1), 451.
    84. Zhang, Z.; Shen, W.; Xue, J.; Liu, Y.; Liu, Y.; Yan, P.; Liu, J.; Tang, J., Recent advances in synthetic methods and applications of silver nanostructures. Nanoscale Res. Lett. 2018, 13 (1), 54.
    85. Sun, Y. Y., Y.; Mayers, N.T.; Herricks,T.; Xia,Y., Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater. 2002, 14 (11), 4736-4745.
    86. Chen, S.; Penn, R. L., Controlled growth of silver nanoparticle seeds using green solvents. Cryst. Growth Des. 2019, 19 (8), 4332-4339.
    87. Zhang, Q.; Li, W.; Wen, L. P.; Chen, J.; Xia, Y., Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF3COOAg as a precursor. Chem. Eur. J. 2010, 16 (33), 10234-10239.
    88. Ruditskiy, A.; Xia, Y., Toward the synthesis of sub-15 nm Ag nanocubes with sharp corners and edges: the roles of heterogeneous nucleation and surface capping. J. Am. Chem. Soc. 2016, 138 (9), 3161-3167.
    89. Niu, W.; Zhang, L.; Xu, G., Seed-mediated growth of noble metal nanocrystals: crystal growth and shape control. Nanoscale 2013, 5 (8), 3172-3181.
    90. Wu, C.; Zhou, X.; Wei, J., Localized surface plasmon resonance of silver nanotriangles synthesized by a versatile solution reaction. Nanoscale Res. Lett. 2015, 10 (1), 354.
    91. Cobley, C. M.; Skrabalak, S. E.; Campbell, D. J.; Xia, Y., Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 2009, 4 (2), 171-179.
    92. Potara, M.; Gabudean, A.-M.; Astilean, S., Solution-phase, dual LSPR-SERS plasmonic sensors of high sensitivity and stability based on chitosan-coated anisotropic silver nanoparticles. J. Mater. Chem. 2011, 21 (11), 3625-3633.
    93. McLellan, J. M.; Siekkinen, A.; Chen, J.; Xia, Y., Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem. Phys. Lett. 2006, 427 (1-3), 122-126.
    94. Wang, Y.; Zheng, Y.; Huang, C. Z.; Xia, Y., Synthesis of Ag nanocubes 18-32 nm in edge length: the effects of polyol on reduction kinetics, size control, and reproducibility. J. Am. Chem. Soc. 2013, 135 (5), 1941-1951.
    95. Wiley, B.; Sun, Y.; Mayers, B.; Xia, Y., Shape-controlled synthesis of metal nanostructures: the case of silver. Chemistry 2005, 11 (2), 454-463.
    96. Quyen, T. T. B.; Chang, C. C.; Su, W. N.; Uen, Y. H.; Pan, C. J.; Liu, J. Y.; Rick, J.; Lin, K. Y.; Hwang, B. J., Self-focusing Au@SiO2 nanorods with rhodamine 6G as highly sensitive SERS substrate for carcinoembryonic antigen detection. J. Mater. Chem. B 2014, 2 (6), 629-636.
    97. Hanske, C.; Sanz-Ortiz, M. N.; Liz-Marzan, L. M., Silica-coated plasmonic metal nanoparticles in action. Adv. Mater. 2018, 30 (27), e1707003.
    98. Xu, J.; Zhang, Y.-J.; Yin, H.; Zhong, H.-L.; Su, M.; Tian, Z.-Q.; Li, J.-F., Shell-isolated nanoparticle-enhanced Raman and fluorescence spectroscopies: synthesis and applications. Adv. Opt. Mater. 2018, 6 (4), 1701069.
    99. Wong, Y. J.; Zhu, L.; Teo, W. S.; Tan, Y. W.; Yang, Y.; Wang, C.; Chen, H., Revisiting the Stober method: inhomogeneity in silica shells. J. Am. Chem. Soc. 2011, 133 (30), 11422-11425.
    100. Stiufiuc, R. I., C.; Lucaciu, C.M.; Stiufiuc, G.; Dutu, A.G.; Braescu, C.; Leopold, N., SERS-active silver colloids prepared by reduction of silver nitrate with short-chain polyethylene glycol. Nanoscale Res. Lett. 2013, 8, 47.
    101. He, D.; Hu, B.; Yao, Q.-F.; Wang, K.; Yu, S.-H., Large-scale synthesis of flexible free-standing SERS substrates with high sensitivity: electrospun PVA nanofibers embedded with controlled alignment of silver nanoparticles. Acs Nano 2009, 3 (12), 3993–4002.
    102. Ren, X.; Cheshari, E. C.; Qi, J.; Li, X., Silver microspheres coated with a molecularly imprinted polymer as a SERS substrate for sensitive detection of bisphenol A. Mikrochim. Acta 2018, 185 (4), 242.
