簡易檢索 / 詳目顯示

研究生: Menbere Leul Mekonnen
Menbere Leul Mekonnen
論文名稱: 用於食品安全應用的柔性等離子體紙SERS基材的製備和優化
Fabrication and Optimization of Flexible Plasmonic-Paper SERS Substrate for Food Safety Applications
指導教授: 黃炳照
Bing Joe Hwang
口試委員: 周澤川
Tse Chuan Chou
今榮東洋子
Toyoko Imae
何國川
Kuo-Chuan Ho
王迪彥
Diyan Wang
蘇威年
Wein Nein Su
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 144
中文關鍵詞: SERSSHINERSAg@SiO2 nanocubes功能性的Ag殼分離的納米粒子(Ag-SHINs)Fe-TiO2 Nanosheet分析物定位敏感度靈活性基質濾紙電介質修飾的紙三聚氰胺 阿斯巴甜噻苯達唑
外文關鍵詞: Functionalized-Ag-shell isolated nanoparticles (Ag-SHINs), , , ,, Fe-TiO2 Nanosheet, analyte localization, filter paper,, dielectric modified paper, aspartame, thiabendazole
相關次數: 點閱:220下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    將SERS從實驗室內走向現實應用端,需要成本低及品質好的基材,如食品安全。柔性的基板由於易於製造且便於用在非平面的樣品上,因此可以擴展到SERS的應用上,並且處進對食品及其他商品的檢驗。本論文探討了柔性等離子試紙SERS基板的製備和優化,以及他們在食品安全中的應用。

    在第一種方法中,使用多元醇方法合成sharp-edged Ag NCs,然後使用改進的Stober方式以超薄之二氧化矽殼層塗佈它。透過抽氣過濾所得之Ag SHINs組裝在微型紙平台上。這使得此便宜感測平台具有合理分配及奈米立體之粒子間距,與傳統的剛性材料相比,紙的纖維結構可以促進奈米立方體的組合,透過等離子體耦合可提高SERS活性。超薄二氧化矽外殼可維持Ag NCs的穩定性,並使基板能夠以SHINERS模式運行。用於評估三聚氰胺檢測分析,評估顯示線性度高達1 mg/L,檢測極限為60 µg/L。對於液態牛奶的檢驗極限為0.62 mg/ L,可檢測值低於實際樣品,表示對實驗樣品具有足夠的靈敏度。
    第二種方法顯示了Ag SHINs 在等離子體紙基質上增強SERS表現的功能。這個功能能在等離子體基質上避免在感應體積內的分析局限與不足,這是經常威脅到SERS敏感度的問題。通常納米等離子體基質是通過連接影響SERS活性的主分子來發揮作用的。因此,我們提出了一種3D氨基修飾,有一層極薄的矽殼的Ag@SiO2 nanocubes 來偵測一個平滑SERS平台內的小分子。氨基酸基團的嵌入是將極薄的矽層用不同的氨基矽烷來進行矽烷化,可以在不犧牲Ag nanocube 的膠狀與化學穩定性的前提下提高它的敏感度。通過短鏈氨基矽烷來作用的Ag-SHINs 有著更好的SERS活性。氨基作用的方法使SERS信號提高了3倍,把無標籤的阿斯巴甜的偵測值降低至71 µg/mL ,其LOD值比沒有氨基作用的Ag-SHINs低了1.5倍。在測試有標籤的軟飲料及阿斯巴甜和葡萄糖混合物時,在基質的訊號選擇性及敏感度上有了很明顯的提高。SERS效能的提高主要歸因於氫鍵能誘導在感測體積內分析的定位。除此之外,小型化的紙平台和3D纖維結構也增強了熱點的密度與樣品收集效率。這個基質也可以擴展應用至其它有羧基和氨基酸的小分子,取代複雜的有生物標籤的偵測方法。
    最後一個方法展現了由電介質NS修飾的等離子體紙基質的製造方法與其在食品安全上的應用。等離子體奈米顆粒與電介質平台間的相互作用會產生獨特的光學行為使等離子體/SERS作為一個基質的表現型更高。在本篇文章中,電介質修飾的等離子體紙SERS基質由把Ag@SiO2 nanocubes 放在Fe-TiO2 NS修飾的紙上來合成。Fe-TiO2 NS對可見光的反應能顯著地改變紙的光學性質,並作為Ag NC的電介質襯底。因此,從電介質膜反射回來的入射光與來組Ag NCs 的散射光耦合,導致空間電磁場的增強,從而改善SERS的表現。本文製備的電介質修飾的等離子體紙基質的敏感度降至1 pM R6G,而平均EF為1.49×107 。這個值比未修飾的等離子體紙要好很多,突出了電介質NS的耦合效應。這個基質展現了卓越的分析表現,測試噻苯咪唑的LOD值低至19 µg/L,比未修飾的等離子體紙的敏感度要高4倍多。在直接噴灑噻苯咪唑的蘋果上擦拭后進行測試,可識別的Raman訊號降至15 ppb, 證明了本基質在食品安全上的應用是可靠的。


    Abstract
    The translation of Surface Enhanced Raman Spectroscopy (SERS) from the laboratory to the real world applications such as in food safety demands inexpensive yet quality substrates suitable for point-of-need applications. Flexible substrates due to their ease of fabrication and convenience to sample nonplanar surfaces can expand the application of SERS and facilitate onsite inspection of food and other commodities. In this dissertation, the fabrication and optimization of flexible plasmonic-paper SERS substrates, as well as their application in food safety, are discussed.
    In the first approach, sharp-edged Ag NCs are synthesized using the polyol method followed by coating them with ultrathin silica shell using a modified Stober method. The resulting shell isolated Ag NCs (Ag SHINs) are assembled on a miniaturized paper platform by suction filtration. This results in inexpensive sensing platform with reasonable distribution and interparticle spacing of nanocubes. Compared with the conventional rigid substrates, the fibrous structure of the paper promotes the assemblage of nanocubes rendering enhanced SERS activity through plasmon coupling. The ultrathin thin silica shell maintains the stability of the Ag NCs and enables the substrate to operate in SHINERS (Shell isolated Nanoparticle Enhanced Raman Spectroscopy) mode. Assessment of analytical performances of the substrate for melamine detection showed a good linearity up to 1 mg/L with a limit of detection of 60 µg/L, which is below the permissible residue limit signifying adequate sensitivity for real sample analysis with less sample treatment.
    The second approach shows the role of functionalization of Ag SHINs in improving their SERS performance in a plasmonic–paper substrate. Functionalization of a plasmonic substrate circumvents inadequate analyte localization within the sensing volume, which often threatens the sensitivity of a SERS method. Often nanoplasmonic substrates are functionalized by direct attachment to the host molecule, which affects their SERS activity. Herein, we report 3D-amino-functionalized Ag@SiO2 nanocubes with ultra-thin silica shell for the detection of small molecules in a flexible SERS platform. The amino groups are introduced by silanizing the ultra-thin silica layer using different aminoslanes which improves sensitivity without sacrificing the colloidal and chemical stability of the core Ag nanocubes. Ag-SHINs functionalized with shorter chain length aminosilanes shows better SERS activity. The amino-functionalization effects a 3-fold SERS signal enhancement enabling label-free aspartame detection down to 71 µg mL-1 which are 1.5 times lower LOD than the non-functionalized Ag-SHINs. Analysis of spiked soft drink, as well as a mixture of aspartame and glucose, shows a robust performance signaling the selectivity and sensitivity of the substrate. The improved SERS performance is attributed to the hydrogen bonding induced localization of the analyte within the sensing volume. Added to this, the miniaturized paper platform with its 3D fibrous structure enhances the hotspot density and sample collection efficiency. This substrate can also be extended to other small molecules with the carboxylic group and amino acids as well, replacing the complicated bio-labeled detection schemes.
