簡易檢索 / 詳目顯示

研究生: Zewdu Tadesse Wondimkun
Zewdu Tadesse Wondimkun
論文名稱: Impacts of Copper Surface Modification on the Cyclability and Estimation of Inactive Lithium in Anode-Free Lithium Metal Battery
Impacts of Copper Surface Modification on the Cyclability and Estimation of Inactive Lithium in Anode-Free Lithium Metal Battery
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 蘇威年
Wei-Nien Su
吳溪煌
Wu She-huang
周澤川
Chou Tse-Chuan
.鄧熙聖
Hsisheng Teng
程敬義
Jim Cherng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 159
中文關鍵詞: 無陽極電池人工固態電解質介面層枝晶氧化石墨烯旋轉塗布親鋰性鋰金屬成核奈米銀顆粒聚多巴胺電容量損失失活鋰酸鹼滴定碘量滴定
外文關鍵詞: Anode free battery, Artificial SEI, Dendrite, Graphene oxide, Spin coated, Lithiophilic, Lithium nucleation, Silver nanoparticles, Polydopamine, Capacity loss, Inactive lithium, Acid-base, Iodometric titrations
相關次數: 點閱:350下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰金屬電池被視為極具潛力的高能量密度儲能系統,然而,難以控制的鋰枝晶生長、死裡堆積、以及低庫倫效率限制其實際應用。諸多研究提出了不同方法用以抑制枝晶生長,例如微米/奈米結構鋰金屬負極、電解液添加劑形成穩定固態電解質介面層(SEI)、優化電解液溶劑、人工保護層、高濃度液態電解質、甚至是固態電解質。現今,無陽極鋰金屬電池(AFLMB)受到極大的關注,利用單純傳統氧化物正極材料與銅箔電流收集器作為電極,透過第一圈電池充電時臨場形成鋰金屬負極,不僅大幅增加能量密度、減少組裝成本、降低組裝繁瑣度,亦提升其安全性。然而,銅箔本身不親鋰、表面粗糙等特性,易造成鋰金屬沈積時產生電流分佈不均導致枝晶生長、死鋰累積、以及極高過電位導致電容量衰退等問題。而實質應用上,電容量衰退來自於死鋰的累積,如何有效且精準的量化死鋰亦是無陽極鋰金屬電池研究中有待解決得難題。
    在本研究報導的第一個工作中,利用無需黏著劑之氧化石墨烯(Graphene oxide, GO)改質銅箔電流收集器,結合此平整且具導電度之人工固態電解質介面層與氟代碳酸乙烯酯(FEC),鋰金屬沈積可以有效地被控制,進而得到平整、均勻、無枝晶的鋰沈積層。利用上述協同效應之無陽極鋰金屬電池可得到98%的平均庫倫效率,並且在50圈充放電後仍維持44%之初始電容量。對比無改質之對照組,平均庫倫效率只有89%並且在20圈後剩下26.9%之初始電容量。結果顯示GO塗布層與FEC添加劑可以有效的抑制鋰枝晶生長並且提升AFLMB的電化學效能。
    在第二個工作中,具親鋰性的奈米銀-聚多巴胺顆粒(Ag@PDA)成功被製備並塗布於銅箔表面作為核點以促進鋰金屬沉積成核,接著塗布前一工作之GO於表面作為復合人工SEI促進鋰離子分佈,達到均勻沈積與抑制枝晶生長之協同效應。利用Cu|Ag@PDA//Li與Cu|Ag@PDA-GO//Li電池組成進行測試,從結果得知此改質後之桐柏具有更均勻核點、低成核過電位、以及較高的庫倫效率。此外,Cu|Ag@PDA-GO//NMC無陽極鋰金屬電池產出更高之庫倫效率(~98.6%),並且在60圈循環後維持55.7%之初始電容量。因此,利用復合型親鋰人工SEI塗布層可以有效的抑制枝晶生長以及電解液分解。
    於最後一個工作中,一個簡單、低成本、嚴謹的酸鹼與碘量滴定被第一次報導應用於量測死鋰於使用不同電解液之AFLMB中產生的數量。結果顯示於不同電解液配方中,導致電容量衰退與堤庫倫效率的原因來自於被SEI包覆不具電化學活性的鋰金屬(死鋰),且死鋰的數量與電解液配方非常相關。此滴定技術與結果對於死鋰定量分析開啟一個新的方向。


    Lithium metal battery (LMB) is a promising high-energy-density energy storage system. However, the unregulated growth of lithium dendrite, dead lithium accumulation, and low Coulombic efficiency (CE) upon cycling is hampering the applications of LMBs. Numerous strategies, for instance, constructing micro/nanostructured lithium metal anodes, using stable SEI layer forming additives, optimizing electrolyte solvent, introducing artificial SEI film, coating separators with high infiltrated material, high concentrated electrolytes, and solid-state electrolytes have been suggested to mitigate lithium dendrite. Currently, anode free battery (AFB), which is constructed from bare copper and lithium containing cathode material, can be used as an alternative strategies to minimize the direct use of Li anode. AFB configuration is a promising approach to enhance energy density, reduce cost, and enable ease cell fabrication with safety. Nevertheless, the Li metal plating onto the bare Cu surface became inhomogeneous and results in the formation of lithium dendrite and dead lithium accumulation due to the heterogeneous, rough, and lithiophobic properties of the bare Cu. Moreover, the battery possesses a substantial nucleation barrier that leads to much higher overpotential and quick capacity loss. The capacity loss results from the inactive (dead) lithium accumulation luck exact quantification tools.
    In the first part, the copper current collector was modified with a binder-free ultra-thin spin-coated graphene oxide (GO). The synchronized smooth and conductive GO-coated artificial SEI with lithium fluoride derived from fluoroethylene carbonate (FEC) electrolyte additive greatly control the lithium deposition. Accordingly, the synergistic effect of GO and LiF-rich inherent SEI enables smooth, uniform, and dendrite-free lithium plating. Moreover, the AFB with GO film and 5% FEC in the carbonate-based electrolyte is capable of achieving high Coulombic efficiency of an average 98% and attains ~44% of its initial capacity after 50 cycles. In contrast, the full cell with bare Cu//LiNi1/3Mn1/3Co1/3O2 (NMC) has a Coulombic efficiency of 89% and retains 26.9% after 20 cycles. These results show that GO-coated artificial SEI with FEC additive can be a promising approach to impede lithium dendrites growth and result in enhanced electrochemical performance in an AFB.