    103. Niyonshuti, I. I.; Krishnamurthi, V. R.; Okyere, D.; Song, L.; Benamara, M.; Tong, X.; Wang, Y.; Chen, J., Polydopamine surface coating synergizes the antimicrobial activity of silver nanoparticles. ACS Appl. Mater. Interfaces 2020, 12 (36), 40067-40077.
    104. Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q., Core-shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 2017, 117 (7), 5002-5069.
    105. Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q., Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464 (7287), 392-395.
    106. Tokel, O.; Inci, F.; Demirci, U., Advances in plasmonic technologies for point of care applications. Chem. Rev. 2014, 114 (11), 5728-5752.
    107. Li, Y. S.; Church, J. S., Raman spectroscopy in the analysis of food and pharmaceutical nanomaterials. J. Food Drug Anal. 2014, 22 (1), 29-48.
    108. Sun, H.; Liu, H.; Wu, Y., A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice. Appl. Surf. Sci. 2017, 416, 704-709.
    109. Jiao, A.; Dong, X.; Zhang, H.; Xu, L.; Tian, Y.; Liu, X.; Chen, M., Construction of pure worm-like AuAg nanochains for ultrasensitive SERS detection of pesticide residues on apple surfaces. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 209, 241-247.
    110. Liang, X.; Wang, Y. S.; You, T. T.; Zhang, X. J.; Yang, N.; Wang, G. S.; Yin, P. G., Interfacial synthesis of a three-dimensional hierarchical MoS2NS@AgNP nanocomposite as a SERS nanosensor for ultrasensitive thiram detection. Nanoscale 2017, 9 (25), 8879-8888.
    111. Yang, J. K.; Kang, H.; Lee, H.; Jo, A.; Jeong, S.; Jeon, S. J.; Kim, H. I.; Lee, H. Y.; Jeong, D. H.; Kim, J. H.; Lee, Y. S., Single-step and rapid growth of silver nanoshells as SERS-active nanostructures for label-free detection of pesticides. ACS Appl. Mater. Interfaces 2014, 6 (15), 12541-12549.
    112. Zhu, C.; Wang, X.; Shi, X.; Yang, F.; Meng, G.; Xiong, Q.; Ke, Y.; Wang, H.; Lu, Y.; Wu, N., Detection of dithiocarbamate pesticides with a spongelike surface-enhanced Raman scattering substrate made of reduced graphene oxide-wrapped silver nanocubes. ACS Appl. Mater. Interfaces 2017, 9 (45), 39618-39625.
    113. Liu, B.; Han, G.; Zhang, Z.; Liu, R.; Jiang, C.; Wang, S.; Han, M. Y., Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Anal. Chem. 2012, 84 (1), 255-261.
    114. Chen, J.; Huang, M.; Kong, L.; Lin, M., Jellylike flexible nanocellulose SERS substrate for rapid in-situ non-invasive pesticide detection in fruits/vegetables. Carbohydr. Polym. 2019, 205, 596-600.
    115. Ma, Y.; Wang, Y.; Luo, Y.; Duan, H.; Li, D.; Xu, H.; Fodjo, E. K., Rapid and sensitive on-site detection of pesticide residues in fruits and vegetables using screen-printed paper-based SERS swabs. Anal. Methods 2018, 10 (38), 4655-4664.
    116. Mekonnen, L. M.; Chen , C.-H.; Osada , M.; Su , W.-N.; Hwang, B.-J., Dielectric nanosheet modified plasmonic-paper as highly sensitive and stable SERS substrate and its application for pesticides detection. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2020, 225, 117484.
    117. Ma, P.; Wang, L.; Xu, L.; Li, J.; Zhang, X.; Chen, H., Rapid quantitative determination of chlorpyrifos pesticide residues in tomatoes by surface-enhanced Raman spectroscopy. Euro. Food Res. Technolo. 2019, 246 (1), 239-251.
    118. Mendl, A.; Kohler, J. M.; Boskovic, D.; Lobbecke, S., Novel SERS-based process analysis for label-free segmented flow screenings. Lab Chip 2020, 20 (13), 2364-2371.
    119. Zhou, N.; Meng, G.; Zhu, C.; Chen, B.; Zhou, Q.; Ke, Y.; Huo, D., A silver-grafted sponge as an effective surface-enhanced Raman scattering substrate. Sens. Actuators B: Chem. 2018, 258, 56-63.
    120. Lv, W.; Liu, C.; Ma, Y.; Wang, X.; Luo, J.; Ye, W., Multi-hydrogen bond assisted SERS detection of adenine based on multifunctional graphene oxide/poly (diallyldimethyl ammonium chloride)/Ag nanocomposites. Talanta 2019, 204, 372-378.
    121. Stosch, R. H., A.; Schiel, D.; Guttler, B., Surface-enhanced Raman scattering based approach for quantitative determination of creatinine in human serum. Anal. Chem. 2005, 77 (22), 7386-7392.
    122. Singh, J.; Mehta, A., Rapid and sensitive detection of mycotoxins by advanced and emerging analytical methods: a review. Food Sci. Nutr. 2020, 8 (5), 2183-2204.