    The final approach demonstrates the fabrication of a dielectric NS modified plasmonic-paper substrate and its application for food safety. The interaction of plasmonic nanoparticles with a dielectric platform gives rise to unique optical behaviors and this can be maneuvered to improve the plasmonic/SERS performances of a substrate. Herein, dielectric modified plasmonic-paper SERS substrate is developed by assembling Ag@SiO2 nanocubes on Fe-TiO2 NS modified paper. The Fe-TiO2 NS being visible light responsive significantly alters the optical property of the paper and serve as a dielectric underlay for the Ag NCs. Hence, the incident light reflected back from the dielectric film couples with the scattered light from the Ag NCs leading to spatially enhanced electromagnetic field improving the SERS enhancement. The prepared dielectric modified plasmonic-paper substrate is sensitive down to 1 pM R6G with average EF of 1.49×107. This value is superior to unmodified plasmonic-paper highlighting the coupling effect of the dielectric NS. The substrate shows robust analytical performance for thiabendazole detection with LOD down to 19 µg/ L, which is 4-fold more sensitive than unmodified plasmonic paper. Direct swabbing test of thiabendazole sprayed apple fruit shows a discernible Raman signal down to 15 µg/ L indicating the utility of the substrate for point-of-need applications in food safety.

    Table of contents Contents 摘要 i Abstract iii Acknowledgment vii Table of contents ix List of figures xiii List of tables xix List of schemes and equations xx Acronyms xxi Chapter 1 Introduction 1 1.1 Background and Rationale 1 1.2 Objectives of the study 5 1.3 Structure of the dissertation 5 Chapter 2 Literature Review 7 2.1 Background of Raman Spectroscopy 7 2.2 Basic principles of Raman Spectroscopy (RS) 7 2.3 Surface Enhanced Raman Spectroscopy (SERS) 9 2.3.1 Overview of Surface Enhanced Raman Spectroscopy 9 2.3.2 SERS Enhancement Mechanisms 10 2.3.3 SERS Enhancement Factor 13 2.4 SERS substrates 15 2.4.1 Colloidal suspensions 15 2.4.2 Nanoparticles immobilized on a planar substrate 17 2.4.3 Flexible substrates 18 2.5 Ag as a SERS substrate and the reason for choice 23 2.5.1 Synthesis of Ag nanoparticles 25 2.5.2 Shape controlled the synthesis of Ag NPs 28 2.6 Silica coating of Ag NPs 30 2.7 Principle of shell-isolated nanoparticle-enhanced Raman Spectroscopy 32 2.8 Application of SERS in food analysis 33 Chapter 3 Experimental 37 3.1 Materials 37 3.2 Synthesis of Ag@SiO2 NCs 37 3.3 Amino functionalization of Ag@SiO2 NCs 38 3.4 Synthesis of Fe-TiO2 NS 39 3.5 Plasmonic-paper SERS substrate fabrication 39 3.6 Characterizations 40 3.6 Preparation of analyte solutions 40 3.7 SERS Measurement and spectral analysis 41 Chapter 4 Synthesis and characterization of Ag@SiO2 nanocubes 43 4.1 Scope of the study 43 4.2 Results and Discussion 44 4.2.1 Morphology, structure and optical properties of Ag NCs 44 4.2.2 Silica coating and optical property changes 47 4.3 Summary 51 Chapter 5 Flexible plasmonic-paper SERS substrate with improved assemblage of Ag@SiO2 NCs for trace melamine detection 53 5.1 Scope of the study 53 5.2 Results and Discussion 56 5.2.1 Fabrication and characterization of miniaturized plasmonic-paper SERS substrate 56 5.2.2 SERS performance 58 5.2.3 Analytical performance for Melamine Detection 62 5.3 Summary 69 Chapter 6 Functionalized Ag SHINs assembled on paper for sensitive and selective SERS detection of small molecules 71 6.1 Scope of the study 71 6.2 Results and Discussion 74 6.2.1 Characterization of functionalized Ag SHINs 74 6.2.2 Characterization of the plasmonic-paper substrate 78 6.2.3 SERS performance for aspartame detection 81 6.2.4 Effect of interferants 84 6.3 Summary 88 Chapter 7 Highly sensitive and stable Fe-TiO2 NS modified plasmonic-paper SERS substrate for pesticides detection 89 7.1 Scope of the study 89 7.2 Results and Discussion 92 7.2.1 Characterization of TiO2 NS 92 7.2.2 Morphology and structure of the dielectric modified plasmonic-paper substrate 92 7.2.3 SERS performance 96 7.2.4 Detection of thiabendazole 101 7.2.5 Analysis of real sample and swabbing test 104 7.3 Summary 107 Chapter 8 Conclusion and outlook 108 8.1 Conclusion 108 8.2 Outlook 110 REFERENCES 112 Curriculum Vitae 141 Appendix 143

    1. Harvey, D., Modern Analytical Chemistry 1ed.; McGraw-Hill Companies: USA, 2009.
    2. Skoog, D. A.; West, D. M.; Holler, J. F.; Crouch, S. R., Fundamental of Analytical Chemistry. 8 ed.; Thomson Brooks/Cole: Canada, 2009.
    3. Sourdaine, M.; Guenther, D.; Dowgiallo, A. M.; Harvey, C.; Mattley, Y.; Guckian, A.; Lischtschenko, O., Protecting the food supply chain: Utilizing SERS and portable Raman spectroscopy. Tm-Tech Mess 2015, 82 (12), 625-632.
    4. Zheng, J.; He, L., Surface-Enhanced Raman Spectroscopy for the Chemical Analysis of Food. Comprehensive Reviews in Food Science and Food Safety 2014, 13 (3), 317-328.
    5. Tyan, Y. C.; Yang, M. H.; Jong, S. B.; Wang, C. K.; Shiea, J., Melamine contamination. Anal Bioanal Chem 2009, 395 (3), 729-35.
    6. Zhang, Z., Raman Spectroscopic Sensing in Food Safety and Quality Analysis. In Sensing Techniques for Food Safety and Quality Control, RSC: UK, 2017; pp 1-16.
    7. Cardinal, M. F.; Vander Ende, E.; Hackler, R. A.; McAnally, M. O.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P., Expanding applications of SERS through versatile nanomaterials engineering. Chem. Soc. Rev. 2017, 46 (13), 3886-3903.
    8. Cialla, D.; Marz, A.; Bohme, R.; Theil, F.; Weber, K.; Schmitt, M.; Popp, J., Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 2012, 403 (1), 27-54.
    9. Liu, X.; Li, D.; Sun, X.; Li, Z.; Song, H.; Jiang, H.; Chen, Y., Tunable Dipole Surface Plasmon Resonances of Silver Nanoparticles by Cladding Dielectric Layers. Sci Rep 2015, 5, 12555.
    10. Schlucker, S., Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem. Int. Ed. Engl. 2014, 53 (19), 4756-95.
    11. Panneerselvam, R.; Liu, G. K.; Wang, Y. H.; Liu, J. Y.; Ding, S. Y.; Li, J. F.; Wu, D. Y.; Tian, Z. Q., Surface-enhanced Raman spectroscopy: bottlenecks and future directions. Chem Commun (Camb) 2017, 54 (1), 10-25.
    12. Fan, M.; Andrade, G. F.; Brolo, A. G., A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 2011, 693 (1-2), 7-25.
    13. Jiang, N.; Zhuo, X.; Wang, J., Active Plasmonics: Principles, Structures, and Applications. Chem. Rev. 2018, 118 (6), 3054-3099.
    14. Sharma, B.; Frontiera, R. R.; Henry, A.-I.; Ringe, E.; Van Duyne, R. P., SERS: Materials, applications, and the future. Mater. Today 2012, 15 (1-2), 16-25.
    15. Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q., Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 2016, 1 (6).
    16. Gong, X.; Bao, Y.; Qiu, C.; Jiang, C., Individual nanostructured materials: fabrication and surface-enhanced Raman scattering. Chem Commun (Camb) 2012, 48 (56), 7003-18.
    17. Reguera, J.; Langer, J.; Jimenez de Aberasturi, D.; Liz-Marzan, L. M., Anisotropic metal nanoparticles for surface enhanced Raman scattering. Chem. Soc. Rev. 2017, 46 (13), 3866-3885.
    18. Wiley, B. J.; Im, S. H.; Li, Z. Y.; McLellan, J.; Siekkinen, A.; Xia, Y., Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B 2006, 110 (32), 15666-75.
    19. Xia, X.; Zeng, J.; Zhang, Q.; Moran, C. H.; Xia, Y., Recent Developments in Shape-Controlled Synthesis of Silver Nanocrystals. J Phys Chem C 2012, 116 (41), 21647-21656.
    20. Kobayashi, Y.; Katakami, H.; Mine, E.; Nagao, D.; Konno, M.; Liz-Marzan, L. M., Silica coating of silver nanoparticles using a modified Stober method. J. Colloid Interface Sci. 2005, 283 (2), 392-396.