    In the second work, lithiophilic silver nanoparticles with polydopamine (Ag@PDA) were synthesized and coated on the copper substrate to use as a nucleation seed, which improves the lithium nucleation in anode free lithium metal batteries (AFLMBs). Interestingly, graphene oxide (GO) was coated on the top of Ag@PDA to act as an artificial SEI and buffer the Li-ion distribution. Thus, the modified electrodes show a uniform Li metal deposition and dendrite free morphology upon repeated cycling. Accordingly, the Cu|Ag@PDA//Li, and Cu|Ag@PDA-GO//Li cells demonstrate relatively uniform lithium nuclei, lower nucleation overpotential, and higher CE compared to the uncoated electrode. Besides, the Cu|Ag@PDA-GO//NMC full cell has higher average Coulombic efficiency (~ 98.6%) and higher capacity retention (~ 55.7%) after 60 cycles within 1 M LiPF6 EC/DEC (1:1 vol. %) + 5% FEC at 0.5 mA cm-2. In contrast, the cell with bare copper only offers 94.4% and 4.3% average CE and capacity retention, respectively. Therefore, a lithiophilic matrix integrated with an artificial SEI coating on the Cu substrate offers a feasible way for the inhibition of lithium dendrite and electrolyte decomposition in the anode free lithium metal batteries (AFLMBs).
    In the final work, acid-base and iodometric titrations techniques are established for the first time to estimate the amounts of inactive (dead) lithium on Cu current collector using 1 M LiPF6 1:1 (EC: DEC), 1 M LiPF6 1:1 (EC: DEC) + 5% FEC, and 1 M LiPF6 5:3:2 (TTE: FEC: EMC) electrolytes in AFLMBs. Consequently, very comparative results are attained in both techniques in Cu// NMC cell using those electrolytes at the 1st and 20th cycle. The findings confirmed that the capacity loss and lower CE were mainly caused by the electrically inaccessible unreacted metallic Li (Li0) compared to the formation of solid electrolyte interphase (SEI) in all electrolyte systems. Besides, the amounts of dead lithium accumulated on the Cu surfaces are highly dependent on the types of electrolytes used. When using electrolyte consisting of FEC and partially fluorinated ether-based solvent (TTE), which can form a LiF rich SEI, the accumulation of inactive lithium became lowered compared to the commercial electrolytes. Moreover, the inactive lithium accumulated is consistent with the cyclic performances of the cells. The result opens up a new direction to realize the estimation of inactive (dead) lithium by using simple, versatile, low-cost, and consistent titrations techniques.

    Contents 中文摘要 iii Abstract v Acknowledgments viii List of Figures xv List of Schemes xx List of Tables xxi Chapter 1: Introduction 1 1.1 Background of the study 1 1.2 Rechargeable batteries as energy storage device 2 1.3 Lithium-ion rechargeable battery system 4 Chapter 2: The fundamentals of lithium metal and anode free lithium metal batteries 8 2.1 The lithium metal batteries 8 2.2 Challenges faced by Li metal anodes 8 2.2.1 The harsh reactivity of Li metal 9 2.2.2 Volume expansions in Li metal during cycling 10 2.2.3 The formation of lithium dendrites and dead lithium 10 2.2.4 The SEI and failure of the Li metal anode 11 2.3 Approaches to inhibit Li dendrite formation in lithium metal batteries 12 2.3.1 Electrolyte formulation 12 2.3.2 Solid-state electrolyte (SSEs) 13 2.3.3 Electrolyte additive 14 2 3.4 Separator/membrane modification 15 2 3.5 Ex situ-formed surface coating 16 2.3.6 Effect of pressure 16 2.4 Anode free lithium metal batteries configuration 18 2.4 Current progress of lithium metal anode free batteries 20 2.5 Estimation of inactive lithium in anode free lithium metal batteries 27 2.6 Motivation and objectives of the study 31 2.6.1 Motivations 31 2.6.2 Objectives 32 Chapter 3: Experimental Sections 33 3.1 Chemicals and Reagents 33 3.2 The synthesis of polydopamine coated silver nanoparticles (Ag@PDA) 34 3.3 Electrodes preparation 34 3.3.1 Electrodes preparation 35 3.3.2 Preparation of GO coated copper electrode 35 3.3.3 Fabrication of Ag@PDA and Ag@PDA-GO coated Cu electrodes 36 3.4 Preparation of electrolytes 36 3.5 Preparation of standard, analyte, indicators and samples for dead lithium estimations 37 3.5.1 Preparation of 0.01 M HCl titrant 37 3.5.2 Preparation of sodium thiosulphate (0.01 M Na2S2O3) titrant 37 3.5.3 Preparation of triiodide solution 37 3.5.4 Preparation of starch indicator 38 3.6 Electrochemical measurement and characterization 38 3.6.1 Electrochemical tests 38 3.6.2 Characterizations 39 3.6.3 Dead lithium estimation 40 Chapter 4: Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries 42 4.1 Introduction 42 4. 2 Results and Discussion 45 4.2.1 Modified electrode morphology and thickness evolution 45 4.2.2 Effects of coating on the cyclic performances 47 4.2.3 Electrochemical impedance spectroscopy and cyclic voltammetry analysis 54 4.2.4 The effect of coating on the lithium morphology 57 4.2.5 Analysis of surface chemistry 62 4.3 Summary 68 Chapter 5: Highly-lithiophilic Ag@PDA-GO film to suppress dendrite formation on Cu substrate in anode-free lithium metal batteries 69 5.1 Introduction 69 5.2 Results and Discussion 72 5.2.1 Characterization of AgNPs and Ag@PDA 72 5.2.2 Morphology evaluation of the modified electrodes 74 5.2.3 Effects of Ag@PDA and Ag@PDA-GO coating on the cyclic performance of the cells 77 5.2.4 Assessments of lithiophilicity 84 5.2.5 Assessments of wettability 86 5.2.6 Small-Angle X-Ray Scattering (SAXS) analysis 87 5.2.7 Effects of Ag@PDA-GO of coating on the morphology of Li deposition 90 5.2.8 Electrochemical impedance spectroscopy measurements 94 5.2.8 Mechanical and chemical stability test of the modified electrodes 95 5.3 Summary 99 Chapter 6: Estimation of dead lithium on Cu Current Collector at different electrolyte system in AFLMBs 100 6.1 Introduction 100 6.2 Results and Discussion 102 6.2.1 Cyclic performance for inactive lithium evaluations 102 6.2.2 Morphology and inactive Li evaluation with different electrolytes 104 6.2.3 Acid-base titration for estimation of dead lithium 106 6.2.4 Iodometric titration for the estimation of dead lithium 111 6.2.5 MAS NMR analysis of inactive lithium (Li0 and Li+) in Cu//NMC cells 118 6.3 Summary 120 Chapter 7: Conclusions and Future Perspectives 121 7.1 Conclusions 121 7.2 Future perspectives 124 References 125 Appendixes 135

    [1]. S.M. Shafie, T.M.I. Mahlia, H.H. Masjuki, and A. Andriyana, Current energy usage and sustainable energy in Malaysia: A review. Renewable and Sustainable Energy Reviews, 2011. 15(9): p. 4370-4377.
    [2]. B.J. van Ruijven, E. De Cian, and I. Sue Wing, Amplification of future energy demand growth due to climate change. Nature Communications, 2019. 10(1): p. 2762.