    123. Tanaka, K.; Sago, Y.; Zheng, Y.; Nakagawa, H.; Kushiro, M., Mycotoxins in rice. Int. J. Food Microbiol. 2007, 119, 59-66.
    124. Wache, Y. J.; Valat, C.; Postollec, G.; Bougeard, S.; Burel, C.; Oswald, I. P.; Fravalo, P., Impact of deoxynivalenol on the intestinal microflora of pigs. Int. J. Mol. Sci. 2009, 10, 1-17.
    125. Mendel, M.; Karlik, W.; Chłopecka, M., The impact of chlorophyllin on deoxynivalenol transport across jejunum mucosa explants obtained from adult pigs. Mycotoxin Res. 2019, 35 (2), 187-196.
    126. Pestka, J. J., Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Arch. Toxicol. 2010, 84 (9), 663-679.
    127. Piacentini, K. C.; Savi, G. D.; Olivo, G.; Scussel, V. M., Quality and occurrence of deoxynivalenol and fumonisins in craft beer. Food Control 2015, 50, 925-929.
    128. Valera, E.; Garcia-Febrero, R.; Elliott, C. T.; Sanchez-Baeza, F.; Marco, M. P., Electrochemical nanoprobe-based immunosensor for deoxynivalenol mycotoxin residues analysis in wheat samples. Anal. Bioanal. Chem. 2019, 411 (9), 1915-1926.
    129. European Parliament Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union 2006, (L364), 5-24.
    130. Cunha, S. C.; Fernandes, J. O., Development and validation of a method based on a QuEChERS procedure and heart-cutting GC-MS for determination of five mycotoxins in cereal products. J. Sep. Sci. 2010, 33 (4-5), 600-609.
    131. Hamed, A. M.; Moreno-González, D.; García-Campaña, A. M.; Gámiz-Gracia, L., Determination of aflatoxins in yogurt by dispersive liquid–liquid microextraction and HPLC with photo-induced fluorescence detection. Food Anal. Methods 2016, 10 (2), 516-521.
    132. Deng, X.-B.; Din, H.-Z.; Huang, X.-H.; Ma, Y.-J.; Fan, X.-L.; Yan, H.-K.; Lu, P.-C.; Li, W.-C.; Zeng, Z.-L., Tissue distribution of deoxynivalenol in piglets following intravenous administration. J. Integr. Agri. 2015, 14 (10), 2058-2064.
    133. Sun, Z.; Lv, J.; Liu, X.; Tang, Z.; Wang, X.; Xu, Y.; Hammock, B. D., Development of a nanobody-avitag fusion protein and its application in a streptavidin-biotin-amplified enzyme-linked immunosorbent assay for ochratoxin A in cereal. Anal. Chem. 2018, 90, 10628-10634.
    134. Zhang, R.; Zhou, Y.; Zhou, M., A sensitive chemiluminescence enzyme immunoassay for the determination of deoxynivalenol in wheat samples. Anal. Methods 2015, 7 (5), 2196-2202.
    135. Lee, K. M.; Herrman, T. J.; Bisrat, Y.; Murray, S. C., Feasibility of surface-enhanced Raman spectroscopy for rapid detection of aflatoxins in maize. J. Agric. Food Chem. 2014, 62, 4466-4474.
    136. Song, W.; Mao, Z.; Liu, X.; Lu, Y.; Li, Z.; Zhao, B.; Lu, L., Detection of protein deposition within latent fingerprints by surface-enhanced Raman spectroscopy imaging. Nanoscale 2012, 4 (7), 2333-2338.
    137. Liu, Y.; Zhang, Y.; Ding, H.; Xu, S.; Li, M.; Kong, F.; Luo, Y.; Li, G., Self-assembly of noble metallic spherical aggregates from monodisperse nanoparticles: their synthesis and pronounced SERS and catalytic properties. J. Mater. Chem. A 2013, 1 (10).
    138. Yuan, J.; Sun, C.; Guo, X.; Yang, T.; Wang, H.; Fu, S.; Li, C.; Yang, H., A rapid Raman detection of deoxynivalenol in agricultural products. Food Chem. 2017, 221, 797-802.
    139. Li, J.; Yan, H.; Tan, X.; Lu, Z.; Han, H., Cauliflower-inspired 3D SERS substrate for multiple mycotoxins detection. Anal. Chem. 2019, 91, 3885-3892.
    140. Ben-Jaber, S.; Peveler, W. J.; Quesada-Cabrera, R.; Sol, C. W. O.; Papakonstantinou, I.; Parkin, I. P., Sensitive and specific detection of explosives in solution and vapour by surface-enhanced Raman spectroscopy on silver nanocubes. Nanoscale 2017, 9 (42), 16459-16466.
    141. Chen, F.; Xing, Y.; Wang, Z.; Zheng, X.; Zhang, J.; Cai, K., Nanoscale polydopamine (PDA) meets pi-pi interactions: an interface-directed coassembly approach for mesoporous nanoparticles. Langmuir 2016, 32 (46), 12119-12128.