    21. Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q., Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464 (7287), 392-5.
    22. Polavarapu, L.; Liz-Marzan, L. M., Towards low-cost flexible substrates for nanoplasmonic sensing. Phys. Chem. Chem. Phys. 2013, 15 (15), 5288-300.
    23. Prikhozhdenko, E. S.; Bratashov, D. N.; Gorin, D. A.; Yashchenok, A. M., Flexible surface-enhanced Raman scattering-active substrates based on nanofibrous membranes. Nano Research 2018.
    24. Ngo, Y. H.; Li, D.; Simon, G. P.; Garnier, G., Paper surfaces functionalized by nanoparticles. Adv. Colloid Interface Sci. 2011, 163 (1), 23-38.
    25. Lee, C. H.; Hankus, M. E.; Tian, L.; Pellegrino, P. M.; Singamaneni, S., Highly sensitive surface enhanced Raman scattering substrates based on filter paper loaded with plasmonic nanostructures. Anal. Chem. 2011, 83 (23), 8953-8.
    26. McCreery, R. L., Raman Spectroscopy for Chemical Analysis. John Wiley & Sons, Inc: Canada, 2000.
    27. C V Raman, F. R. S., Raman a new radiation. Indian J Phys 1928, 2, 387-389.
    28. Raman, C. V., The Raman effect;Investigation of molecular structure by light scattering. Trans Faraday Soc 1929, 25 781-792.
    29. Noble Prize Sir Venkata Raman - Facts Nobel Media AB 2014. https://www.nobelprize.org/nobel_prizes/physics/laureates/1930/raman-facts.html (accessed 2018, July 6).
    30. Long, D. A., The Raman Effect; A Unified Treatment of the Theory of Raman Scattering by Molecules. John Wiley & Sons Ltd: UK, 2002.
    31. Procházka, M., Surface-Enhanced Raman Spectroscopy Bioanalytical, Biomolecular and Medical Applications. Springer: Switzerland, 2016.
    32. Raman Spectroscopy. https://www.doitpoms.ac.uk/tlplib/raman/index.php (accessed 2018,July 13).
    33. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26 (2), 163-166.
    34. Jeanmaire, D. L.; Van Duyne, R. P., Surface raman spectroelectrochemistry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84 (1), 1-20.
    35. McQuillan, A. J., The discovery of surface-enhanced Raman scattering. Notes and Records of the Royal Society 2009, 63 (1), 105-109.
    36. Halvorson, R. A.; Vikesland, P. J., Surface-enhanced Raman spectroscopy (SERS) for environmental analyses. Environ. Sci. Technol. 2010, 44 (20), 7749-55.
    37. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P., Biosensing with plasmonic nanosensors. Nat Mater 2008, 7 (6), 442-53.
    38. Cheung, W.; Shadi, I. T.; Xu, Y.; Goodacre, R., Quantitative Analysis of the Banned Food Dye Sudan-1 Using Surface Enhanced Raman Scattering with Multivariate Chemometrics. J Phys Chem C 2010, 114 (16), 7285-7290.
    39. Ma, P. Y.; Liang, F. H.; Li, X. P.; Yang, Q. Q.; Wang, D.; Song, D. Q.; Gao, D. J.; Wang, X. H., Development and Optimization of a SERS Method for On-site Determination of Nitrite in Foods and Water. Food Anal Method 2014, 7 (9), 1866-1873.
    40. Zong, C.; Xu, M.; Xu, L. J.; Wei, T.; Ma, X.; Zheng, X. S.; Hu, R.; Ren, B., Surface-Enhanced Raman Spectroscopy for Bioanalysis: Reliability and Challenges. Chem. Rev. 2018, 118 (10), 4946-4980.
    41. Izake, E. L., Forensic and homeland security applications of modern portable Raman spectroscopy. Forensic Sci Int 2010, 202 (1-3), 1-8.
    42. Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R.; Feld, M. S., Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78 (9), 1667-1670.
    43. Nie, S.; Emory, S. R., Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering. Science 1997, 275 (5303), 1102-6.
    44. Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M., Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46 (13), 4042-4076.
    45. Campion, A.; Ivanecky, J. E.; Child, C. M.; Foster, M., On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman-Scattering. J. Am. Chem. Soc. 1995, 117 (47), 11807-11808.
    46. Hooshmand, N.; Panikkanvalappil, S. R.; El-Sayed, M. A., Effects of the Substrate Refractive Index, the Exciting Light Propagation Direction, and the Relative Cube Orientation on the Plasmonic Coupling Behavior of Two Silver Nanocubes at Different Separations. J Phys Chem C 2016, 120 (37), 20896-20904.
    47. Lal, S.; Grady, N. K.; Kundu, J.; Levin, C. S.; Lassiter, J. B.; Halas, N. J., Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 2008, 37 (5), 898-911.
    48. Bottomley, A.; Prezgot, D.; Staff, A.; Ianoul, A., Fine tuning of plasmonic properties of monolayers of weakly interacting silver nanocubes on thin silicon films. Nanoscale 2012, 4 (20), 6374-6382.
    49. Mahmoud, M. A.; Chamanzar, M.; Adibi, A.; El-Sayed, M. A., Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonance spectrum and sensitivity factors of highly symmetric systems: silver nanocubes. J. Am. Chem. Soc. 2012, 134 (14), 6434-42.
    50. Zhang, X. L.; Yu, Z.; Ji, W.; Sui, H. M.; Gong, Q.; Wang, X.; Zhao, B., Charge-Transfer Effect on Surface-Enhanced Raman Scattering (SERS) in an Ordered Ag NPs/4-Mercaptobenzoic Acid/TiO2 System. J Phys Chem C 2015, 119 (39), 22439-22444.
    51. Mosier-Boss, P. A., Review of SERS Substrates for Chemical Sensing. Nanomaterials-Basel 2017, 7 (6).
    52. Nguyen, M. K.; Su, W. N.; Hwang, B. J., A Plasmonic Coupling Substrate Based on Sandwich Structure of Ultrathin Silica-Coated Silver Nanocubes and Flower-Like Alumina-Coated Etched Aluminum for Sensitive Detection of Biomarkers in Urine. Adv Healthc Mater 2017, 6 (10).
    53. Lal, S.; Link, S.; Halas, N. J., Nano-optics from sensing to waveguiding. Nat Photon 2007, 1 (11), 641-648.
    54. Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q., Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 2016, 1 (6), 16021.
    55. Aroca, R.; Martin, F., Tuning metal island films for maximum surface-enhanced Raman scattering. Journal of Raman Spectroscopy 1985, 16 (3), 156-162.
    56. Grzelczak, M.; Liz-Marzán, L. M., Colloidal Nanoplasmonics: From Building Blocks to Sensing Devices. Langmuir 2013, 29 (15), 4652-4663.
    57. Fateixa, S.; Nogueira, H. I.; Trindade, T., Hybrid nanostructures for SERS: materials development and chemical detection. Phys. Chem. Chem. Phys. 2015, 17 (33), 21046-71.
    58. Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J., Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates. Science 1995, 267 (5204), 1629-32.
    59. Ko, H.; Singamaneni, S.; Tsukruk, V. V., Nanostructured surfaces and assemblies as SERS media. Small 2008, 4 (10), 1576-99.
    60. Andrade, G. F.; Fan, M.; Brolo, A. G., Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing. Biosens. Bioelectron. 2010, 25 (10), 2270-5.
    61. Haynes, C. L.; Van Duyne, R. P., Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 2001, 105 (24), 5599-5611.
    62. Im, H.; Bantz, K. C.; Lindquist, N. C.; Haynes, C. L.; Oh, S. H., Vertically oriented sub-10-nm plasmonic nanogap arrays. Nano Lett. 2010, 10 (6), 2231-6.
    63. Oliveira, M. J.; Quaresma, P.; Peixoto de Almeida, M.; Araujo, A.; Pereira, E.; Fortunato, E.; Martins, R.; Franco, R.; Aguas, H., Office paper decorated with silver nanostars - an alternative cost effective platform for trace analyte detection by SERS. Sci Rep 2017, 7 (1), 2480.
    64. Chen, M.; Zhang, Z. M.; Liu, M. Z.; Qiu, C.; Yang, H.; Chen, X. Q., In situ fabrication of label-free optical sensing paper strips for the rapid surface-enhanced Raman scattering (SERS) detection of brassinosteroids in plant tissues. Talanta 2017, 165, 313-320.