    [3]. D. Larcher and J.M. Tarascon, Towards greener and more sustainable batteries for electrical energy storage. Nature Chemistry, 2015. 7(1): p. 19-29.
    [4]. F. Zeren and H.T. Akkuş, The relationship between renewable energy consumption and trade openness: New evidence from emerging economies. Renewable Energy, 2020. 147: p. 322-329.
    [5]. H. Lee, S. Chen, X. Ren, A. Martinez, V. Shutthanandan, M. Vijayakumar, K.S. Han, Q. Li, J. Liu, W. Xu, and J.G. Zhang, Electrode Edge Effects and the Failure Mechanism of Lithium-Metal Batteries. ChemSusChem, 2018. 11(21): p. 3821-3828.
    [6]. N.L. Panwar, S.C. Kaushik, and S. Kothari, Role of renewable energy sources in environmental protection: A review. Renewable and Sustainable Energy Reviews, 2011. 15(3): p. 1513-1524.
    [7]. D. Cericola, P. Novák, A. Wokaun, and R. Kötz, Hybridization of electrochemical capacitors and rechargeable batteries: An experimental analysis of the different possible approaches utilizing activated carbon, Li4Ti5O12 and LiMn2O4. Journal of Power Sources, 2011. 196(23): p. 10305-10313.
    [8]. M. Winter and R.J. Brodd, What Are Batteries, Fuel Cells, and Supercapacitors? Chemical Reviews, 2004. 104(10): p. 4245-4270.
    [9]. G. Zhou, L. Xu, G. Hu, L. Mai, and Y. Cui, Nanowires for Electrochemical Energy Storage. Chemical Reviews, 2019. 119(20): p. 11042-11109.
    [10]. V. Pop, H.J. Bergveld, D. Danilov, P.P. Regtien, and P.H. Notten, Battery management systems: Accurate state-of-charge indication for battery-powered applications. Vol. 9. 2008: Springer Science & Business Media.
    [11]. P. Ruetschi, Review on the lead—acid battery science and technology. Journal of Power Sources, 1977. 2(1): p. 3-120.
    [12]. T. Woehrle, Lithium-ion cell, in Lithium-Ion Batteries: Basics and Applications, R. Korthauer, Editor. 2018, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 101-111.
    [13]. J. Gao, S.-Q. Shi, and H. Li, Brief overview of electrochemical potential in lithium ion batteries. Chinese Physics B, 2016. 25(1): p. 018210.
    [14]. K. Liu, Y. Liu, D. Lin, A. Pei, and Y. Cui, Materials for lithium-ion battery safety. Science Advances, 2018. 4(6): p. eaas9820.
    [15]. J. Wang and X. Sun, Understanding and recent development of carbon coating on LiFePO4 cathode materials for lithium-ion batteries. Energy & Environmental Science, 2012. 5(1): p. 5163-5185.
    [16]. X. Wang, X. Zheng, Y. Liao, Q. Huang, L. Xing, M. Xu, and W. Li, Maintaining structural integrity of 4.5 V lithium cobalt oxide cathode with fumaronitrile as a novel electrolyte additive. Journal of Power Sources, 2017. 338: p. 108-116.
    [17]. G. Guzmán, J. Vazquez-Arenas, G. Ramos-Sánchez, M. Bautista-Ramírez, and I. González, Improved performance of LiFePO4 cathode for Li-ion batteries through percolation studies. Electrochimica Acta, 2017. 247: p. 451-459.
    [18]. W. Zhao, J. Zheng, L. Zou, H. Jia, B. Liu, H. Wang, M.H. Engelhard, C. Wang, W. Xu, Y. Yang, and J.-G. Zhang, High Voltage Operation of Ni-Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases. Advanced Energy Materials, 2018. 8(19): p. 1800297.
    [19]. D. Wang, W. Liu, X. Zhang, Y. Huang, M. Xu, and W. Xiao, Review of Modified Nickel-Cobalt Lithium Aluminate Cathode Materials for Lithium-Ion Batteries. International Journal of Photoenergy, 2019. 2019: p. 2730849.
    [20]. A.S. ARICÒ, P. BRUCE, B. SCROSATI, J.-M. TARASCON, and W.V. SCHALKWIJK, Nanostructured materials for advanced energy conversion and storage devices, in Materials for Sustainable Energy. p. 148-159.
    [21]. C. Fang, X. Wang, and Y.S. Meng, Key Issues Hindering a Practical Lithium-Metal Anode. Trends in Chemistry, 2019. 1(2): p. 152-158.
    [22]. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, and J.-G. Zhang, Lithium metal anodes for rechargeable batteries. Energy & Environmental Science, 2014. 7(2): p. 513-537.
    [23]. C.-P. Yang, Y.-X. Yin, S.-F. Zhang, N.-W. Li, and Y.-G. Guo, Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nature Communications, 2015. 6(1): p. 8058.
    [24]. Y. Zhang, T.-T. Zuo, J. Popovic, K. Lim, Y.-X. Yin, J. Maier, and Y.-G. Guo, Towards better Li metal anodes: Challenges and strategies. Materials Today, 2020. 33: p. 56-74.
    [25]. P. Shi, X.-Q. Zhang, X. Shen, R. Zhang, H. Liu, and Q. Zhang, A Review of Composite Lithium Metal Anode for Practical Applications. Advanced Materials Technologies, 2020. 5(1): p. 1900806.
    [26]. C. Yang, K. Fu, Y. Zhang, E. Hitz, and L. Hu, Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid. Adv Mater, 2017. 29(36).
    [27]. L.E. Camacho-Forero, T.W. Smith, S. Bertolini, and P.B. Balbuena, Reactivity at the Lithium–Metal Anode Surface of Lithium–Sulfur Batteries. The Journal of Physical Chemistry C, 2015. 119(48): p. 26828-26839.
    [28]. C.-Z. Zhao, H. Duan, J.-Q. Huang, J. Zhang, Q. Zhang, Y.-G. Guo, and L.-J. Wan, Designing solid-state interfaces on lithium-metal anodes: a review. Science China Chemistry, 2019. 62(10): p. 1286-1299.
    [29]. L. Li, S. Li, and Y. Lu, Suppression of dendritic lithium growth in lithium metal-based batteries. Chemical Communications, 2018. 54(50): p. 6648-6661.
    [30]. F. Wu, J. Maier, and Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chemical Society Reviews, 2020. 49(5): p. 1569-1614.
    [31]. Y. Liu, X. Li, L. Fan, S. Li, H. Maleki Kheimeh Sari, and J. Qin, A Review of Carbon-Based Materials for Safe Lithium Metal Anodes. Front Chem, 2019. 7: p. 721.
    [32]. X. Shen, R. Zhang, X. Chen, X.-B. Cheng, X. Li, and Q. Zhang, Solid Electrolyte Interphase: The Failure of Solid Electrolyte Interphase on Li Metal Anode: Structural Uniformity or Mechanical Strength? (Adv. Energy Mater. 10/2020). Advanced Energy Materials, 2020. 10(10): p. 2070045.