    142. Zhou, J.; Xiong, Q.; Ma, J.; Ren, J.; Messersmith, P. B.; Chen, P.; Duan, H., Polydopamine-enabled approach toward tailored plasmonic nanogapped nanoparticles: from nanogap engineering to multifunctionality. ACS Nano 2016, 10 (12), 11066-11075.
    143. Xu, F.; Xie, S.; Cao, R.; Feng, Y.; Ren, C.; Wang, L., Prepare poly-dopamine coated graphene@silver nanohybrid for improved surface enhanced Raman scattering detection of dyes. Sens. Actuators B: Chem. 2017, 243, 609-616.
    144. Kha, N. M.; Chen, C. H.; Su, W. N.; Rick, J.; Hwang, B. J., Improved Raman and photoluminescence sensitivity achieved using bifunctional Ag@SiO2 nanocubes. Phys. Chem. Chem. Phys. 2015, 17 (33), 21226-21235.
    145. Mekonnen, M. L.; Su, W.-N.; Chen, C.-H.; Hwang, B.-J., Ag@SiO2 nanocube loaded miniaturized filter paper as a hybrid flexible plasmonic SERS substrate for trace melamine detection. Anal. Methods 2017, 9 (48), 6823-6829.
    146. Mahmoud, M. A.; Chamanzar, M.; Adibi, A.; El-Sayed, M. A., Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes. J. Am. Chem. Soc. 2012, 134 (14), 6434-6442.
    147. Kelly, K. L. C., E.; Zhao, L.L.; Schatz, G. C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668-677.
    148. Wang, B.; Zhang, L.; Zhou, X., Synthesis of silver nanocubes as a SERS substrate for the determination of pesticide paraoxon and thiram. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 121, 63-69.
    149. Kazuma, E.; Tatsuma, T., Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips. Nanoscale 2014, 6 (4), 2397-2405.
    150. Chen, K.; Xie, K.; Long, Q.; Deng, L.; Fu, Z.; Xiao, H.; Xie, L., Fabrication of core–shell Ag@PDA@HAP nanoparticles with the ability for controlled release of Ag+ and superior hemocompatibility. RSC Adv. 2017, 7 (47), 29368-29377.
    151. Zhang, Z.; Si, T.; Liu, J.; Han, K.; Zhou, G., Controllable synthesis of AgNWs@PDA@AgNPs core-shell nanocobs based on a mussel-inspired polydopamine for highly sensitive SERS detection. RSC Adv. 2018, 8 (48), 27349-27358.
    152. Nguyen, M. K.; Su, W. N.; Chen, C. H.; Rick, J.; Hwang, B. J., Highly sensitive and stable Ag@SiO2 nanocubes for label-free SERS-photoluminescence detection of biomolecules. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2017, 175, 239-245.
    153. Mekonnen, M. L.; Chen, C.-H.; Su, W.-N.; Hwang, B.-J., 3D-functionalized shell isolated Ag nanocubes on a miniaturized flexible platform for sensitive and selective SERS detection of small molecules. Microchem. J. 2018, 142, 305-312.
    154. Xu, S.; Tang, W.; Chase, D. B.; Sparks, D. L.; Rabolt, J. F., A highly sensitive, selective, and reproducible SERS sensor for detection of trace metalloids in the environment. ACS Appl. Nano Mater. 2018, 1 (3), 1257-1264.
    155. Kruve, A.; Rebane, R.; Kipper, K.; Oldekop, M. L.; Evard, H.; Herodes, K.; Ravio, P.; Leito, I., Tutorial review on validation of liquid chromatography-mass spectrometry methods: part II. Anal. Chim. Acta 2015, 870, 8-28.
    156. Sengul, U., Comparing determination methods of detection and quantification limits for aflatoxin analysis in hazelnut. J. Food. Drug. Anal. 2016, 24 (1), 56-62.
    157. Liebscher, J., Chemistry of polydopamine-scope, variation, and limitation. Eur. J. Org. Chem. 2019, 2019 (31-32), 4976-4994.
    158. Tegegne, W. A.; Mekonnen, M. L.; Beyene, A. B.; Su, W. N.; Hwang, B. J., Sensitive and reliable detection of deoxynivalenol mycotoxin in pig feed by surface enhanced Raman spectroscopy on silver nanocubes@polydopamine substrate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 229, 117940.
    159. Li, J.; Yan, H.; Tan, X.; Lu, Z.; Han, H., Cauliflower-Inspired 3D SERS Substrate for Multiple Mycotoxins Detection. Anal Chem 2019, 91 (6), 3885-3892.
    160. Wang, P.; Wu, L.; Lu, Z.; Li, Q.; Yin, W.; Ding, F.; Han, H., Gecko-inspired nanotentacle surface-enhanced Raman spectroscopy substrate for sampling and reliable detection of pesticide residues in fruits and vegetables. Anal. Chem. 2017, 89 (4), 2424-2431.