    65. Li, Y. X.; Zhang, K.; Zhao, J. J.; Ji, J.; Ji, C.; Liu, B. H., A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules. Talanta 2016, 147, 493-500.
    66. Cui, H.; Li, S.; Deng, S.; Chen, H.; Wang, C., Flexible, Transparent, and Free-Standing Silicon Nanowire SERS Platform for in Situ Food Inspection. Acs Sensors 2017, 2 (3), 386-393.
    67. Liu, Y.; Deng, C.; Yi, D.; Wang, X.; Tang, Y.; Wang, Y., Silica nanowire assemblies as three-dimensional, optically transparent platforms for constructing highly active SERS substrates. Nanoscale 2017, 9 (41), 15901-15910.
    68. Zhang, C. L.; Lv, K. P.; Cong, H. P.; Yu, S. H., Controlled Assemblies of Gold Nanorods in PVA Nanofiber Matrix as Flexible Free-Standing SERS Substrates by Electrospinning. Small 2012, 8 (5), 648-653.
    69. Zhou, N. N.; Meng, G. W.; Huang, Z. L.; Ke, Y.; Zhou, Q. T.; Hu, X. Y., A flexible transparent Ag-NC@PE film as a cut-and-paste SERS substrate for rapid in situ detection of organic pollutants. Analyst 2016, 141 (20), 5864-5869.
    70. Emamian, S.; Eshkeiti, A.; Narakathu, B. B.; Avuthu, S. G. R.; Atashbar, M. Z., Gravure printed flexible surface enhanced Raman spectroscopy (SERS) substrate for detection of 2,4-dinitrotoluene (DNT) vapor. Sensor Actuat B-Chem 2015, 217, 129-135.
    71. Li, Z. B.; Meng, G. W.; Huang, Q.; Hu, X. Y.; He, X.; Tang, H. B.; Wang, Z. W.; Li, F. D., Ag Nanoparticle-Grafted PAN-Nanohump Array Films with 3D High-Density Hot Spots as Flexible and Reliable SERS Substrates. Small 2015, 11 (40), 5452-5459.
    72. Zhong, L. B.; Yin, J.; Zheng, Y. M.; Liu, Q.; Cheng, X. X.; Luo, F. H., Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Anal. Chem. 2014, 86 (13), 6262-7.
    73. Novara, C.; Dalla Marta, S.; Virga, A.; Lamberti, A.; Angelini, A.; Chiado, A.; Rivolo, P.; Geobaldo, F.; Sergo, V.; Bonifacio, A.; Giorgis, F., SERS-Active Ag Nanoparticles on Porous Silicon and PDMS Substrates: A Comparative Study of Uniformity and Raman Efficiency. J Phys Chem C 2016, 120 (30), 16946-16953.
    74. Wu, W.; Liu, L.; Dai, Z.; Liu, J.; Yang, S.; Zhou, L.; Xiao, X.; Jiang, C.; Roy, V. A., Low-Cost, Disposable, Flexible and Highly Reproducible Screen Printed SERS Substrates for the Detection of Various Chemicals. Sci Rep 2015, 5, 10208.
    75. Ge, S.; Zhang, L.; Zhang, Y.; Lan, F.; Yan, M.; Yu, J., Nanomaterials-modified cellulose paper as a platform for biosensing applications. Nanoscale 2017, 9 (13), 4366-4382.
    76. Lopez-Marzo, A. M.; Merkoci, A., Paper-based sensors and assays: a success of the engineering design and the convergence of knowledge areas. Lab Chip 2016, 16 (17), 3150-76.
    77. Lee, C. H.; Tian, L.; Singamaneni, S., Paper-based SERS swab for rapid trace detection on real-world surfaces. Acs Appl Mater Inter 2010, 2 (12), 3429-35.
    78. Martinez, A. W.; Phillips, S. T.; Whitesides, G. M.; Carrilho, E., Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal. Chem. 2010, 82 (1), 3-10.
    79. Vo-Dinh, T.; Hiromoto, M. Y. K.; Begun, G. M.; Moody, R. L., Surface-enhanced Raman spectrometry for trace organic analysis. Anal. Chem. 2002, 56 (9), 1667-1670.
    80. Hoppmann, E. P.; Yu, W. W.; White, I. M., Highly sensitive and flexible inkjet printed SERS sensors on paper. Methods 2013, 63 (3), 219-24.
    81. Vo-Dinh, T.; Hiromoto, M. Y. K.; Begun, G. M.; Moody, R. L., Surface-enhanced Raman spectrometry for trace organic analysis. Anal. Chem. 2002, 56 (9), 1667-1670.
    82. Yu, W. W.; White, I. M., Inkjet printed surface enhanced Raman spectroscopy array on cellulose paper. Anal. Chem. 2010, 82 (23), 9626-30.
    83. Xiao, G.; Li, Y. X.; Shi, W. Z.; Shen, L.; Chen, Q.; Huang, L., Highly sensitive, reproducible and stable SERS substrate based on reduced graphene oxide/silver nanoparticles coated weighing paper. Appl. Surf. Sci. 2017, 404, 334-341.
    84. Cheng, M. L.; Tsai, B. C.; Yang, J., Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal. Chim. Acta 2011, 708 (1-2), 89-96.
    85. Villa, J. E. L.; dos Santos, D. P.; Poppi, R. J., Fabrication of gold nanoparticle-coated paper and its use as a sensitive substrate for quantitative SERS analysis. Microchim Acta 2016, 183 (10), 2745-2752.
    86. Wang, C.; Liu, B. X.; Dou, X. C., Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges. Sensor Actuat B-Chem 2016, 231, 357-364.
    87. Webb, J. A.; Aufrecht, J.; Hungerford, C.; Bardhan, R., Ultrasensitive analyte detection with plasmonic paper dipsticks and swabs integrated with branched nanoantennas. J Mater Chem C 2014, 2 (48), 10446-10454.
    88. Wang, Q.; Zhao, X. C.; Yu, Z. N.; Tan, R. Q.; Lan, J., Large scale preparation of surface enhanced Raman spectroscopy substrates based on silver nanowires for trace chemical detection. Anal Methods-Uk 2015, 7 (24), 10359-10363.
    89. Zhang, R.; Xu, B. B.; Liu, X. Q.; Zhang, Y. L.; Xu, Y.; Chen, Q. D.; Sun, H. B., Highly efficient SERS test strips. Chem Commun (Camb) 2012, 48 (47), 5913-5.
    90. Polavarapu, L.; Porta, A. L.; Novikov, S. M.; Coronado-Puchau, M.; Liz-Marzan, L. M., Pen-on-paper approach toward the design of universal surface enhanced Raman scattering substrates. Small 2014, 10 (15), 3065-71.
    91. Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C. H.; Zhang, Q.; Qin, D.; Xia, Y., Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem. Rev. 2011, 111 (6), 3669-712.
    92. Cobley, C. M.; Skrabalak, S. E.; Campbell, D. J.; Xia, Y. N., Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications. Plasmonics 2009, 4 (2), 171-179.
    93. Qu, L.; Dai, L., Novel silver nanostructures from silver mirror reaction on reactive substrates. J. Phys. Chem. B 2005, 109 (29), 13985-90.
    94. Haber, J.; Sokolov, K., Synthesis of Stable Citrate-Capped Silver Nanoprisms. Langmuir 2017, 33 (40), 10525-10530.
    95. Melsel, P. C. L. a. D., Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. J. Phys. Chem. B 1982, 86, 3391-3395.
    96. Zhang, L.; Wang, Y.; Tong, L.; Xia, Y., Seed-mediated synthesis of silver nanocrystals with controlled sizes and shapes in droplet microreactors separated by air. Langmuir 2013, 29 (50), 15719-25.
    97. Zhang, Q.; Cobley, C.; Au, L.; McKiernan, M.; Schwartz, A.; Wen, L. P.; Chen, J.; Xia, Y., Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon. Acs Appl Mater Inter 2009, 1 (9), 2044-8.
    98. Zhang, Q.; Li, W.; Wen, L. P.; Chen, J.; Xia, Y., Facile synthesis of Ag nanocubes of 30 to 70 nm in edge length with CF(3)COOAg as a precursor. Chemistry 2010, 16 (33), 10234-9.