    [33]. R. Zhang, N.-W. Li, X.-B. Cheng, Y.-X. Yin, Q. Zhang, and Y.-G. Guo, Advanced Micro/Nanostructures for Lithium Metal Anodes. Adv. Sci., 2017. 4(3): p. 1600445.
    [34]. Q.-C. Liu, J.-J. Xu, S. Yuan, Z.-W. Chang, D. Xu, Y.-B. Yin, L. Li, H.-X. Zhong, Y.-S. Jiang, J.-M. Yan, and X.-B. Zhang, Artificial Protection Film on Lithium Metal Anode toward Long-Cycle-Life Lithium-Oxygen Batteries. Adv. Mater., 2015. 27(40): p. 6089-6089.
    [35]. G. Hou, Q. Sun, Q. Ai, X. Ren, X. Xu, H. Guo, S. Guo, L. Zhang, J. Feng, F. Ding, P.M. Ajayan, P. Si, and L. Ci, Growth direction control of lithium dendrites in a heterogeneous lithiophilic host for ultra-safe lithium metal batteries. J. Power Sources, 2019. 416: p. 141-147.
    [36]. R. Xu, X.-B. Cheng, C. Yan, X.-Q. Zhang, Y. Xiao, C.-Z. Zhao, J.-Q. Huang, and Q. Zhang, Artificial Interphases for Highly Stable Lithium Metal Anode. Matter, 2019. 1(2): p. 317-344.
    [37]. Z.T. Wondimkun, T.T. Beyene, M.A. Weret, N.A. Sahalie, C.-J. Huang, B. Thirumalraj, B.A. Jote, D. Wang, W.-N. Su, C.-H. Wang, G. Brunklaus, M. Winter, and B.-J. Hwang, Binder-free ultra-thin graphene oxide as an artificial solid electrolyte interphase for anode-free rechargeable lithium metal batteries. J. Power Sources, 2020. 450: p. 227589.
    [38]. A. Pei, G. Zheng, F. Shi, Y. Li, and Y. Cui, Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Lett., 2017. 17(2): p. 1132-1139.
    [39]. M. Zhang, A.L. Gui, W. Sun, J. Becking, O. Riedel, X. He, D. Berghus, V. Siozios, D. Zhou, T. Placke, M. Winter, and P. Bieker, High Capacity Utilization of Li Metal Anodes by Application of Celgard Separator-Reinforced Ternary Polymer Electrolyte. J. Electrochem. Soc. , 2019. 166(10): p. A2142-A2150.
    [40]. A. Schilling, S. Wiemers-Meyer, V. Winkler, S. Nowak, B. Hoppe, H.H. Heimes, K. Dröder, and M. Winter, Influence of Separator Material on Infiltration Rate and Wetting Behavior of Lithium-Ion Batteries. Energy Technol., 2020. 8(2): p. 1900078.
    [41]. M. Wang, J. Li, X. He, H. Wu, and C. Wan, The effect of local current density on electrode design for lithium-ion batteries. J. Power Sources, 2012. 207: p. 127-133.
    [42]. A.A. Assegie, J.-H. Cheng, L.-M. Kuo, W.-N. Su, and B.-J. Hwang, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale, 2018. 10: p. 6125-6138.
    [43]. Y. Xu, T. Li, L. Wang, and Y. Kang, Interlayered Dendrite-Free Lithium Plating for High-Performance Lithium-Metal Batteries. Adv. Mater., 2019. 31(29): p. 1901662.
    [44]. F. Ding, W. Xu, G.L. Graff, J. Zhang, M.L. Sushko, X. Chen, Y. Shao, M.H. Engelhard, Z. Nie, J. Xiao, X. Liu, P.V. Sushko, J. Liu, and J.-G. Zhang, Dendrite-Free Lithium Deposition via Self-Healing Electrostatic Shield Mechanism. J. American Chem. Soc. , 2013. 135(11): p. 4450-4456.
    [45]. S. Choudhury, S. Stalin, D. Vu, A. Warren, Y. Deng, P. Biswal, and L.A. Archer, Solid-state polymer electrolytes for high-performance lithium metal batteries. Nat. Commun., 2019. 10(1): p. 4398.
    [46]. N.A. Sahalie, A.A. Assegie, W.-N. Su, Z.T. Wondimkun, B.A. Jote, B. Thirumalraj, C.-J. Huang, Y.-W. Yang, and B.-J. Hwang, Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte. J. Power Sources, 2019. 437: p. 226912.
    [47]. T.M. Hagos, G.B. Berhe, T.T. Hagos, H.K. Bezabh, L.H. Abrha, T.T. Beyene, C.-J. Huang, Y.-W. Yang, W.-N. Su, H. Dai, and B.-J. Hwang, Dual electrolyte additives of potassium hexafluorophosphate and tris (trimethylsilyl) phosphite for anode-free lithium metal batteries. Electrochim. Acta, 2019. 316: p. 52-59.
    [48]. C. Yang, Y. Yao, S. He, H. Xie, E. Hitz, and L. Hu, Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode. Adv. Mater., 2017. 29(38): p. 1702714.
    [49]. R. Zhang, X.-R. Chen, X. Chen, X.-B. Cheng, X.-Q. Zhang, C. Yan, and Q. Zhang, Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. Angew. Chem., Int. Ed., 2017. 56(27): p. 7764-7768.
    [50]. H. Che, S. Chen, Y. Xie, H. Wang, K. Amine, X.-Z. Liao, and Z.-F. Ma, Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy & Environmental Science, 2017. 10(5): p. 1075-1101.
    [51]. X. Wu, K. Pan, M. Jia, Y. Ren, H. He, L. Zhang, and S. Zhang, Electrolyte for lithium protection: From liquid to solid. Green Energy & Environment, 2019. 4(4): p. 360-374.
    [52]. C. Yang, K. Fu, Y. Zhang, E. Hitz, and L. Hu, Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid. Advanced Materials, 2017. 29(36): p. 1701169.
    [53]. B. Wu, S. Wang, J. Lochala, D. Desrochers, B. Liu, W. Zhang, J. Yang, and J. Xiao, The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy & Environmental Science, 2018. 11(7): p. 1803-1810.
    [54]. K. Fu, Y. Gong, B. Liu, Y. Zhu, S. Xu, Y. Yao, W. Luo, C. Wang, S.D. Lacey, J. Dai, Y. Chen, Y. Mo, E. Wachsman, and L. Hu, Toward garnet electrolyte–based Li metal batteries: An ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Science Advances, 2017. 3(4): p. e1601659.
    [55]. H. Zhang, G.G. Eshetu, X. Judez, C. Li, L.M. Rodriguez-Martínez, and M. Armand, Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives. Angew Chem Int Ed Engl, 2018. 57(46): p. 15002-15027.