    161. Yang, X.; Imasaka, T.; Imasaka, T., Determination of pesticides by gas chromatography combined with mass spectrometry using femtosecond lasers emitting at 267, 400, and 800 nm as the ionization source. Anal. Chem. 2018, 90 (7), 4886-4893.
    162. Zhao, M. A.; Feng, Y. N.; Zhu, Y. Z.; Kim, J. H., Multi-residue method for determination of 238 pesticides in Chinese cabbage and cucumber by liquid chromatography-tandem mass spectrometry: comparison of different purification procedures. J. Agric. Food. Chem. 2014, 62 (47), 11449-11456.
    163. Uclés, A.; García, A. V.; Gil García, M. D.; Aguilera del Real, A. M.; Fernández-Alba, A. R., Benzimidazole and imidazole fungicide analysis in grape and wine samples using a competitive enzyme-linked immunosorbent assay. Anal. Methods 2015, 7 (21), 9158-9165.
    164. Zhang, C. H.; Zhu, J.; Li, J. J.; Zhao, J. W., Small and sharp triangular silver nanoplates synthesized utilizing tiny triangular nuclei and their excellent SERS activity for selective detection of thiram residue in soil. ACS Appl. Mater. Interfaces 2017, 9 (20), 17387-17398.
    165. Liu, B.; Yao, X.; Chen, S.; Lin, H.; Yang, Z.; Liu, S.; Ren, B., Large-area hybrid plasmonic optical cavity (HPOC) substrates for surface-enhanced Raman spectroscopy. Adv. Funct. Mater. 2018, 28 (43), 1802263.
    166. Phan-Quang, G. C.; Han, X.; Koh, C. S. L.; Sim, H. Y. F.; Lay, C. L.; Leong, S. X.; Lee, Y. H.; Pazos-Perez, N.; Alvarez-Puebla, R. A.; Ling, X. Y., Three-dimensional surface-enhanced Raman scattering platforms: large-scale plasmonic hotspots for new applications in sensing, microreaction, and data storage. Acc. Chem. Res. 2019, 52 (7), 1844-1854.
    167. Haidar, I.; Day, A.; Martino, U.; Chevillot-Biraud, A.; Félidj, N.; Boubekeur-Lecaque, L., Bottom-up assembly of Au@Ag plasmonic nanocrystals: issues to be addressed to achieve a good SERS substrate. Appl. Mater. Today 2019, 15, 462-471.
    168. Yang, L.; Peng, Y.; Yang, Y.; Liu, J.; Huang, H.; Yu, B.; Zhao, J.; Lu, Y.; Huang, Z.; Li, Z.; Lombardi, J. R., A novel ultra-sensitive semiconductor SERS substrate boosted by the coupled resonance effect. Adv. Sci. 2019, 6 (12), 1900310.
    169. Song, X.; Wang, Y.; Zhao, F.; Li, Q.; Ta, H. Q.; Rummeli, M. H.; Tully, C. G.; Li, Z.; Yin, W. J.; Yang, L.; Lee, K. B.; Yang, J.; Bozkurt, I.; Liu, S.; Zhang, W.; Chhowalla, M., Plasmon-free surface-enhanced Raman spectroscopy using metallic 2D materials. ACS Nano 2019, 13 (7), 8312-8319.
    170. Dong, J.; Zhao, X.; Cao, E.; Han, Q.; Liu, L.; Zhang, W.; Gao, W.; Shi, J.; Zheng, Z.; Han, D.; Sun, M., Flexible and transparent Au nanoparticle/graphene/Au nanoparticle ‘sandwich’ substrate for surface-enhanced Raman scattering. Mater. Today Nano 2020, 9, 100067.
    171. Wang, X.; Shi, W.; Wang, S.; Zhao, H.; Lin, J.; Yang, Z.; Chen, M.; Guo, L., Two-dimensional amorphous TiO2 nanosheets enabling high-efficiency photoinduced charge transfer for excellent SERS activity. J. Am. Chem. Soc. 2019, 141 (14), 5856-5862.
    172. Zheng, Z.; Cong, S.; Gong, W.; Xuan, J.; Li, G.; Lu, W.; Geng, F.; Zhao, Z., Semiconductor SERS enhancement enabled by oxygen incorporation. Nat. Commun. 2017, 8 (1), 1993.
    173. Cao, Y.; Liang, P.; Dong, Q.; Wang, D.; Zhang; Tang, L.; Wang, L.; Jin, S.; Ni, D.; Yu, Z., Facile reduction method synthesis of defective MoO2- x nanospheres used for SERS detection with high chemical enhancement. Anal. Chem. 2019, 91 (13), 8683-8690.
    174. Tao, L.; Chen, K.; Chen, Z.; Cong, C.; Qiu, C.; Chen, J.; Wang, X.; Chen, H.; Yu, T.; Xie, W.; Deng, S.; Xu, J. B., 1T' transition metal telluride atomic layers for plasmon-free SERS at femtomolar levels. J. Am. Chem. Soc. 2018, 140 (28), 8696-8704.
    175. Jiang, J.; Shen, Q.; Xue, P.; Qi, H.; Wu, Y.; Teng, Y.; Zhang, Y.; Liu, Y.; Zhao, X.; Liu, X., A highly sensitive and stable SERS sensor for malachite green detection based on Ag nanoparticles in situ generated on 3D MoS2 nanoflowers. ChemistrySelect 2020, 5 (1), 354-359.
    176. Su, S.; Xu, Y.; Sun, Q.; Gu, X.; Weng, L.; Wang, L., Noble metal nanostructure-decorated molybdenum disulfide nanocomposites: synthesis and applications. J. Mater. Chem. B 2018, 6 (33), 5323-5334.
    177. Lu, J.; Lu, J. H.; Liu, H.; Liu, B.; Gong, L.; Tok, E. S.; Loh, K. P.; Sow, C. H., Microlandscaping of Au nanoparticles on few-layer MoS2 films for chemical sensing. Small 2015, 11 (15), 1792-800.
    178. Alamri, M.; Sakidja, R.; Goul, R.; Ghopry, S.; Wu, J. Z., Plasmonic Au nanoparticles on 2D MoS2/graphene van der waals heterostructures for high-sensitivity surface-enhanced Raman spectroscopy. ACS Appl. Nano Mater. 2019, 2 (3), 1412-1420.
    179. Wu, M.; Zhan, J.; Wu, K.; Li, Z.; Wang, L.; Geng, B.; Wang, L.; Pan, D., Metallic 1T MoS2 nanosheet arrays vertically grown on activated carbon fiber cloth for enhanced Li-ion storage performance. J. Mater. Chem. A 2017, 5 (27), 14061-14069.
    180. Xie, J.; Zhang, J.; Li, S.; Grote, F.; Zhang, X.; Zhang, H.; Wang, R.; Lei, Y.; Pan, B.; Xie, Y., Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J. Am. Chem. Soc. 2013, 135 (47), 17881-17888.
    181. Liu, Q.; Li, X.; He, Q.; Khalil, A.; Liu, D.; Xiang, T.; Wu, X.; Song, L., Gram-scale aqueous synthesis of stable few-layered 1T-MoS2 : applications for visible-light-driven photocatalytic hydrogen evolution. Small 2015, 11 (41), 5556-5564.
    182. Ding, W.; Hu, L.; Dai, J.; Tang, X.; Wei, R.; Sheng, Z.; Liang, C.; Shao, D.; Song, W.; Liu, Q.; Chen, M.; Zhu, X.; Chou, S.; Zhu, X.; Chen, Q.; Sun, Y.; Dou, S. X., Highly ambient-stable 1T-MoS2 and 1T-WS2 by hydrothermal synthesis under high magnetic fields. ACS Nano 2019, 13 (2), 1694-1702.
    183. Geng, X.; Sun, W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H.; Watanabe, F.; Cui, J.; Chen, T. P., Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672.
    184. Guo, C.; Pan, J.; Li, H.; Lin, T.; Liu, P.; Song, C.; Wang, D.; Mu, G.; Lai, X.; Zhang, H.; Zhou, W.; Chen, M.; Huang, F., Observation of superconductivity in 1T′-MoS2 nanosheets. J. Mater. Chem. C 2017, 5 (41), 10855-10860.
    185. Wang, J.; Fang, W.; Hu, Y.; Zhang, Y.; Dang, J.; Wu, Y.; Zhao, H.; Li, Z., Different phases of few-layer MoS2 and their silver/gold nanocomposites for efficient hydrogen evolution reaction. Catal. Sci. Technol. 2020, 10 (1), 154-163.
    186. Zheng, X.; Guo, Z.; Zhang, G.; Li, H.; Zhang, J.; Xu, Q., Building a lateral/vertical 1T-2H MoS2/Au heterostructure for enhanced photoelectrocatalysis and surface enhanced Raman scattering. J. Mater. Chem. A 2019, 7 (34), 19922-19928.
    187. Ejigu, A.; Kinloch, I. A.; Prestat, E.; Dryfe, R. A. W., A simple electrochemical route to metallic phase trilayer MoS2: evaluation as electrocatalysts and supercapacitors. J. Mater. Chem. A 2017, 5 (22), 11316-11330.
    188. Zhou, F. Li., Z.-Y.; Liu, Y., Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles. J. Phys. Chem. C 2008, 112 (51), 20233–20240.
    189. Wang, S.; Zhang, D.; Li, B.; Zhang, C.; Du, Z.; Yin, H.; Bi, X.; Yang, S., Ultrastable in-plane 1T-2H MoS2 heterostructures for enhanced hydrogen evolution reaction. Adv. Energy Mater. 2018, 8 (25), 1801345.
    190. Zhang, Q.; Li, W.; Moran, C.; Zeng, J.; Chen, J.; Wen, L.-P.; Xia, Y., Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties. J. Am. Chem. Soc. 2010, 132, 11372–11378.
    191. Lin, Y.; Zhang, Y.-J.; Yang, W.-M.; Dong, J.-C.; Fan, F.-R.; Zhao, Y.; Zhang, H.; Bodappa, N.; Tian, X.-D.; Yang, Z.-L.; Stucky, G. D.; Tian, Z.-Q.; Li, J.-F., Size and dimension dependent surface-enhanced Raman scattering properties of well-defined Ag nanocubes. Appl. Mater. Today 2019, 14, 224-232.
    192. Tang, Q.; Jiang, D.-N., Stabilization and band-gap tuning of the 1T-MoS2 monolayer by covalent functionalization. Chem. Mater. 2015, 27 (10), 3743-3748.
    193. Wang, P.; Liang, O.; Zhang, W.; Schroeder, T.; Xie, Y. H., Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection. Adv. Mater. 2013, 25 (35), 4918-4924.
    194. Tegegne, W. A.; Su, W.-N.; Tsai, M.-C.; Beyene, A. B.; Hwang, B.-J., Ag nanocubes decorated 1T-MoS2 nanosheets SERS substrate for reliable and ultrasensitive detection of pesticides. Appl. Mater. Today 2020, 21.
    195. Su, S.; Zhang, C.; Yuwen, L.; Chao, J.; Zuo, X.; Liu, X.; Song, C.; Fan, C.; Wang, L., Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles. ACS Appl. Mater. Interfaces 2014, 6 (21), 18735-18741.
    196. Li, J.; Zhang, W.; Lei, H.; Li, B., Ag nanowire/nanoparticle-decorated MoS2 monolayers for surface-enhanced Raman scattering applications. Nano Res. 2018, 11 (4), 2181-2189.
    197. Nabeela, K.; Thomas, R. T.; Mohamed, A. P.; Pillai, S., Nanocellulose-silver ensembles for ultrasensitive SERS: an investigation on the role of nanocellulose fibers in the generation of high-density hotspots. Appl. Mater. Today 2020, 20.
    198. Chen, P. X.; Qiu, H. W.; Xu, S. C.; Liu, X. Y.; Li, Z.; Hu, L. T.; Li, C. H.; Guo, J.; Jiang, S. Z.; Huo, Y. Y., A novel surface-enhanced Raman spectroscopy substrate based on a large area of MoS2 and Ag nanoparticles hybrid system. Appl. Surf. Sci. 2016, 375, 207-214.
    199. Wang, Y.; Yu, X.; Chang, Y.; Gao, C.; Chen, J.; Zhang, X.; Zhan, J., A 3D spongy flexible nanosheet array for on-site recyclable swabbing extraction and subsequent SERS analysis of thiram. Mikrochim Acta 2019, 186 (7), 458.
    200. Jiang, J.; Zou, S.; Li, Y.; Zhao, F.; Chen, J.; Wang, S.; Wu, H.; Xu, J.; Chu, M.; Liao, J.; Zhang, Z., Flexible and adhesive tape decorated with silver nanorods for in-situ analysis of pesticides residues and colorants. Mikrochim. Acta 2019, 186 (9), 603.
    201. Li, Z.; Jiang, S.; Huo, Y.; Ning, T.; Liu, A.; Zhang, C.; He, Y.; Wang, M.; Li, C.; Man, B., 3D silver nanoparticles with multilayer graphene oxide as a spacer for surface enhanced Raman spectroscopy analysis. Nanoscale 2018, 10 (13), 5897-5905.
    202. Huang, J.; Ma, D.; Chen, F.; Chen, D.; Bai, M.; Xu, K.; Zhao, Y., Green in situ synthesis of clean 3D chestnutlike Ag/WO3-x nanostructures for highly efficient, recyclable and sensitive SERS sensing. ACS Appl. Mater. Interfaces 2017, 9 (8), 7436-7446.
    203. Lu, S.; You, T.; Yang, N.; Gao, Y.; Yin, P., Flexible SERS substrate based on Ag nanodendrite-coated carbon fiber cloth: simultaneous detection for multiple pesticides in liquid droplet. Anal. Bioanal. Chem. 2020, 412 (5), 1159-1167.
    204. Xuan, T.; Gao, Y.; Cai, Y.; Guo, X.; Wen, Y.; Yang, H., Fabrication and characterization of the stable Ag-Au-metal-organic-frameworks: an application for sensitive detection of thiabendazole. Sens. Actuators B: Chem. 2019, 293, 289-295.
    205. Mekonnen, M. L.; Chen, C. H.; Osada, M.; Su, W. N.; Hwang, B. J., Dielectric nanosheet modified plasmonic-paper as highly sensitive and stable SERS substrate and its application for pesticides detection. Spectrochim Acta A Mol Biomol Spectrosc 2020, 225, 117484.
    206. Singh, J. P.; Chu, H.; Abell, J.; Tripp, R. A.; Zhao, Y., Flexible and mechanical strain resistant large area SERS active substrates. Nanoscale 2012, 4 (11), 3410-3414.
    207. Alyami, A.; Quinn, A. J.; Iacopino, D., Flexible and transparent surface enhanced Raman scattering (SERS)-Active AgNPs/PDMS composites for in-situ detection of food contaminants. Talanta 2019, 201, 58-64.
    208. Kahraman, M.; Daggumati, P.; Kurtulus, O.; Seker, E.; Wachsmann-Hogiu, S., Fabrication and characterization of flexible and tunable plasmonic nanostructures. Sci. Rep. 2013, 3, 3396.
    209. Si, S.; Liang, W.; Sun, Y.; Huang, J.; Ma, W.; Liang, Z.; Bao, Q.; Jiang, L., Facile fabrication of high-density Sub-1-nm gaps from Au nanoparticle monolayers as reproducible SERS substrates. Adv. Funct. Mater. 2016, 26 (44), 8137-8145.
    210. Ouyang, L.; Yao, L.; Zhou, T.; Zhu, L., Accurate SERS detection of malachite green in aquatic products on basis of graphene wrapped flexible sensor. Anal. Chim. Acta 2018, 1027, 83-91.
    211. Ma, Y.; Liu, H.; Chen, Y.; Gu, C.; Wei, G.; Jiang, T., Improved lateral flow strip based on hydrophilic-hydrophobic SERS substrate for ultra-sensitive and quantitative immunoassay. Appl. Surf. Sci. 2020, 529, 147121.
    212. Liu, Z.; Yu, J.; Lin, W.; Yang, W.; Li, R.; Chen, H.; Zhang, X., Facile method for the hydrophobic modification of filter paper for applications in water-oil separation. Surf. Coat. Technol. 2018, 352, 313-319.
    213. Lee, M.; Oh, K.; Choi, H. K.; Lee, S. G.; Youn, H. J.; Lee, H. L.; Jeong, D. H., Subnanomolar sensitivity of filter paper-based SERS sensor for pesticide detection by hydrophobicity change of paper surface. ACS Sens. 2018, 3 (1), 151-159.
    214. Vinogradova, E.; Estrada, M.; Moreno, A., Colloidal aggregation phenomena: spatial structuring of TEOS-derived silica aerogels. J. Colloid. Interface. Sci. 2006, 298 (1), 209-212.
    215. Zhang, X.; Su, W.; Lin, M.; Miao, X.; Ye, L.; Yang, W.; Jiang, B., Non-supercritical drying sol–gel preparation of superhydrophobic aerogel ORMOSIL thin films with controlled refractive index. J. Sol-Gel Sci. Technol. 2015, 74 (3), 594-602.
    216. Lee, D. J.; Kim, D. Y., Hydrophobic paper-based SERS sensor using gold nanoparticles arranged on graphene oxide flakes. Sensors 2019, 19, 5471.
    217. Chen, Y.; Zhang, Y.; Pan, F.; Liu, J.; Wang, K.; Zhang, C.; Cheng, S.; Lu, L.; Zhang, W.; Zhang, Z.; Zhi, X.; Zhang, Q.; Alfranca, G.; de la Fuente, J. M.; Chen, D.; Cui, D., Breath analysis based on surface-enhanced Raman scattering sensors distinguishes early and advanced gastric cancer patients from healthy persons. ACS Nano 2016, 10 (9), 8169-8179.
    218. Gong, T.; Luo, Y.; Zhang, H.; Zhao, C.; Yue, W.; Pu, M.; Kong, W.; Wang, C.; Luo, X., Hybrid octahedral Au nanocrystals and Ag nanohole arrays as substrates for highly sensitive and reproducible surface-enhanced Raman scattering. J. Mater. Chem. C 2020, 8 (3), 1135-1142.
    219. Zhou, M.; Zhang, L.; Lu, H.; Shao, L.; Chen, M., Reaction of silicon dioxide with water: a matrix isolation infrared and density functional theoretical study. 2002, 605 (2-3), 249-254.
    220. Lee, Y. C.; Chiu, C. W., Immobilization and 3D hot-junction formation of gold nanoparticles on two-dimensional silicate nanoplatelets as substrates for high-efficiency surface-enhanced Raman scattering detection. Nanomaterials 2019, 9, 324.
    221. Alula, M. T.; Yang, J., Photochemical decoration of gold nanoparticles on polymer stabilized magnetic microspheres for determination of adenine by surface-enhanced Raman spectroscopy. Microchim. Acta 2014, 182 (5-6), 1017-1024.
    222. Staden, J.-V. F.; Georgescu, R.; Staden, R.-I. S.-V.; Calinescu, I., Graphene based dot microsensors used for the screening of urine for adenine, guanine and epinephrine. J. Electrochem. Soc. 2014, 161 (2), B3014-B3022.

    QR CODE