    99. Valverde-Alva, M. A.; Garcia-Fernandez, T.; Villagran-Muniz, M.; Sanchez-Ake, C.; Castaneda-Guzman, R.; Esparza-Alegria, E.; Sanchez-Valdes, C. F.; Llamazares, J. L. S.; Herrera, C. E. M., Synthesis of silver nanoparticles by laser ablation in ethanol: A pulsed photoacoustic study. Appl. Surf. Sci. 2015, 355, 341-349.
    100. Pileni, M. P., Control of the size and shape of inorganic nanocrystals at various scales from nano to macrodomains. J Phys Chem C 2007, 111 (26), 9019-9038.
    101. Yang, R.; Sui, C. H.; Gong, J.; Qu, L. Y., Silver nanowires prepared by modified AAO template method. Mater. Lett. 2007, 61 (3), 900-903.
    102. Luo, S. C.; Sivashanmugan, K.; Liao, J. D.; Yao, C. K.; Peng, H. C., Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review. Biosens. Bioelectron. 2014, 61, 232-40.
    103. Koczkur, K. M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S. E., Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans 2015, 44 (41), 17883-905.
    104. Xia, X.; Zeng, J.; Zhang, Q.; Moran, C. H.; Xia, Y., Recent Developments in Shape-Controlled Synthesis of Silver Nanocrystals. J Phys Chem C 2012, 116 (41), 21647-21656.
    105. Ruditskiy, A.; Xia, Y., Toward the Synthesis of Sub-15 nm Ag Nanocubes with Sharp Corners and Edges: The Roles of Heterogeneous Nucleation and Surface Capping. J. Am. Chem. Soc. 2016, 138 (9), 3161-7.
    106. Skrabalak, S. E.; Au, L.; Li, X.; Xia, Y., Facile synthesis of Ag nanocubes and Au nanocages. Nat Protoc 2007, 2 (9), 2182-90.
    107. Uzayisenga, V.; Lin, X. D.; Li, L. M.; Anema, J. R.; Yang, Z. L.; Huang, Y. F.; Lin, H. X.; Li, S. B.; Li, J. F.; Tian, Z. Q., Synthesis, characterization, and 3D-FDTD simulation of Ag@SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy. Langmuir 2012, 28 (24), 9140-6.
    108. Li, J.-F.; Zhang, Y.-J.; Ding, S.-Y.; Panneerselvam, R.; Tian, Z.-Q., Core–Shell Nanoparticle-Enhanced Raman Spectroscopy. Chem. Rev. 2017, 117 (7), 5002-5069.
    109. Wang, Y.; Yan, B.; Chen, L., SERS tags: novel optical nanoprobes for bioanalysis. Chem. Rev. 2013, 113 (3), 1391-428.
    110. Nguyen, M. K.; Su, W. N.; Chen, C. H.; Rick, J.; Hwang, B. J., Highly sensitive and stable Ag@SiO2 nanocubes for label-free SERS-photoluminescence detection of biomolecules. Spectrochim Acta A 2017, 175, 239-245.
    111. Juan, X.; Yue-Jiao, Z.; Hao, Y.; Han-Liang, Z.; Min, S.; Zhong-Qun, T.; Jian-Feng, L., Shell-Isolated Nanoparticle-Enhanced Raman and Fluorescence Spectroscopies: Synthesis and Applications. Advanced Optical Materials 2018, 6 (4), 1701069.
    112. Stöber, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26 (1), 62-69.
    113. Wong, Y. J.; Zhu, L.; Teo, W. S.; Tan, Y. W.; Yang, Y.; Wang, C.; Chen, H., Revisiting the Stober method: inhomogeneity in silica shells. J. Am. Chem. Soc. 2011, 133 (30), 11422-5.
    114. Zhang, Y.; Li, X.; Xue, B.; Kong, X.; Liu, X.; Tu, L.; Chang, Y., A facile and general route to synthesize silica-coated SERS tags with the enhanced signal intensity. Sci Rep 2015, 5, 14934.
    115. Kha, N. M.; Chen, C. H.; Su, W. N.; Rick, J.; Hwang, B. J., Improved Raman and photoluminescence sensitivity achieved using bifunctional Ag@SiO(2) nanocubes. Phys. Chem. Chem. Phys. 2015, 17 (33), 21226-35.
    116. Tian, Z. Q.; Ren, B.; Li, J. F.; Yang, Z. L., Expanding generality of surface-enhanced Raman spectroscopy with borrowing SERS activity strategy. Chem Commun (Camb) 2007, (34), 3514-34.
    117. Aitchison, H.; Aizpurua, J.; Arnolds, H.; Baumberg, J.; Bell, S.; Bonifacio, A.; Chikkaraddy, R.; Dawson, P.; de Nijs, B.; Deckert, V.; Delfino, I.; Di Martino, G.; Eremina, O.; Faulds, K.; Fountain, A.; Gawinkowski, S.; Gomez Castano, M.; Goodacre, R.; Gracie, J.; Graham, D.; Guicheteau, J.; Hardwick, L.; Hardy, M.; Heck, C.; Jamieson, L.; Kamp, M.; Keeler, A.; Kuttner, C.; Langer, J.; Mahajan, S.; Martin Sabanes, N.; Murakoshi, K.; Porter, M.; Schatz, G.; Schlucker, S.; Tian, Z.; Tripathi, A.; Van Duyne, R.; Vikesland, P., Analytical SERS: general discussion. Faraday Discuss. 2017, 205 (0), 561-600.
    118. Pilot, R., SERS detection of food contaminants by means of portable Raman instruments. Journal of Raman Spectroscopy 2018, 49 (6), 954-981.
    119. Mungroo, N. A.; Oliveira, G.; Neethirajan, S., SERS based point-of-care detection of food-borne pathogens. Microchim Acta 2016, 183 (2), 697-707.
    120. Li, J. M.; Ma, W. F.; Wei, C.; You, L. J.; Guo, J.; Hu, J.; Wang, C. C., Detecting Trace Melamine in Solution by SERS Using Ag Nanoparticle Coated Poly(styrene-co-acrylic acid) Nanospheres as Novel Active Substrates. Langmuir 2011, 27 (23), 14539-14544.
    121. Buyukgoz, G. G.; Bozkurt, A. G.; Akgul, N. B.; Tamer, U.; Boyaci, I. H., Spectroscopic detection of aspartame in soft drinks by surface-enhanced Raman spectroscopy. Eur Food Res Technol 2015, 240 (3), 567-575.
    122. Pang, S. T. R.; Yang, T. X.; He, L. L., Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. Trac-Trend Anal Chem 2016, 85, 73-82.
    123. Peica, N.; Lehene, C.; Leopold, N.; Schlucker, S.; Kiefer, W., Monosodium glutamate in its anhydrous and monohydrate form: differentiation by Raman spectroscopies and density functional calculations. Spectrochim Acta A Mol Biomol Spectrosc 2007, 66 (3), 604-15.
    124. Wang, Q.; Wu, D.; Chen, Z., Ag dendritic nanostructures for rapid detection of thiram based on surface-enhanced Raman scattering. Rsc Adv 2015, 5 (86), 70553-70557.
    125. Dai, H. C.; Sun, Y. J.; Ni, P. J.; Lu, W. D.; Jiang, S.; Wang, Y. L.; Li, Z.; Li, Z., Three-dimensional TiO2 supported silver nanoparticles as sensitive and UV-cleanable substrate for surface enhanced Raman scattering. Sensor Actuat B-Chem 2017, 242, 260-268.
    126. Liou, P.; Nayigiziki, F. X.; Kong, F.; Mustapha, A.; Lin, M., Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr. Polym. 2017, 157, 643-650.
    127. Wang, P.; Wu, L.; Lu, Z.; Li, Q.; Yin, W.; Ding, F.; Han, H., Gecko-Inspired Nanotentacle Surface-Enhanced Raman Spectroscopy Substrate for Sampling and Reliable Detection of Pesticide Residues in Fruits and Vegetables. Anal. Chem. 2017, 89 (4), 2424-2431.
    128. Li, C. H.; Yang, C.; Xu, S. C.; Zhang, C.; Li, Z.; Liu, X. Y.; Jiang, S. Z.; Huo, Y. Y.; Liu, A. H.; Man, B. Y., Ag2O@Ag core-shell structure on PMMA as low-cost and ultra-sensitive flexible surface-enhanced Raman scattering substrate. J Alloy Compd 2017, 695, 1677-1684.