    [56]. V.-C. Ho, D.T. Ngo, H.T.T. Le, R. Verma, H.-S. Kim, C.-N. Park, and C.-J. Park, Effect of an organic additive in the electrolyte on suppressing the growth of Li dendrites in Li metal-based batteries. Electrochimica Acta, 2018. 279: p. 213-223.
    [57]. H. Wu, D. Zhuo, D. Kong, and Y. Cui, Improving battery safety by early detection of internal shorting with a bifunctional separator. Nature Communications, 2014. 5(1): p. 5193.
    [58]. W. Wang, F. Hao, and P.P. Mukherjee, Mechanistics of Lithium-Metal Battery Performance by Separator Architecture Design. ACS Applied Materials & Interfaces, 2020. 12(1): p. 556-566.
    [59]. R. Pathak, K. Chen, A. Gurung, K.M. Reza, B. Bahrami, J. Pokharel, A. Baniya, W. He, F. Wu, Y. Zhou, K. Xu, and Q. Qiao, Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition. Nature Communications, 2020. 11(1): p. 93.
    [60]. K. Deng, D. Han, S. Ren, S. Wang, M. Xiao, and Y. Meng, Single-ion conducting artificial solid electrolyte interphase layers for dendrite-free and highly stable lithium metal anodes. Journal of Materials Chemistry A, 2019. 7(21): p. 13113-13119.
    [61]. S.S. Zhang, Problem, status, and possible solutions for lithium metal anode of rechargeable batteries. ACS Applied Energy Materials, 2018. 1(3): p. 910-920.
    [62]. H.J. Chang, N.M. Trease, A.J. Ilott, D. Zeng, L.-S. Du, A. Jerschow, and C.P. Grey, Investigating Li microstructure formation on Li anodes for lithium batteries by in situ 6Li/7Li NMR and SEM. The Journal of Physical Chemistry C, 2015. 119(29): p. 16443-16451.
    [63]. S. Nanda, A. Gupta, and A. Manthiram, Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries. Advanced Energy Materials, 2020. n/a(n/a): p. 2000804.
    [64]. J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson, J. Wang, M.E. Bowden, S. Xu, J. Hu, and J.G. Zhang, Anode‐free rechargeable lithium metal batteries. Advanced Functional Materials, 2016. 26(39): p. 7094-7102.
    [65]. B. Neudecker, N. Dudney, and J. Bates, “Lithium‐Free” Thin‐Film Battery with In Situ Plated Li Anode. J. Electrochem. Soc., 2000. 147(2): p. 517.
    [66]. Z.L. Brown, S. Jurng, and B.L. Lucht, Investigation of the Lithium Solid Electrolyte Interphase in Vinylene Carbonate Electrolytes Using Cu|| LiFePO4 Cells. Journal of The Electrochemical Society, 2017. 164(9): p. A2186.
    [67]. T.T. Beyene, H.K. Bezabh, M.A. Weret, T.M. Hagos, C.-J. Huang, C.-H. Wang, W.-N. Su, H. Dai, and B.-J. Hwang, Concentrated dual-salt electrolyte to stabilize Li metal and increase cycle life of anode free li-metal batteries. Journal of The Electrochemical Society, 2019. 166(8): p. A1501.
    [68]. Z.L. Brown, S. Heiskanen, and B.L. Lucht, Using Triethyl Phosphate to Increase the Solubility of LiNO3 in Carbonate Electrolytes for Improving the Performance of the Lithium Metal Anode. Journal of The Electrochemical Society, 2019. 166(12): p. A2523.
    [69]. T.T. Beyene, B.A. Jote, Z.T. Wondimkun, B.W. Olbassa, C.-J. Huang, B. Thirumalraj, C.-H. Wang, W.-N. Su, H. Dai, and B.-J. Hwang, Effects of concentrated salt and resting protocol on solid electrolyte interface formation for improved cycle stability of anode-free lithium metal batteries. ACS applied materials & interfaces, 2019. 11(35): p. 31962-31971.
    [70]. V. Nilsson, A. Kotronia, M. Lacey, K. Edstrom, and P. Johansson, Highly Concentrated LiTFSI–EC Electrolytes for Lithium Metal Batteries. ACS Applied Energy Materials, 2019. 3(1): p. 200-207.
    [71]. X. Fan, L. Chen, O. Borodin, X. Ji, J. Chen, S. Hou, T. Deng, J. Zheng, C. Yang, S.-C. Liou, K. Amine, K. Xu, and C. Wang, Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries. Nature Nanotechnology, 2018. 13(8): p. 715-722.
    [72]. J. Alvarado, M.A. Schroeder, T.P. Pollard, X. Wang, J.Z. Lee, M. Zhang, T. Wynn, M. Ding, O. Borodin, and Y.S. Meng, Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy & Environmental Science, 2019. 12(2): p. 780-794.
    [73]. T.T. Hagos, B. Thirumalraj, C.-J. Huang, L.H. Abrha, T.M. Hagos, G.B. Berhe, H.K. Bezabh, J. Cherng, S.-F. Chiu, W.-N. Su, and B.-J. Hwang, Locally Concentrated LiPF6 in a Carbonate-Based Electrolyte with Fluoroethylene Carbonate as a Diluent for Anode-Free Lithium Metal Batteries. ACS Applied Materials & Interfaces, 2019. 11(10): p. 9955-9963.
    [74]. A.J. Louli, M. Genovese, R. Weber, S.G. Hames, E.R. Logan, and J.R. Dahn, Exploring the Impact of Mechanical Pressure on the Performance of Anode-Free Lithium Metal Cells. Journal of The Electrochemical Society, 2019. 166(8): p. A1291-A1299.
    [75]. R. Weber, M. Genovese, A. Louli, S. Hames, C. Martin, I.G. Hill, and J. Dahn, Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy, 2019. 4(8): p. 683-689.
    [76]. N.A. Sahalie, A.A. Assegie, W.-N. Su, Z.T. Wondimkun, B.A. Jote, B. Thirumalraj, C.-J. Huang, Y.-W. Yang, and B.-J. Hwang, Effect of bifunctional additive potassium nitrate on performance of anode free lithium metal battery in carbonate electrolyte. Journal of Power Sources, 2019. 437: p. 226912.
    [77]. M. Genovese, A.J. Louli, R. Weber, C. Martin, T. Taskovic, and J.R. Dahn, Hot Formation for Improved Low Temperature Cycling of Anode-Free Lithium Metal Batteries. Journal of The Electrochemical Society, 2019. 166(14): p. A3342-A3347.
    [78]. S. Nanda, A. Gupta, and A. Manthiram, A Lithium–Sulfur Cell Based on Reversible Lithium Deposition from a Li2S Cathode Host onto a Hostless-Anode Substrate. Advanced Energy Materials, 2018. 8(25): p. 1801556.
    [79]. S.S. Zhang, X. Fan, and C. Wang, A tin-plated copper substrate for efficient cycling of lithium metal in an anode-free rechargeable lithium battery. Electrochimica Acta, 2017. 258: p. 1201-1207.
    [80]. A.A. Assegie, J.-H. Cheng, L.-M. Kuo, W.-N. Su, and B.-J. Hwang, Polyethylene oxide film coating enhances lithium cycling efficiency of an anode-free lithium-metal battery. Nanoscale, 2018. 10(13): p. 6125-6138.
    [81]. A.A. Assegie, C.-C. Chung, M.-C. Tsai, W.-N. Su, C.-W. Chen, and B.-J. Hwang, Multilayer-graphene-stabilized lithium deposition for anode-Free lithium-metal batteries. Nanoscale, 2019. 11(6): p. 2710-2720.
    [82]. L.H. Abrha, T.A. Zegeye, T.T. Hagos, H. Sutiono, T.M. Hagos, G.B. Berhe, C.-J. Huang, S.-K. Jiang, W.-N. Su, and Y.-W. Yang, Li7La2. 75Ca0. 25Zr1. 75Nb0. 25O12@ LiClO4 composite film derived solid electrolyte interphase for anode-free lithium metal battery. Electrochimica Acta, 2019. 325: p. 134825.
    [83]. Y.-G. Lee, S. Fujiki, C. Jung, N. Suzuki, N. Yashiro, R. Omoda, D.-S. Ko, T. Shiratsuchi, T. Sugimoto, S. Ryu, J.H. Ku, T. Watanabe, Y. Park, Y. Aihara, D. Im, and I.T. Han, High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nature Energy, 2020. 5(4): p. 299-308.
    [84]. D. Tewari, S.P. Rangarajan, P.B. Balbuena, Y. Barsukov, and P.P. Mukherjee, Mesoscale Anatomy of Dead Lithium Formation. The Journal of Physical Chemistry C, 2020. 124(12): p. 6502-6511.
    [85]. C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang, J.Z. Lee, M.-H. Lee, J. Alvarado, M.A. Schroeder, and Y. Yang, Quantifying inactive lithium in lithium metal batteries. Nature, 2019. 572(7770): p. 511-515.
    [86]. W.A. Tegegne, M.L. Mekonnen, A.B. Beyene, W.-N. Su, and B.-J. Hwang, Sensitive and reliable detection of deoxynivalenol mycotoxin in pig feed by surface enhanced Raman spectroscopy on silver nanocubes@polydopamine substrate. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020. 229: p. 117940.
    [87]. L. Li, S. Li, and Y. Lu, Suppression of dendritic lithium growth in lithium metal-based batteries. Chem Commun (Camb), 2018. 54(50): p. 6648-6661.
    [88]. T. Foroozan, F.A. Soto, V. Yurkiv, S. Sharifi-Asl, R. Deivanayagam, Z. Huang, R. Rojaee, F. Mashayek, P.B. Balbuena, and R. Shahbazian-Yassar, Synergistic Effect of Graphene Oxide for Impeding the Dendritic Plating of Li. Advanced Functional Materials, 2018. 28(15): p. 1705917.
    [89]. Y. Guo, H. Li, and T. Zhai, Reviving Lithium-Metal Anodes for Next-Generation High-Energy Batteries. Advanced Materials, 2017. 29(29): p. 1700007.
    [90]. Y.-W. Lee, G.-H. An, B.-S. Kim, J. Hong, S. Pak, E.-H. Lee, Y. Cho, J. Lee, P. Giraud, S.N. Cha, H.-J. Ahn, J.I. Sohn, and J.M. Kim, Synergistic Effects of a Multifunctional Graphene Based Interlayer on Electrochemical Behavior and Structural Stability. ACS Applied Materials & Interfaces, 2016. 8(27): p. 17651-17658.
    [91]. A.C. Kozen, C.-F. Lin, O. Zhao, S.B. Lee, G.W. Rubloff, and M. Noked, Stabilization of Lithium Metal Anodes by Hybrid Artificial Solid Electrolyte Interphase. Chemistry of Materials, 2017. 29(15): p. 6298-6307.
    [92]. X.B. Cheng, R. Zhang, C.Z. Zhao, F. Wei, J.G. Zhang, and Q. Zhang, A Review of Solid Electrolyte Interphases on Lithium Metal Anode. Adv Sci (Weinh), 2016. 3(3): p. 1500213.
    [93]. X. Yu and A. Manthiram, Electrode–electrolyte interfaces in lithium-based batteries. Energy & Environmental Science, 2018. 11(3): p. 527-543.
    [94]. E. Peled and S. Menkin, Review—SEI: Past, Present and Future. Journal of The Electrochemical Society, 2017. 164(7): p. A1703-A1719.
    [95]. P. Ranjan, S. Agrawal, A. Sinha, T.R. Rao, J. Balakrishnan, and A.D. Thakur, A Low-Cost Non-explosive Synthesis of Graphene Oxide for Scalable Applications. Sci Rep, 2018. 8(1): p. 12007.
    [96]. H. Yang, J.-S. Li, and X. Zeng, Correlation between Molecular Structure and Interfacial Properties of Edge or Basal Plane Modified Graphene Oxide. ACS Applied Nano Materials, 2018. 1(6): p. 2763-2773.
    [97]. H. Liao, H. Zhang, G. Qin, Z. Li, L. Li, and H. Hong, A macro-porous graphene oxide-based membrane as a separator with enhanced thermal stability for high-safety lithium-ion batteries. RSC Advances, 2017. 7(36): p. 22112-22120.
    [98]. P. Carneiro, S. Morais, and M.C. Pereira, Nanomaterials towards Biosensing of Alzheimer’s Disease Biomarkers. Nanomaterials, 2019. 9(12): p. 1663.
    [99]. Y. Jiang, H. Shao, C. Li, T. Xu, Y. Zhao, G. Shi, L. Jiang, and L. Qu, Versatile Graphene Oxide Putty-Like Material. Adv Mater, 2016. 28(46): p. 10287-10292.
    [100]. R.A. Soler-Crespo, W. Gao, P. Xiao, X. Wei, J.T. Paci, G. Henkelman, and H.D. Espinosa, Engineering the Mechanical Properties of Monolayer Graphene Oxide at the Atomic Level. J Phys Chem Lett, 2016. 7(14): p. 2702-7.
    [101]. J.W. Suk, R.D. Piner, J. An, and R.S. Ruoff, Mechanical Properties of Monolayer Graphene Oxide. ACS Nano, 2010. 4(11): p. 6557-6564.
    [102]. F.J. Yang, Y.F. Huang, M.Q. Zhang, and W.H. Ruan, Significant improvement of ionic conductivity of high-graphene oxide-loading ice-templated poly (ionic liquid) nanocomposite electrolytes. Polymer, 2018. 153: p. 438-444.