    129. Hu, Y.; Feng, S.; Gao, F.; Li-Chan, E. C.; Grant, E.; Lu, X., Detection of melamine in milk using molecularly imprinted polymers-surface enhanced Raman spectroscopy. Food Chem. 2015, 176, 123-9.
    130. Gong, Z. J.; Wang, C. C.; Pu, S.; Wang, C.; Cheng, F. S.; Wang, Y. H.; Fan, M. K., Rapid and direct detection of illicit dyes on tainted fruit peel using a PVA hydrogel surface enhanced Raman scattering substrate. Anal Methods 2016, 8 (24), 4816-4820.
    131. Hu, H. B.; Wang, Z. H.; Wang, S. F.; Zhang, F. W.; Zhao, S. P.; Zhu, S. Y., ZnO/Ag heterogeneous structure nanoarrays: Photocatalytic synthesis and used as substrate for surface-enhanced Raman scattering detection. J Alloy Compd 2011, 509 (5), 2016-2020.
    132. Wu, X.; Gao, S.; Wang, J.-S.; Wang, H.; Huang, Y.-W.; Zhao, Y., The surface-enhanced Raman spectra of aflatoxins: spectral analysis, density functional theory calculation, detection and differentiation. Analyst 2012, 137 (18), 4226-4234.
    133. Osada, M.; Ebina, Y.; Funakubo, H.; Yokoyama, S.; Kiguchi, T.; Takada, K.; Sasaki, T., High-κ Dielectric Nanofilms Fabricated from Titania Nanosheets. Adv. Mater. 2006, 18 (8), 1023-1027.
    134. Osada, M.; Sasaki, T., Exfoliated oxide nanosheets: new solution to nanoelectronics. J. Mater. Chem. 2009, 19 (17), 2503-2511.
    135. Giovannozzi, A. M.; Rolle, F.; Sega, M.; Abete, M. C.; Marchis, D.; Rossi, A. M., Rapid and sensitive detection of melamine in milk with gold nanoparticles by Surface Enhanced Raman Scattering. Food Chem. 2014, 159, 250-256.
    136. Lane, L. A.; Qian, X.; Nie, S., SERS Nanoparticles in Medicine: From Label-Free Detection to Spectroscopic Tagging. Chem. Rev. 2015, 115 (19), 10489-529.
    137. Shanthil, M.; Thomas, R.; Swathi, R. S.; George Thomas, K., Ag@SiO2 Core-Shell Nanostructures: Distance-Dependent Plasmon Coupling and SERS Investigation. J Phys Chem Lett 2012, 3 (11), 1459-64.
    138. Zhang, Q.; Li, W.; Wen, L.-P.; Chen, J.; Xia, Y., Facile Synthesis of Ag Nanocubes of 30 to 70 nm in Edge Length with CF3COOAg as a Precursor. Chemistry – A European Journal 2010, 16 (33), 10234-10239.
    139. Zhang, Q.; Li, W.; Moran, C.; Zeng, J.; Chen, J.; Wen, L. P.; Xia, Y., Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties. J. Am. Chem. Soc. 2010, 132 (32), 11372-8.
    140. Graf, C.; Vossen, D. L. J.; Imhof, A.; van Blaaderen, A., A General Method To Coat Colloidal Particles with Silica. Langmuir 2003, 19 (17), 6693-6700.
    141. Li, J. F.; Zhang, Y. J.; Ding, S. Y.; Panneerselvam, R.; Tian, Z. Q., Core-Shell Nanoparticle-Enhanced Raman Spectroscopy. Chem. Rev. 2017, 117 (7), 5002-5069.
    142. Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P., Biosensing with plasmonic nanosensors. Nat Mater 2008, 7 (6), 442-453.
    143. Cobley, C. M.; Skrabalak, S. E.; Campbell, D. J.; Xia, Y., Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications. Plasmonics 2009, 4 (2), 171-179.
    144. Li, J. F.; Tian, X. D.; Li, S. B.; Anema, J. R.; Yang, Z. L.; Ding, Y.; Wu, Y. F.; Zeng, Y. M.; Chen, Q. Z.; Ren, B.; Wang, Z. L.; Tian, Z. Q., Surface analysis using shell-isolated nanoparticle-enhanced Raman spectroscopy. Nat Protoc 2013, 8 (1), 52-65.
    145. Tao, A.; Sinsermsuksakul, P.; Yang, P., Tunable plasmonic lattices of silver nanocrystals. Nat Nanotechnol 2007, 2 (7), 435-40.
    146. Bell, S. E.; Sirimuthu, N. M., Quantitative surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37 (5), 1012-24.
    147. Banholzer, M. J.; Millstone, J. E.; Qin, L.; Mirkin, C. A., Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2008, 37 (5), 885-97.
    148. Betz, J. F.; Yu, W. W.; Cheng, Y.; White, I. M.; Rubloff, G. W., Simple SERS substrates: powerful, portable, and full of potential. Phys. Chem. Chem. Phys. 2014, 16 (6), 2224-39.
    149. Tian, H.; He, J., Cellulose as a Scaffold for Self-Assembly: From Basic Research to Real Applications. Langmuir 2016, 32 (47), 12269-12282.
    150. Wang, C.; Liu, B. X.; Dou, X. C., Silver nanotriangles-loaded filter paper for ultrasensitive SERS detection application benefited by interspacing of sharp edges. Sensor Actuat B-Cheml 2016, 231, 357-364.
    151. Ngo, Y. H.; Li, D.; Simon, G. P.; Garnier, G., Gold Nanoparticle–Paper as a Three-Dimensional Surface Enhanced Raman Scattering Substrate. Langmuir 2012, 28 (23), 8782-8790.
    152. Domingo, E.; Tirelli, A. A.; Nunes, C. A.; Guerreiro, M. C.; Pinto, S. M., Melamine detection in milk using vibrational spectroscopy and chemometrics analysis: A review. Food Research International 2014, 60, 131-139.
    153. Zhuang, H. J.; Zhu, W. F.; Yao, Z. Y.; Li, M.; Zhao, Y. L., SERS-based sensing technique for trace melamine detection - A new method exploring. Talanta 2016, 153, 186-190.
    154. Hau, A. K.; Kwan, T. H.; Li, P. K., Melamine toxicity and the kidney. J Am Soc Nephrol 2009, 20 (2), 245-50.
    155. Guan , N.; Fan , Q.; Ding , J.; Zhao , Y.; Lu , J.; Ai , Y.; Xu , G.; Zhu , S.; Yao , C.; Jiang , L.; Miao , J.; Zhang , H.; Zhao , D.; Liu , X.; Yao , Y., Melamine-Contaminated Powdered Formula and Urolithiasis in Young Children. New England Journal of Medicine 2009, 360 (11), 1067-1074.
    156. Zheng, J. K.; He, L. L., Surface-Enhanced Raman Spectroscopy for the Chemical Analysis of Food. Comprehensive Reviews in Food Science and Food Safety 2014, 13 (3), 317-328.
    157. Tang, H.-W.; Ng, K.-M.; Chui, S. S.-Y.; Che, C.-M.; Lam, C.-W.; Yuen, K.-Y.; Siu, T.-S.; Lan, L. C.-L.; Che, X., Analysis of Melamine Cyanurate in Urine Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2009, 81 (9), 3676-3682.
    158. Lin, M.; He, L.; Awika, J.; Yang, L.; Ledoux, D. R.; Li, H.; Mustapha, A., Detection of melamine in gluten, chicken feed, and processed foods using surface enhanced Raman spectroscopy and HPLC. J. Food Sci. 2008, 73 (8), T129-34.
    159. Garber, E. A. E., Detection of melamine using commercial enzyme-linked immunosorbent assay technology. J. Food Prot. 2008, 71 (3), 590-594.
    160. Craig, A. P.; Franca, A. S.; Irudayaraj, J., Surface-enhanced Raman spectroscopy applied to food safety. Annu Rev Food Sci Technol 2013, 4 (1), 369-80.
    161. Giovannozzi, A. M.; Rolle, F.; Sega, M.; Abete, M. C.; Marchis, D.; Rossi, A. M., Rapid and sensitive detection of melamine in milk with gold nanoparticles by Surface Enhanced Raman Scattering. Food Chem. 2014, 159, 250-6.
    162. Li, R. P.; Yang, G. H.; Yang, J. L.; Han, J. H.; Liu, J. H.; Huang, M. J., Determination of melamine in milk using surface plasma effect of aggregated Au@SiO2 nanoparticles by SERS technique. Food Control 2016, 68, 14-19.
    163. XPS reference table of elements. https://xpssimplified.com/periodictable.php (accessed 2018, June 12).
    164. Quyen, T. T. B.; Su, W. N.; Chen, K. J.; Pan, C. J.; Rick, J.; Chang, C. C.; Hwang, B. J., Au@SiO2 core/shell nanoparticle assemblage used for highly sensitive SERS-based determination of glucose and uric acid. J. Raman Spectrosc. 2013, 44 (12), 1671-1677.
    165. Li, C. Y.; Meng, M.; Huang, S. C.; Li, L.; Huang, S. R.; Chen, S.; Meng, L. Y.; Panneerselvam, R.; Zhang, S. J.; Ren, B.; Yang, Z. L.; Li, J. F.; Tian, Z. Q., "Smart" Ag Nanostructures for Plasmon-Enhanced Spectroscopies. J. Am. Chem. Soc. 2015, 137 (43), 13784-7.
    166. Hooshmand, N.; Bordley, J. A.; El-Sayed, M. A., Are Hot Spots between Two Plasmonic Nanocubes of Silver or Gold Formed between Adjacent Corners or Adjacent Facets? A DDA Examination. J Phys Chem Lett 2014, 5 (13), 2229-2234.
    167. Mircescu, N. E.; Oltean, M.; Chis, V.; Leopold, N., FTIR, FT-Raman, SERS and DFT study on melamine. Vib. Spectrosc 2012, 62, 165-171.
    168. Cheng, Y.; Dong, Y., Screening melamine contaminant in eggs with portable surface-enhanced Raman Spectroscopy based on gold nanosubstrate. Food Control 2011, 22 (5), 685-689.
    169. Betz, J. F.; Cheng, Y.; Rubloff, G. W., Direct SERS detection of contaminants in a complex mixture: rapid, single step screening for melamine in liquid infant formula. Analyst 2012, 137 (4), 826-828.
    170. An, N. T.; Dao, D. Q.; Nam, P. C.; Huy, B. T.; Nhung Tran, H., Surface enhanced Raman scattering of melamine on silver substrate: An experimental and DFT study. Spectrochim Acta A 2016, 169, 230-7.
    171. Alvarez-Puebla, R. A.; Liz-Marzan, L. M., Traps and cages for universal SERS detection. Chem. Soc. Rev. 2012, 41 (1), 43-51.
    172. Rycenga, M.; Xia, X. H.; Moran, C. H.; Zhou, F.; Qin, D.; Li, Z. Y.; Xia, Y. A., Generation of Hot Spots with Silver Nanocubes for Single-Molecule Detection by Surface-Enhanced Raman Scattering. Angew Chem Int Edit 2011, 50 (24), 5473-5477.
    173. Oliverio, M.; Perotto, S.; Messina, G. C.; Lovato, L.; De Angelis, F., Chemical Functionalization of Plasmonic Surface Biosensors: A Tutorial Review on Issues, Strategies, and Costs. Acs Appl Mater Inter 2017, 9 (35), 29394-29411.
    174. Sun, F.; Hung, H. C.; Sinclair, A.; Zhang, P.; Bai, T.; Galvan, D. D.; Jain, P.; Li, B.; Jiang, S.; Yu, Q., Hierarchical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma. Nat Commun 2016, 7, 13437.
    175. Gu, H.-X.; Hu, K.; Li, D.-W.; Long, Y.-T., SERS detection of polycyclic aromatic hydrocarbons using a bare gold nanoparticles coupled film system. Analyst 2016, 141 (14), 4359-4365.
    176. Sigle, D. O.; Kasera, S.; Herrmann, L. O.; Palma, A.; de Nijs, B.; Benz, F.; Mahajan, S.; Baumberg, J. J.; Scherman, O. A., Observing Single Molecules Complexing with Cucurbit[7]uril through Nanogap Surface-Enhanced Raman Spectroscopy. J Phys Chem Lett 2016, 7 (4), 704-10.
    177. Kasera, S.; Biedermann, F.; Baumberg, J. J.; Scherman, O. A.; Mahajan, S., Quantitative SERS using the sequestration of small molecules inside precise plasmonic nanoconstructs. Nano Lett. 2012, 12 (11), 5924-8.
    178. Wang, F.; Cao, S.; Yan, R.; Wang, Z.; Wang, D.; Yang, H., Selectivity/Specificity Improvement Strategies in Surface-Enhanced Raman Spectroscopy Analysis. Sensors 2017, 17 (11).
    179. Qian, K.; Liu, H.; Yang, L.; Liu, J., Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene. Analyst 2012, 137 (20), 4644-6.
    180. Liu, W.; Zhao, M.; Guo, H.; Zhao, R.; Chou, X.; Zhang, B.; Xue, C.; Zhang, W.; Tang, J.; Liu, J., Carboxyl-functionalized Ag@SiO 2 nanoparticle films for highly sensitive and selective surface-enhanced Raman scattering applications. Mater. Lett. 2017, 201, 152-155.
    181. Peica, N., Identification and characterisation of the E951 artificial food sweetener by vibrational spectroscopy and theoretical modelling. J. Raman Spectrosc. 2009, 40 (12), 2144-2154.
    182. Sui, N.; Monnier, V.; Yang, Z.; Chevolot, Y.; Laurenceau, E.; Souteyrand, E.; Dugas, V., Preparation of Core-Shell Silver/Silica Nanopaticles and Their Application for Enhancement of Cyanine 3 Fluorescence. International Journal of Nanoscience 2012, 11 (04).
    183. Kong, X. M.; Yu, Q.; Zhang, X. F.; Du, X. Z.; Gong, H.; Jiang, H., Synthesis and application of surface enhanced Raman scattering (SERS) tags of Ag@SiO2 core/shell nanoparticles in protein detection. J. Mater. Chem. 2012, 22 (16), 7767-7774.
    184. Jakša, G., AFM and XPS Study of Aminosilanes on Si. Imaging & Microscopy 2014.
    185. Jaksa, G.; Stefane, B.; Kovac, J., XPS and AFM characterization of aminosilanes with different numbers of bonding sites on a silicon wafer. Surf. Interface Anal. 2013, 45 (11-12), 1709-1713.
    186. Shircliff, R. A.; Stradins, P.; Moutinho, H.; Fennell, J.; Ghirardi, M. L.; Cowley, S. W.; Branz, H. M.; Martin, I. T., Angle-Resolved XPS Analysis and Characterization of Monolayer and Multilayer Silane Films for DNA Coupling to Silica. Langmuir 2013, 29 (12), 4057-4067.
    187. Kim, Y. H.; Lee, D. K.; Cha, H. G.; Kim, C. W.; Kang, Y. S., Synthesis and Characterization of Antibacterial Ag−SiO2 Nanocomposite. J Phys Chem C 2007, 111 (9), 3629-3635.
    188. Abdelmouleh, M.; Boufi, S.; ben Salah, A.; Belgacem, M. N.; Gandini, A., Interaction of silane coupling agents with cellulose. Langmuir 2002, 18 (8), 3203-3208.
    189. Koga, H.; Kitaoka, T.; Isogai, A., In situ modification of cellulose paper with amino groups for catalytic applications. J. Mater. Chem. 2011, 21 (25), 9356-9361.
    190. Kruve, A.; Rebane, R.; Kipper, K.; Oldekop, M. L.; Evard, H.; Herodes, K.; Ravio, P.; Leito, I., Tutorial review on validation of liquid chromatography-mass spectrometry methods: part I. Anal. Chim. Acta 2015, 870 (Supplement C), 29-44.
    191. Xi, W.; Shrestha, B. K.; Haes, A. J., Promoting Intra- and Intermolecular Interactions in Surface-Enhanced Raman Scattering. Anal. Chem. 2018, 90 (1), 128-143.
    192. Sun, C.; Chen, T.; Ruan, W.; Zhao, B.; Cong, Q., Controlling the orientation of probe molecules on surface-enhanced Raman scattering substrates: A novel strategy to improve sensitivity. Anal. Chim. Acta 2017, 994 (Supplement C), 65-72.
    193. Wilson, A. J.; Willets, K. A., Unforeseen distance-dependent SERS spectroelectrochemistry from surface-tethered Nile Blue: the role of molecular orientation. Analyst 2016, 141 (17), 5144-51.
    194. Souza, K. S.; dos Santos, D. P.; Andrade, G. F. S.; Pereira, M. B.; Teixeira-Neto, E.; Temperini, M. L. A., Molecular Wires Bridging Gaps between Gold Surfaces and Their Influence on SERS Intensities. J Phys Chem C 2017, 121 (38), 20937-20946.
    195. Masango, S. S.; Hackler, R. A.; Large, N.; Henry, A.-I.; McAnally, M. O.; Schatz, G. C.; Stair, P. C.; Van Duyne, R. P., High-Resolution Distance Dependence Study of Surface-Enhanced Raman Scattering Enabled by Atomic Layer Deposition. Nano Lett. 2016, 16 (7), 4251-4259.
    196. Mekonnen, M. L.; Su, W. N.; Chenb, C. H.; Hwang, B. J., Ag@SiO2 nanocube loaded miniaturized filter paper as a hybrid flexible plasmonic SERS substrate for trace melamine detection. Anal Methods-Uk 2017, 9 (48), 6823-6829.
    197. Zhu, C.; Wang, X.; Shi, X.; Yang, F.; Meng, G.; Xiong, Q.; Ke, Y.; Wang, H.; Lu, Y.; Wu, N., Detection of Dithiocarbamate Pesticides with a Spongelike Surface-Enhanced Raman Scattering Substrate Made of Reduced Graphene Oxide-Wrapped Silver Nanocubes. Acs Appl Mater Inter 2017, 9 (45), 39618-39625.
    198. He, D.; Hu, B.; Yao, Q. F.; Wang, K.; Yu, S. H., Large-Scale Synthesis of Flexible Free-Standing SERS Substrates with High Sensitivity: Electrospun PVA Nanofibers Embedded with Controlled Alignment of Silver Nanoparticles. Acs Nano 2009, 3 (12), 3993-4002.
    199. Mekonnen, M. L.; Su, W. N.; Chenb, C. H.; Hwang, B. J., Ag@SiO2 nanocube loaded miniaturized filter paper as a hybrid flexible plasmonic SERS substrate for trace melamine detection. Anal Methods 2017, 9 (48), 6823-6829.
    200. Bich Quyen, T. T.; Su, W.-N.; Chen, C.-H.; Rick, J.; Liu, J.-Y.; Hwang, B.-J., Novel Ag/Au/Pt trimetallic nanocages used with surface-enhanced Raman scattering for trace fluorescent dye detection. J. Mater. Chem. B 2014, 2 (34), 5550-5557.
    201. Zhang, K.; Zhao, J.; Xu, H.; Li, Y.; Ji, J.; Liu, B., Multifunctional Paper Strip Based on Self-Assembled Interfacial Plasmonic Nanoparticle Arrays for Sensitive SERS Detection. Acs Appl Mater Inter 2015, 7 (30), 16767-74.
    202. Lee, M.; Oh, K.; Choi, H. K.; Lee, S. G.; Youn, H. J.; Lee, H. L.; Jeong, D. H., Subnanomolar Sensitivity of Filter Paper-Based SERS Sensor for Pesticide Detection by Hydrophobicity Change of Paper Surface. Acs Sensors 2018, 3 (1), 151-159.
    203. Abbas, A.; Brimer, A.; Slocik, J. M.; Tian, L.; Naik, R. R.; Singamaneni, S., Multifunctional analytical platform on a paper strip: separation, preconcentration, and subattomolar detection. Anal. Chem. 2013, 85 (8), 3977-83.
    204. Lerme, J., Plasmon Hybridization Model for a Nanoparticle above a Dielectric Interface: Dielectric Effects, Comparison with the Dimer System, Range of Applicability, and Limits. J Phys Chem C 2015, 119 (36), 21087-21104.
    205. Knight, M. W.; Wu, Y.; Lassiter, J. B.; Nordlander, P.; Halas, N. J., Substrates Matter: Influence of an Adjacent Dielectric on an Individual Plasmonic Nanoparticle. Nano Lett. 2009, 9 (5), 2188-2192.
    206. Alessandri, I.; Lombardi, J. R., Enhanced Raman Scattering with Dielectrics. Chem. Rev. 2016, 116 (24), 14921-14981.
    207. Chen, J. J.; Wu, J. C. S.; Wu, P. C.; Tsai, D. P., Improved Photocatalytic Activity of Shell-Isolated Plasmonic Photocatalyst Au@SiO2/TiO2 by Promoted LSPR. J Phys Chem C 2012, 116 (50), 26535-26542.
    208. Bottomley, A.; Ianoul, A., Reflection and Absorption Spectra of Silver Nanocubes on a Dielectric Substrate: Anisotropy, Angle, and Polarization Dependencies. J Phys Chem C 2014, 118 (47), 27509-27515.
    209. Singh, N.; Prakash, J.; Misra, M.; Sharma, A.; Gupta, R. K., Dual Functional Ta-Doped Electrospun TiO2 Nanofibers with Enhanced Photocatalysis and SERS Detection for Organic Compounds. Acs Appl Mater Inter 2017, 9 (34), 28495-28507.
    210. Camargo, P. H.; Au, L.; Rycenga, M.; Li, W.; Xia, Y., Measuring the SERS Enhancement Factors of Dimers with Different Structures Constructed from Silver Nanocubes. Chem. Phys. Lett. 2010, 484 (4-6), 304-308.
    211. Hooshmand, N., Plasmonic Properties of Two Silver Nanocubes: Dependence on Separation Distance, Relative Orientation, Refractive Index of the Substrate, and Exciting Light Propagation Direction. In Frontiers of Plasmon Enhanced Spectroscopy Volume 2, 2016; pp 21-40.
    212. Wang, L.; Sasaki, T., Titanium oxide nanosheets: graphene analogues with versatile functionalities. Chem. Rev. 2014, 114 (19), 9455-86.
    213. Ma, L.; Huang, Y.; Hou, M.; Xie, Z.; Zhang, Z., Ag Nanorods Coated with Ultrathin TiO2 Shells as Stable and Recyclable SERS Substrates. Sci Rep 2015, 5, 15442.
    214. Krishna, V.; Bai, W.; Han, Z.; Yano, A.; Thakur, A.; Georgieva, A.; Tolley, K.; Navarro, J.; Koopman, B.; Moudgil, B., Contaminant-Activated Visible Light Photocatalysis. Sci Rep 2018, 8 (1), 1894.
    215. Mekonnen, M. L.; Chen, C.-H.; Su, W.-N.; Hwang, B.-J., 3D-functionalized shell isolated Ag nanocubes on a miniaturized flexible platform for sensitive and selective SERS detection of small molecules. Microchem. J. 2018, 142, 305-312.
    216. Camargo, P. H. C.; Rycenga, M.; Au, L.; Xia, Y. N., Isolating and Probing the Hot Spot Formed between Two Silver Nanocubes. Angew Chem Int Edit 2009, 48 (12), 2180-2184.
    217. Xu, M. L.; Gao, Y.; Han, X. X.; Zhao, B., Detection of Pesticide Residues in Food Using Surface-Enhanced Raman Spectroscopy: A Review. J. Agric. Food. Chem. 2017, 65 (32), 6719-6726.
    218. Muller, C.; David, L.; Chis, V.; Pinzaru, S. C., Detection of thiabendazole applied on citrus fruits and bananas using surface enhanced Raman scattering. Food Chem. 2014, 145, 814-20.
    219. Feng, J.; Hu, Y.; Grant, E.; Lu, X., Determination of thiabendazole in orange juice using an MISPE-SERS chemosensor. Food Chem. 2018, 239, 816-822.
    220. Luo, H. R.; Huang, Y. Q.; Lai, K. Q.; Rasco, B. A.; Fan, Y. X., Surface-enhanced Raman spectroscopy coupled with gold nanoparticles for rapid detection of phosmet and thiabendazole residues in apples. Food Control 2016, 68, 229-235.
    221. Hong, J.; Kawashima, A.; Hamada, N., A simple fabrication of plasmonic surface-enhanced Raman scattering (SERS) substrate for pesticide analysis via the immobilization of gold nanoparticles on UF membrane. Appl. Surf. Sci. 2017, 407 (Supplement C), 440-446.
    222. Kim, A.; Barcelo, S. J.; Li, Z., SERS-based pesticide detection by using nanofinger sensors. Nanotechnology 2015, 26 (1), 015502.

    QR CODE