    [103]. M.R. Karim, K. Hatakeyama, T. Matsui, H. Takehira, T. Taniguchi, M. Koinuma, Y. Matsumoto, T. Akutagawa, T. Nakamura, and S.-i. Noro, Graphene oxide nanosheet with high proton conductivity. Journal of the American Chemical Society, 2013. 135(22): p. 8097-8100.
    [104]. P. Poulin, R. Jalili, W. Neri, F. Nallet, T. Divoux, A. Colin, S.H. Aboutalebi, G. Wallace, and C. Zakri, Superflexibility of graphene oxide. Proceedings of the National Academy of Sciences, 2016. 113(40): p. 11088.
    [105]. P. Montes-Navajas, N.G. Asenjo, R. Santamaría, R. Menéndez, A. Corma, and H. García, Surface Area Measurement of Graphene Oxide in Aqueous Solutions. Langmuir, 2013. 29(44): p. 13443-13448.
    [106]. L. Li, Z. Du, S. Liu, Q. Hao, Y. Wang, Q. Li, and T. Wang, A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta, 2010. 82(5): p. 1637-1641.
    [107]. M. Hadadian, E.K. Goharshadi, and A. Youssefi, Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids. Journal of Nanoparticle Research, 2014. 16(12): p. 2788.
    [108]. R.K. Singh, R. Kumar, and D.P. Singh, Graphene oxide: strategies for synthesis, reduction and frontier applications. RSC Advances, 2016. 6(69): p. 64993-65011.
    [109]. W. Liu, Y. Xia, W. Wang, Y. Wang, J. Jin, Y. Chen, E. Paek, and D. Mitlin, Pristine or Highly Defective? Understanding the Role of Graphene Structure for Stable Lithium Metal Plating. Advanced Energy Materials, 2019. 9(3): p. 1802918.
    [110]. J. Lee, J. Kim, S. Kim, and D.H. Min, Biosensors based on graphene oxide and its biomedical application. Adv Drug Deliv Rev, 2016. 105(Pt B): p. 275-287.
    [111]. C.T. Chien, S.S. Li, W.J. Lai, Y.C. Yeh, H.A. Chen, I.S. Chen, L.C. Chen, K.H. Chen, T. Nemoto, S. Isoda, M. Chen, T. Fujita, G. Eda, H. Yamaguchi, M. Chhowalla, and C.W. Chen, Tunable photoluminescence from graphene oxide. Angew Chem Int Ed Engl, 2012. 51(27): p. 6662-6.
    [112]. G. Eda, Y.Y. Lin, C. Mattevi, H. Yamaguchi, H.A. Chen, I.S. Chen, C.W. Chen, and M. Chhowalla, Blue photoluminescence from chemically derived graphene oxide. Adv Mater, 2010. 22(4): p. 505-9.
    [113]. T. Taniguchi, H. Yokoi, M. Nagamine, H. Tateishi, A. Funatsu, K. Hatakeyama, C. Ogata, M. Ichida, H. Ando, M. Koinuma, and Y. Matsumoto, Correlated Optical and Magnetic Properties in Photoreduced Graphene Oxide. The Journal of Physical Chemistry C, 2014. 118(48): p. 28258-28265.
    [114]. Y. Matsumoto, M. Koinuma, S. Ida, S. Hayami, T. Taniguchi, K. Hatakeyama, H. Tateishi, Y. Watanabe, and S. Amano, Photoreaction of Graphene Oxide Nanosheets in Water. The Journal of Physical Chemistry C, 2011. 115(39): p. 19280-19286.
    [115]. Q.-D. Yang‡, J. Li, Y. Cheng, H.-W. Li, Z. Guan, B. Yu, and S.-W. Tsang, Graphene oxide as an efficient hole-transporting material for high-performance perovskite solar cells with enhanced stability. Journal of Materials Chemistry A, 2017. 5(20): p. 9852-9858.
    [116]. H. Li, Z. Song, X. Zhang, Y. Huang, S. Li, Y. Mao, H.J. Ploehn, Y. Bao, and M. Yu, Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science, 2013. 342(6154): p. 95-8.
    [117]. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007. 45(7): p. 1558-1565.
    [118]. B. Kurc, K. Siwińska-Stefańska, P. Jakóbczyk, and T. Jesionowski, Titanium dioxide/graphene oxide composite and its application as an anode material in non-flammable electrolyte based on ionic liquid and sulfolane. Journal of Solid State Electrochemistry, 2016. 20(7): p. 1971-1981.
    [119]. J.Y. Kim, D.O. Shin, K.M. Kim, J. Oh, J. Kim, S.H. Kang, M.J. Lee, and Y.-G. Lee, Graphene Oxide Induced Surface Modification for Functional Separators in Lithium Secondary Batteries. Scientific Reports, 2019. 9(1): p. 2464.
    [120]. M. Yuan, J. Erdman, C. Tang, and H. Ardebili, High performance solid polymer electrolyte with graphene oxide nanosheets. RSC Advances, 2014. 4(103): p. 59637-59642.
    [121]. W. Jia, Z. Li, Z. Wu, L. Wang, B. Wu, Y. Wang, Y. Cao, and J. Li, Graphene oxide as a filler to improve the performance of PAN-LiClO4 flexible solid polymer electrolyte. Solid State Ionics, 2018. 315: p. 7-13.
    [122]. C.-Z. Zhao, P.-Y. Chen, R. Zhang, X. Chen, B.-Q. Li, X.-Q. Zhang, X.-B. Cheng, and Q. Zhang, An ion redistributor for dendrite-free lithium metal anodes. Science Advances, 2018. 4(11): p. eaat3446.
    [123]. R. Zhang, X.-R. Chen, X. Chen, X.-B. Cheng, X.-Q. Zhang, C. Yan, and Q. Zhang, Lithiophilic Sites in Doped Graphene Guide Uniform Lithium Nucleation for Dendrite-Free Lithium Metal Anodes. Angewandte Chemie International Edition, 2017. 56(27): p. 7764-7768.
    [124]. L. Li, S. Li, and Y. Lu, Suppression of dendritic lithium growth in lithium metal-based batteries. Chem. Commun., 2018. 54(50): p. 6648-6661.
    [125]. S. Chu and A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature, 2012. 488(7411): p. 294-303.
    [126]. K. Yan, J. Wang, S. Zhao, D. Zhou, B. Sun, Y. Cui, and G. Wang, Temperature-Dependent Nucleation and Growth of Dendrite-Free Lithium Metal Anodes. Angew. Chemie, 2019. 131(33): p. 11486-11490.
    [127]. A.C. Kozen, C.-F. Lin, O. Zhao, S.B. Lee, G.W. Rubloff, and M. Noked, Stabilization of Lithium Metal Anodes by Hybrid Artificial Solid Electrolyte Interphase. Chem. Mater., 2017. 29(15): p. 6298-6307.
    [128]. M. Li, J. Lu, Z. Chen, and K. Amine, 30 Years of Lithium-Ion Batteries. Adv. Mater., 2018. 30(33): p. 1800561.
    [129]. B. Scrosati and J. Garche, Lithium batteries: Status, prospects and future. J. Power Sources, 2010. 195(9): p. 2419-2430.
    [130]. N.-W. Li, Y.-X. Yin, S. Xin, J.-Y. Li, and Y.-G. Guo, Methods for the Stabilization of Nanostructured Electrode Materials for Advanced Rechargeable Batteries. Small Methods, 2017. 1(6): p. 1700094.
    [131]. L.-L. Lu, J. Ge, J.-N. Yang, S.-M. Chen, H.-B. Yao, F. Zhou, and S.-H. Yu, Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. Nano Lett., 2016. 16(7): p. 4431-4437.
    [132]. X. Li, S. Guo, H. Deng, K. Jiang, Y. Qiao, M. Ishida, and H. Zhou, An ultrafast rechargeable lithium metal battery. Journal of Materials Chemistry A, 2018. 6(32): p. 15517-15522.
    [133]. Z. Huang, G. Zhou, W. Lv, Y. Deng, Y. Zhang, C. Zhang, F. Kang, and Q.-H. Yang, Seeding lithium seeds towards uniform lithium deposition for stable lithium metal anodes. Nano Energy, 2019. 61: p. 47-53.
    [134]. P. Hundekar, S. Basu, J. Pan, S.F. Bartolucci, S. Narayanan, Z. Yang, and N. Koratkar, Exploiting self-heat in a lithium metal battery for dendrite healing. Energy Storage Mater., 2019. 20: p. 291-298.
    [135]. P. Barai, K. Higa, and V. Srinivasan, Lithium dendrite growth mechanisms in polymer electrolytes and prevention strategies. Phys. Chem. Chem. Phys. , 2017. 19(31): p. 20493-20505.
    [136]. J. Qian, B.D. Adams, J. Zheng, W. Xu, W.A. Henderson, J. Wang, M.E. Bowden, S. Xu, J. Hu, and J.-G. Zhang, Anode-Free Rechargeable Lithium Metal Batteries. Adv. Funct. Mater., 2016. 26(39): p. 7094-7102.
    [137]. C. Wei, H. Fei, Y. An, Y. Tao, J. Feng, and Y. Qian, Uniform Li deposition by regulating the initial nucleation barrier via a simple liquid-metal coating for a dendrite-free Li–metal anode. J. Mater. Chem. A, 2019. 7(32): p. 18861-18870.
    [138]. L. Liu, Y.-X. Yin, J.-Y. Li, S.-H. Wang, Y.-G. Guo, and L.-J. Wan, Uniform Lithium Nucleation/Growth Induced by Lightweight Nitrogen-Doped Graphitic Carbon Foams for High-Performance Lithium Metal Anodes. Adv. Mater., 2018. 30(10): p. 1706216.
    [139]. B. Thirumalraj, T.T. Hagos, C.-J. Huang, M.A. Teshager, J.-H. Cheng, W.-N. Su, and B.-J. Hwang, Nucleation and Growth Mechanism of Lithium Metal Electroplating. J. American Chem. Soc., 2019. 141(46): p. 18612-18623.
    [140]. S. Nanda, A. Gupta, and A. Manthiram, Anode-Free Full Cells: A Pathway to High-Energy Density Lithium-Metal Batteries. Advanced Energy Materials. n/a(n/a): p. 2000804.
    [141]. M. Genovese, A.J. Louli, R. Weber, S. Hames, and J.R. Dahn, Measuring the Coulombic Efficiency of Lithium Metal Cycling in Anode-Free Lithium Metal Batteries. Journal of The Electrochemical Society, 2018. 165(14): p. A3321-A3325.
    [142]. B.-Q. Li, X.-R. Chen, X. Chen, C.-X. Zhao, R. Zhang, X.-B. Cheng, and Q. Zhang, Favorable Lithium Nucleation on Lithiophilic Framework Porphyrin for Dendrite-Free Lithium Metal Anodes. Research, 2019. 2019: p. 4608940.
    [143]. C. Zhang, W. Lv, G. Zhou, Z. Huang, Y. Zhang, R. Lyu, H. Wu, Q. Yun, F. Kang, and Q.-H. Yang, Vertically Aligned Lithiophilic CuO Nanosheets on a Cu Collector to Stabilize Lithium Deposition for Lithium Metal Batteries. Advanced Energy Materials, 2018. 8(21): p. 1703404.
    [144]. H. Kim, Y.J. Gong, J. Yoo, and Y.S. Kim, Highly stable lithium metal battery with an applied three-dimensional mesh structure interlayer. Journal of Materials Chemistry A, 2018. 6(32): p. 15540-15545.
    [145]. H. Wang, Y. Liu, Y. Li, and Y. Cui, Lithium metal anode materials design: interphase and host. Electrochemical Energy Reviews, 2019. 2(4): p. 509-517.
    [146]. M. Liu, C. Wang, Z. Cheng, S. Ganapathy, L.A. Haverkate, S. Unnikrishnan, and M. Wagemaker, Controlling the Li-metal growth to enable low Li-metal excess all solid state Li-metal batteries. ACS Materials Letters, 2020.
    [147]. Y. He, W. Fan, Y. Zhang, Z. Wang, X. Li, Z. Liu, and Z. Lü, Understanding the Relationships between Morphology, Solid Electrolyte Interphase Composition, and Coulombic Efficiency of Lithium Metal. ACS Applied Materials & Interfaces, 2020. 12(19): p. 22268-22277.
    [148]. D. Lu, Y. Shao, T. Lozano, W.D. Bennett, G.L. Graff, B. Polzin, J. Zhang, M.H. Engelhard, N.T. Saenz, and W.A. Henderson, Failure mechanism for fast‐charged lithium metal batteries with liquid electrolytes. Advanced Energy Materials, 2015. 5(3): p. 1400993.
    [149]. K.-H. Chen, K.N. Wood, E. Kazyak, W.S. LePage, A.L. Davis, A.J. Sanchez, and N.P. Dasgupta, Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes. Journal of Materials Chemistry A, 2017. 5(23): p. 11671-11681.
    [150]. F. Sun and I. Manke, Differentiating and Quantifying Dead Lithium. ChemElectroChem, 2019. 6(23): p. 5787-5789.
    [151]. Y. Oumellal, N. Delpuech, D. Mazouzi, N. Dupre, J. Gaubicher, P. Moreau, P. Soudan, B. Lestriez, and D. Guyomard, The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. Journal of Materials Chemistry, 2011. 21(17): p. 6201-6208.
    [152]. S. Lv, T. Verhallen, A. Vasileiadis, F. Ooms, Y. Xu, Z. Li, Z. Li, and M. Wagemaker, Operando monitoring the lithium spatial distribution of lithium metal anodes. Nature communications, 2018. 9(1): p. 1-12.

    無法下載圖示 全文公開日期 2025/08/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE