簡易檢索 / 詳目顯示

研究生: 張庭豪
Ting-Hao Chang
論文名稱: 有序金屬奈米管陣列:菱形奈米管之表面增強拉曼散射與疏冰表面特性之研究
Rhombus mtallic nanotube arrays: Geometric effects on SERS and icephobic properties
指導教授: 朱瑾
Jinn P. Chu
口試委員: 姚栢文
Pak-Man Yiu
江偉宏
Wei-Hung Chiang
林宗宏
Zong-Hong Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 174
中文關鍵詞: 金屬奈米管陣列表面增強拉曼羅丹明6G結晶紫葉酸孔雀石綠甲基巴拉松萊克多巴胺抗霜凍
外文關鍵詞: Metallic Nanotube Array, SERS, Rhodamine 6G, Crystal violet, Folic acid, Malachite green, Methylparanate, Ractopamine, Anti-icing
相關次數: 點閱:350下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這項研究中,我們開發了一種金屬菱形奈米管陣列(MeNTAs)的製程技術,以達到高密度、有序的表面增強拉曼散射(SERS)應用與抗霜凍應用。這些菱形幾何形狀的MeNTAs具有緊密的間距。在實驗前期,我們使用有限差分時域(FDTD)模擬和實驗方法相結合,設計並製造了這些菱形MeNTAs。菱形MeNTA擁有大量的表面積,能夠吸附探針分子。在每平方公分面積上,奈米管的數量超過1億顆,且它具有可以產生SERS增強效應的熱點結構。
    在這項研究中,我們首次提出了一種簡單且低成本的技術,使用DUV KrF微影製程和濺鍍過程在室溫下製造1x1 cm的MeNTA。掃描電子顯微鏡圖像顯示,菱形MeNTA基板具有高度有序的周期結構。我們進一步觀察到,菱形MeNTAs展現出優越的SERS效應。我們分別對羅丹明6G、結晶紫、葉酸、孔雀石綠、甲基巴拉松和萊克多巴胺等六種待測物分子進行測試,結果證明了菱形MeNTAs優異的性能。
    此外,我們探討了菱形MeNTAs的潤濕性和抗霜凍能力。透過高速攝影機影像觀察水滴在菱形MeNTA基板上的撞擊形態,我們發現菱形MeNTA基板具有特別的潤濕性和抗霜凍能力。在抗霜凍實驗中,我們與先前實驗的光滑注液多孔表面(SLIPS)進行比較,菱形MeNTA基板,展現出良好的再現性與抗霜凍相關性能,反觀 SLIPS MeNTA有油膜,會隨著推冰柱循環量測次數的增加而降低性能表現。


    This study reports novel rhombus metallic nanotube arrays (MeNTAs) for Surface-Enhanced Raman Scattering (SERS) and anti-icing applications. These rhombus MeNTAs possess closely packed nanotube arrays. First, we used Finite Difference Time Domain (FDTD) simulations with experimental techniques to design and fabricate these rhombus MeNTAs. There are over one hundred million rhombus nanotubes per cm2, which is thus potentially useful for SERS application.
    This study introduces a simple and cost-effective method to produce 1x1 cm MeNTAs at room temperature, utilizing DUV KrF lithography and sputtering. Scanning electron microscopy images reveal that rhombus MeNTA substrates possess a highly ordered periodic structure. Furthermore, rhombus MeNTAs demonstrate superior SERS effects on six analytes, including Rhodamine 6G, Crystal Violet, Folic Acid, Malachite Green, Methyl Parathion, and Ractopamine. This confirmed the performance of the rhombus MeNTAs.
    Finally, we investigated the wetting properties and anti-frosting capability of the rhombus MeNTAs. Using a high-speed camera, we observed the impact behavior of water droplets on rhombus MeNTA substrates and discovered their unique wetting properties and anti-frosting abilities. When compared to Smooth Liquid-Infused Porous Surface (SLIPS), SLIPS MeNTAs performed less well due to an increase in anti-icing cycles. In contrast, rhombus MeNTA substrates demonstrated reproducibility and correlation with anti-frosting properties.

    摘要 I Abstract II Acknowledgements I Content II List of Figures V List of Tables XI Chapter 1 Introduction 1 1.1 Objectives of study 2 Chapter 2 Literature Review 3 2.1 Metallic glass (MG) 3 2.1.2 Thin-film metallic glass (TFMG) 3 2.2 DUV KrF lithography (248nm) 5 2.3 Physical vapor deposition (PVD) 6 2.3.1 Step coverage 7 2.4 Metallic nanotube arrays (MeNTAs) 7 2.4.1 Fabrication of MeNTAs 7 2.4.2 Application of MeNTAs 13 2.4.2.1 MeNTAs as a SERS Substrate 13 2.5 The Finite-Difference Time-Domain (FDTD) 18 2.6 Plasmonics 19 2.6.1 Surface plasmon resonance (SPR) 19 2.6.2 Localized surface plasmon resonance (LSPR) 20 2.7 Surface-Enhanced Raman Scattering (SERS) 22 2.7.1 Electromagnetic enhancement (EM) 25 2.7.2 Chemical Mechanism (CM) 26 2.8 Potential application of Rhodamine 6G 27 2.9 Potential application of Crystal Violet (CV) 28 2.10 Potential application of Folic acid (FA) 30 2.11 Potential application of Malachite green (MG) 32 2.12 Potential application of Parathion methyl (PM) 33 2.13 Potential Application of Ractopamine 36 2.14 Superhydrophobic surface (SHS) 38 2.14.1 Surface wettability 39 2.14.2 Contact angle hysteresis (CAH) 44 2.15 Surface Icing Mechanisms and Theory 46 2.15.1 Icing mechanisms 46 2.15.2 Anti-icing 47 2.15.3 Ice adhesion (τ) 49 2.15.3.1 Observation of intrinsic ice adhesion versus macroscopic adhesion of ice 52 Chapter 3 Experimental Procedure 53 3.1 Fabrication of Rhombus Metallic Nanotube arrays (R-MeNTAs) 53 3.1.1 FDTD simulation 54 3.1.2 Photomask design 55 3.1.3 Substrate and photoresist preparations 56 3.1.4 Metallic thin film deposition 58 3.1.5 Photoresist removal 59 3.2 Characterization of metallic thin films 60 3.2.1 Scanning electron microscope (SEM) 60 3.2.2 Crystallographic analysis (XRD) 61 3.2.3 Wettability analysis 62 3.2.4 Surface roughness analysis (AFM) 63 3.2.5 Elemental surface analysis (AES) 64 3.3 Raman spectroscopy 64 3.3.1 Photomask design 66 3.3.2 Substrate and photoresist preparations 66 3.3.3 Adsorption of Rhodamine 6G onto R-MeNTA 66 3.3.4 Adsorption of Crystal Violet onto R-MeNTA 67 3.3.5 Adsorption of Folic acid onto R-MeNTA 67 3.3.6 Adsorption of Malachite green onto R-MeNTA 67 3.3.7 Adsorption of Parathion methyl onto R-MeNTA 68 3.3.8 Adsorption of Ractopamine onto R-MeNTA 68 3.4 Handheld Optical Power and Energy Meter 69 3.5 Superhydrophobic surface application 70 3.5.1 Mechanical Properties of Ice Formation (High-speed Camera) 71 3.5.2 Mechanical Properties of Adhesion and Shedding (Force Probe) 73 Chapter 4 Results and Discussion 74 4.1 Fabrication of Rhombus Metallic Nanotube arrays (R-MeNTAs) 74 4.1.1 FDTD simulation of Ag MeNTA with different geometry 74 4.1.1 Surface morphology (SEM) 76 4.1.2 Chemical composition analysis (EDS) of Ag R-MeNTA 77 4.1.3 Chemical composition analysis (AES) of Ag R-MeNTA 78 4.1.4 Crystallographic analysis (XRD) 80 4.1.5 Surface roughness analysis (AFM) 81 4.2 Raman spectra 83 4.2.1 Raman spectra of different geometries 84 4.2.2 Raman spectra of different polarization directions 85 4.2.3 Raman spectra Rhodamine 6G (R6G) 87 4.2.3.1 Raman spectra Rhodamine 6G (R6G) Limit of detection (LOD) 87 4.2.3.2 Raman spectra Rhodamine 6G (R6G) reproducibility 91 4.2.3.3 Raman spectra Rhodamine 6G (R6G) Raman mapping 92 4.2.4 Raman spectra Crystal Violet (CV) 95 4.2.4.1 Raman spectra Crystal Violet (CV) Limit of detection (LOD) 95 4.2.4.2 Raman spectra Crystal Violet (CV) reproducibility 99 4.2.5 Raman spectra Folic acid (FA) 100 4.2.5.1 Raman spectra Folic acid (FA) Limit of detection (LOD) 100 4.2.6 Raman spectra Malachite green (MG) 102 4.2.6.1 Raman spectra Malachite green (MG) Limit of detection (LOD) 102 4.2.7 Raman spectra Parathion methyl (PM) 104 4.2.7.1 Raman spectra Parathion methyl (PM) Limit of detection (LOD) 104 4.2.8 Raman spectra Ractopamine (RAC) 106 4.2.9 SEM images of different geometries before and after adsorption at the same concentration of R6G 10-4 M 108 4.3 Superhydrophobic surface application 111 4.3.1 Surface Morphology (SEM) 111 4.3.2 Wettability (Water contact angle) 114 4.3.3 Mechanical Properties of Ice Formation (High-speed Camera) 120 4.3.4 Mechanical Properties of Adhesion and Shedding (Force Probe) 130 4.3.5 Replace the MeNTA substrate with glass 134 Chapter 5 Summaries and Suggestions for Future Works 136 References 139 Appendix 152

    1. Chu, J.P., K.-W. Tseng, and C.-Y. Liu, Large-area alloy nanotube arrays with highly-ordered periodicity: fabrication and characterization. Materials & Design, 2021. 209: p. 109998.
    2. Lu, Y.-C., et al., Wafer-scale SERS metallic nanotube arrays with highly ordered periodicity. Sensors and Actuators B: Chemical, 2021. 329: p. 129132.
    3. Yang, Y.-X. and J.P. Chu, Cost-effective large-area Ag nanotube arrays for SERS detections: effects of nanotube geometry. Nanotechnology, 2021. 32(47): p. 475504.
    4. Yeh, Y.-J., et al., Plasmonic Au loaded semiconductor-engineered large-scale metallic nanostructure arrays for SERS application. Surface and Coatings Technology, 2022. 436: p. 128285.
    5. Klement, W., R.H. Willens, and P.O.L. Duwez, Non-crystalline Structure in Solidified Gold–Silicon Alloys. Nature, 1960. 187(4740): p. 869-870.
    6. Tam, M.K., S.J. Pang, and C.H. Shek, Corrosion behavior and glass-forming ability of Cu–Zr–Al–Nb alloys. Journal of Non-crystalline Solids - J NON-CRYST SOLIDS, 2007. 353: p. 3596-3599.
    7. Inoue, A. and A. Takeuchi, Recent Development and Application Products of Bulk Glassy Alloys. Acta Materialia - ACTA MATER, 2011. 59: p. 2243-2267.
    8. Inoue, A., Stabilization of Metallic Supercooled Liquid and Bulk Amorphous Alloys. Acta Materialia, 2000. 48: p. 279-306.
    9. Eckert, J., et al., Mechanical properties of bulk metallic glasses and composites. Journal of Materials Research, 2007. 22: p. 285-301.
    10. An, Y., et al., Microstructure and tribological properties of iron-based metallic glass coatings prepared by atmospheric plasma spraying. Vacuum, 2014. 107: p. 132–140.
    11. Johnson, W.L., Bulk Glass-Forming Metallic Alloys: Science and Technology. MRS Bulletin, 1999. 24(10): p. 42-56.
    12. Yiu, P., et al., Thin film metallic glasses: Properties, applications and future. Journal of Applied Physics, 2020. 127(3): p. 030901.
    13. Chu, J.P., et al., Zr-based glass-forming film for fatigue-property improvements of 316L stainless steel: Annealing effects. Surface & Coatings Technology - SURF COAT TECH, 2011. 205: p. 4030-4034.
    14. Chu, J., et al., Thin film metallic glasses: Unique properties and potential applications. Thin Solid Films, 2012. 520: p. 5097–5122.
    15. Chu, J., et al., Bendable bulk metallic glass: Effects of a thin, adhesive, strong, and ductile coating. Acta Materialia, 2012. 60: p. 3226–3238.
    16. Hata, S., K. Sato, and A. Shimokohbe. Fabrication of thin film metallic glass and its application to microactuators. in Device and Process Technologies for MEMS and Microelectronics. 1999. International Society for Optics and Photonics.
    17. Jia, H., et al., Thin-film metallic glasses for substrate fatigue-property improvements. Thin Solid Films, 2014. 561: p. 2–27.
    18. Arden, W. and K.-H. Müller, Physical and technological limits in optical and x-ray lithography. Microelectronic Engineering, 1987. 6(1-4): p. 53-60.
    19. Lin, B.J., Deep UV lithography. Journal of vacuum science and technology, 1975. 12(6): p. 1317-1320.
    20. Fay, B., Advanced optical lithography development, from UV to EUV. Microelectronic Engineering, 2002. 61: p. 11-24.
    21. Holmes, S.J., P.H. Mitchell, and M.C. Hakey, Manufacturing with DUV lithography. IBM Journal of Research and Development, 1997. 41(1.2): p. 7-19.
    22. Singhal, S.C., Advances in solid oxide fuel cell technology. Solid state ionics, 2000. 135(1-4): p. 305-313.
    23. Wu, B. and A. Kumar, Extreme ultraviolet lithography: A review. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2007. 25(6): p. 1743-1761.
    24. Garner, C.M., Lithography for enabling advances in integrated circuits and devices. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2012. 370(1973): p. 4015-4041.
    25. Helmersson, U., et al., Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films, 2006. 513: p. 1-24.
    26. Arden, W., The International Technology Roadmap for Semiconductors—Perspectives and challenges for the next 15 years. Current Opinion in Solid State and Materials Science, 2002. 6: p. 371-377.
    27. Smy, T., et al., A simulation study of long throw sputtering for diffusion barrier deposition into high aspect vias and contacts. IEEE Transactions on Electron Devices, 1998. 45(7): p. 1414-1425.
    28. Rossnagel, S.M., et al., Collimated magnetron sputter deposition. Journal of Vacuum Science & Technology A, 1991. 9(2): p. 261-265.
    29. Rossnagel, S.M., Directional and ionized physical vapor deposition for microelectronics applications. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1998. 16(5): p. 2585-2608.
    30. Cremers, V., R.L. Puurunen, and J. Dendooven, Conformality in atomic layer deposition: Current status overview of analysis and modelling. Applied Physics Reviews, 2019. 6(2): p. 021302.
    31. Chen, J.-K., et al., Metallic glass nanotube arrays: preparation and surface characterizations. Materials Today, 2018. 21(2): p. 178-185.
    32. Yu, C.-C., et al., Fracture-resistant thin-film metallic glass: Ultra-high plasticity at room temperature. APL Materials, 2016. 4(11): p. 116101.
    33. Kumar, M. and Y. Ando, Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. Journal of nanoscience and nanotechnology, 2010. 10(6): p. 3739-3758.
    34. Kumar, S., et al., Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chemical Society Reviews, 2017. 46(1): p. 158-196.
    35. Kong, J., A.M. Cassell, and H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes. Chemical Physics Letters, 1998. 292(4-6): p. 567-574.
    36. Colomer, J.-F., et al., Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chemical Physics Letters, 2000. 317(1-2): p. 83-89.
    37. Li, Y.-L., I.A. Kinloch, and A.H. Windle, Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis. Science, 2004. 304(5668): p. 276-278.
    38. Chen, W.-T., et al., Fabrication of an artificial nanosucker device with a large area nanotube array of metallic glass. Nanoscale, 2018. 10(3): p. 1366-1375.
    39. Fang, Y., N.-H. Seong, and D.D. Dlott, Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science, 2008. 321(5887): p. 388-392.
    40. Alabastri, A., et al., Extraordinary light-induced local angular momentum near metallic nanoparticles. ACS nano, 2016. 10(4): p. 4835-4846.
    41. Hasna, K., et al., Fabrication of cost-effective, highly reproducible large area arrays of nanotriangular pillars for surface enhanced Raman scattering substrates. Nano research, 2016. 9: p. 3075-3083.
    42. Yee, K., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on antennas and propagation, 1966. 14(3): p. 302-307.
    43. Schuller, J.A., et al., Plasmonics for extreme light concentration and manipulation. Nature materials, 2010. 9(3): p. 193-204.
    44. Zhou, J., et al., Plasmonic biosensing based on non-noble-metal materials. Chinese Chemical Letters, 2018. 29(1): p. 54-60.
    45. Butt, M., S. Khonina, and N. Kazanskiy, Plasmonics: A necessity in the field of sensing-a review. Fiber and Integrated Optics, 2021. 40(1): p. 14-47.
    46. Liu, Y., et al., Ultra-high sensitivity plasmonic sensor based on D-shaped photonic crystal fiber with offset-core. Optik, 2020. 221: p. 165309.
    47. Liu, L., et al., A two-dimensional polarization interferometry based parallel scan angular surface plasmon resonance biosensor. Review of Scientific Instruments, 2011. 82(2): p. 023109.
    48. Miao, P., et al., A novel ultrasensitive surface plasmon resonance-based nanosensor for nitrite detection. RSC advances, 2019. 9(31): p. 17698-17705.
    49. Lausted, C., et al., SPR imaging for high throughput, label-free interaction analysis. Combinatorial chemistry & high throughput screening, 2009. 12(8): p. 741-751.
    50. Willets, K.A. and R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem., 2007. 58: p. 267-297.
    51. Zhu, X. and T. Gao, Spectrometry, in Nano-inspired biosensors for protein assay with clinical applications. 2019, Elsevier. p. 237-264.
    52. Fong, K.E. and L.-Y.L. Yung, Localized surface plasmon resonance: a unique property of plasmonic nanoparticles for nucleic acid detection. Nanoscale, 2013. 5(24): p. 12043-12071.
    53. Maier, S.A., Plasmonics: fundamentals and applications. Vol. 1. 2007: Springer.
    54. Indhu, A., L. Keerthana, and G. Dharmalingam, Plasmonic nanotechnology for photothermal applications–an evaluation. Beilstein Journal of Nanotechnology, 2023. 14(1): p. 380-419.
    55. Fleischmann, M., P.J. Hendra, and A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chemical physics letters, 1974. 26(2): p. 163-166.
    56. Jeanmaire, D.L. and R.P. Van Duyne, Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of electroanalytical chemistry and interfacial electrochemistry, 1977. 84(1): p. 1-20.
    57. Albrecht, M.G. and J.A. Creighton, Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the american chemical society, 1977. 99(15): p. 5215-5217.
    58. Xu, H., et al., Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Physical review letters, 1999. 83(21): p. 4357.
    59. Campion, A. and P. Kambhampati, Surface-enhanced Raman scattering. Chemical society reviews, 1998. 27(4): p. 241-250.
    60. Pettinger, B., et al., Surface-enhanced and STM tip-enhanced Raman spectroscopy of CN− ions at gold surfaces. Journal of Electroanalytical Chemistry, 2003. 554: p. 293-299.
    61. Vendrell, M., et al., Surface-enhanced Raman scattering in cancer detection and imaging. Trends in biotechnology, 2013. 31(4): p. 249-257.
    62. Schlücker, S., Surface‐Enhanced raman spectroscopy: Concepts and chemical applications. Angewandte Chemie International Edition, 2014. 53(19): p. 4756-4795.
    63. Zou, F., et al., Dual-mode SERS-fluorescence immunoassay using graphene quantum dot labeling on one-dimensional aligned magnetoplasmonic nanoparticles. ACS applied materials & interfaces, 2015. 7(22): p. 12168-12175.
    64. Pang, S., T. Yang, and L. He, Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends in Analytical Chemistry, 2016. 85: p. 73-82.
    65. Dincer, C., et al., Disposable sensors in diagnostics, food, and environmental monitoring. Advanced Materials, 2019. 31(30): p. 1806739.
    66. Langer, J., et al., Present and future of surface-enhanced Raman scattering. ACS nano, 2019. 14(1): p. 28-117.
    67. Zhang, C., et al., SERS activated platform with three-dimensional hot spots and tunable nanometer gap. Sensors and Actuators B: Chemical, 2018. 258: p. 163-171.
    68. Sur, U.K., Surface-enhanced Raman scattering. 2017: IntechOpen.
    69. Pilot, R., et al., A review on surface-enhanced Raman scattering. Biosensors, 2019. 9(2): p. 57.
    70. Campion, A., et al., On the mechanism of chemical enhancement in surface-enhanced Raman scattering. Journal of the American Chemical Society, 1995. 117(47): p. 11807-11808.
    71. Kneipp, K., Chemical contribution to SERS enhancement: an experimental study on a series of polymethine dyes on silver nanoaggregates. The Journal of Physical Chemistry C, 2016. 120(37): p. 21076-21081.
    72. Birke, R.L., V. Znamenskiy, and J.R. Lombardi, A charge-transfer surface enhanced Raman scattering model from time-dependent density functional theory calculations on a Ag10-pyridine complex. The Journal of chemical physics, 2010. 132(21).
    73. Lee, H.K., et al., Designing surface-enhanced Raman scattering (SERS) platforms beyond hotspot engineering: emerging opportunities in analyte manipulations and hybrid materials. Chem Soc Rev, 2019. 48(3): p. 731-756.
    74. Lombardi, J.R. and R.L. Birke, A unified approach to surface-enhanced Raman spectroscopy. The Journal of Physical Chemistry C, 2008. 112(14): p. 5605-5617.
    75. Chenal, C., R.L. Birke, and J.R. Lombardi, Determination of the degree of charge‐transfer contributions to surface‐enhanced Raman spectroscopy. ChemPhysChem, 2008. 9(11): p. 1617-1623.
    76. Cong, S., et al., Surface enhanced Raman scattering revealed by interfacial charge-transfer transitions. The Innovation, 2020. 1(3): p. 100051.
    77. Lombardi, J.R. and R.L. Birke, A unified view of surface-enhanced Raman scattering. Accounts of chemical research, 2009. 42(6): p. 734-742.
    78. Sun, L., et al., Composite organic− inorganic nanoparticles as Raman labels for tissue analysis. Nano Letters, 2007. 7(2): p. 351-356.
    79. Jensen, L. and G.C. Schatz, Resonance Raman Scattering of Rhodamine 6G as Calculated Using Time-Dependent Density Functional Theory. The Journal of Physical Chemistry A, 2006. 110(18): p. 5973-5977.
    80. Yarborough, J., CW dye laser emission spanning the visible spectrum. Applied Physics Letters, 1974. 24(12): p. 629-630.
    81. Zhang, C., et al., SERS detection of R6G based on a novel graphene oxide/silver nanoparticles/silicon pyramid arrays structure. Optics express, 2015. 23(19): p. 24811-24821.
    82. He, X.N., et al., Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes. Nanotechnology, 2012. 23(20): p. 205702.
    83. Zrimsek, A.B., N.L. Wong, and R.P. Van Duyne, Single molecule surface-enhanced Raman spectroscopy: a critical analysis of the bianalyte versus isotopologue proof. The Journal of Physical Chemistry C, 2016. 120(9): p. 5133-5142.
    84. Shoukat, S., et al., Mango stone biocomposite preparation and application for crystal violet adsorption: a mechanistic study. Microporous and Mesoporous Materials, 2017. 239: p. 180-189.
    85. Miyah, Y., et al., Assessment of adsorption kinetics for removal potential of Crystal Violet dye from aqueous solutions using Moroccan pyrophyllite. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2017. 23: p. 20-28.
    86. Cho, S.J., et al., Combinatorial synthesis of a triphenylmethine library and their application in the development of surface enhanced Raman scattering (SERS) probes. Chemical communications, 2010. 46(5): p. 722-724.
    87. Kneipp, J., et al., Optical probing and imaging of live cells using SERS labels. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 2009. 40(1): p. 1-5.
    88. Liang, E., X. Ye, and W. Kiefer, Surface-enhanced Raman spectroscopy of crystal violet in the presence of halide and halate ions with near-infrared wavelength excitation. The Journal of Physical Chemistry A, 1997. 101(40): p. 7330-7335.
    89. Castillo, J.J., et al., Detection of cancer cells using a peptide nanotube–folic acid modified graphene electrode. Analyst, 2013. 138(4): p. 1026-1031.
    90. De Bruyn, E., B. Gulbis, and F. Cotton, Serum and red blood cell folate testing for folate deficiency: new features? European journal of haematology, 2014. 92(4): p. 354-359.
    91. Solovyeva, E.V. and E. Borisov, Demonstration of physical and analytical features of surface-enhanced Raman scattering by analysis of folic acid in commercial tablets. Journal of Chemical Education, 2020. 97(8): p. 2249-2253.
    92. Castillo, J.J., et al., Adsorption and vibrational study of folic acid on gold nanopillar structures using surface-enhanced Raman scattering spectroscopy. Nanomaterials and nanotechnology, 2015. 5: p. 29.
    93. Zhang, Y., et al., Analyses of enrofloxacin, furazolidone and malachite green in fish products with surface-enhanced Raman spectroscopy. Food chemistry, 2012. 135(2): p. 845-850.
    94. Srivastava, S., R. Sinha, and D. Roy, Toxicological effects of malachite green. Aquatic toxicology, 2004. 66(3): p. 319-329.
    95. Lee, S., et al., Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor. Analytica chimica acta, 2007. 590(2): p. 139-144.
    96. Liu, Y.-n., et al., Sensitive Detection of Malachite Green in Aquaculture Water by Surface Enhanced Raman Scattering Using Silver Coated Urchin-Like Gold Nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023: p. 131485.
    97. Gu, G.H. and J.S. Suh, Silver nanorods used to promote SERS as a quantitative analytical tool. Journal of Raman Spectroscopy, 2010. 41(6): p. 624-627.
    98. He, L., et al., Use of a fractal-like gold nanostructure in surface-enhanced Raman spectroscopy for detection of selected food contaminants. Journal of Agricultural and Food Chemistry, 2008. 56(21): p. 9843-9847.
    99. Sánchez, M.T., et al., Measurement of pesticide residues in peppers by near‐infrared reflectance spectroscopy. Pest Management Science: formerly Pesticide Science, 2010. 66(6): p. 580-586.
    100. Hossain, M., et al., Determination of selected pesticides in water samples adjacent to agricultural fields and removal of organophosphorus insecticide chlorpyrifos using soil bacterial isolates. Applied Water Science, 2015. 5: p. 171-179.
    101. Gonçalves, C. and M. Alpendurada, Solid-phase micro-extraction–gas chromatography–(tandem) mass spectrometry as a tool for pesticide residue analysis in water samples at high sensitivity and selectivity with confirmation capabilities. Journal of Chromatography A, 2004. 1026(1-2): p. 239-250.
    102. Ndung’u, N.C., Rapid Assessment of Pesticide Residues in Fruits and Vegetables Using Machine Learning Assisted Diffuse Reflectance Spectroscopy. 2021, University of Nairobi.
    103. Sato-Berrú, R.Y., et al., Quantitative NIR–Raman analysis of methyl-parathion pesticide microdroplets on aluminum substrates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004. 60(10): p. 2231-2234.
    104. Okumura, L.L., et al., Electrochemical feasibility study of methyl parathion determination on graphite-modified basal plane pyrolytic graphite electrode. Journal of the Brazilian Chemical Society, 2011. 22: p. 652-659.
    105. Lee, D., et al., Quantitative analysis of methyl parathion pesticides in a polydimethylsiloxane microfluidic channel using confocal surface-enhanced Raman spectroscopy. Applied spectroscopy, 2006. 60(4): p. 373-377.
    106. Li, K., et al., A new sensor for the rapid electrochemical detection of ractopamine in meats with high sensitivity. Food Chemistry, 2023. 405: p. 134791.
    107. Zhai, F., et al., Rapid determination of ractopamine in swine urine using surface-enhanced Raman spectroscopy. Journal of Agricultural and Food Chemistry, 2011. 59(18): p. 10023-10027.
    108. Izquierdo-Lorenzo, I., S. Sánchez-Cortés, and J.V. García-Ramos, Adsorption of beta-adrenergic agonists used in sport doping on metal nanoparticles: a detection study based on surface-enhanced Raman scattering. Langmuir, 2010. 26(18): p. 14663-14670.
    109. Ali, H., et al., Vibrational spectroscopic study of salbutamol hemisulphate. Drug testing and analysis, 2009. 1(1): p. 51-56.
    110. Ali, H., et al., Vibrational spectroscopic study of terbutaline hemisulphate. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009. 72(4): p. 715-719.
    111. Young, T., III. An essay on the cohesion of fluids. Philosophical transactions of the royal society of London, 1805(95): p. 65-87.
    112. Wenzel, R.N., Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936. 28(8): p. 988-994.
    113. Cassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society, 1944. 40: p. 546-551.
    114. Liu, M., S. Wang, and L. Jiang, Nature-inspired superwettability systems. Nature Reviews Materials, 2017. 2(7): p. 1-17.
    115. Zhu, Z., et al., Superlyophilic interfaces and their applications. Advanced Materials, 2017. 29(45): p. 1703120.
    116. Vogler, E.A., Structure and reactivity of water at biomaterial surfaces. Advances in colloid and interface science, 1998. 74(1-3): p. 69-117.
    117. Tian, Y. and L. Jiang, Intrinsically robust hydrophobicity. Nature materials, 2013. 12(4): p. 291-292.
    118. Wang, L., et al., A general strategy for the separation of immiscible organic liquids by manipulating the surface tensions of nanofibrous membranes. Angewandte Chemie, 2015. 127(49): p. 14945-14950.
    119. Marmur, A., The lotus effect: superhydrophobicity and metastability. Langmuir, 2004. 20(9): p. 3517-3519.
    120. Marmur, A., Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be? Langmuir, 2003. 19(20): p. 8343-8348.
    121. Johnson Jr, R.E. and R.H. Dettre, Contact angle hysteresis. III. Study of an idealized heterogeneous surface. The journal of physical chemistry, 1964. 68(7): p. 1744-1750.
    122. Furmidge, C., Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention. Journal of colloid science, 1962. 17(4): p. 309-324.
    123. Eral, H.B., D. ’t Mannetje, and J.M. Oh, Contact angle hysteresis: a review of fundamentals and applications. Colloid and polymer science, 2013. 291: p. 247-260.
    124. Joanny, J. and P.-G. De Gennes, A model for contact angle hysteresis. The journal of chemical physics, 1984. 81(1): p. 552-562.
    125. Chow, R.T.-P., On the ability of drops or bubbles to stick to non-horizontal surfaces of solids. Journal of Fluid Mechanics, 1983. 137: p. 1-29.
    126. De Gennes, P.-G., Wetting: statics and dynamics. Reviews of modern physics, 1985. 57(3): p. 827.
    127. Bonn, D., et al., Wetting and spreading. Reviews of modern physics, 2009. 81(2): p. 739.
    128. Ras, R.H. and A. Marmur, Non-wettable surfaces: theory, preparation and applications. 2016: Royal Society of Chemistry.
    129. Boltzmann, L., The second law of thermodynamics, in Theoretical physics and philosophical problems: selected writings. 1974, Springer. p. 13-32.
    130. Li, W., Y. Zhan, and S. Yu, Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives. Progress in Organic Coatings, 2021. 152: p. 106117.
    131. Varanasi, K.K., et al., Spatial control in the heterogeneous nucleation of water. Applied Physics Letters, 2009. 95(9): p. 094101.
    132. Skinner, L. and J. Sambles, The Kelvin equation—a review. Journal of Aerosol Science, 1972. 3(3): p. 199-210.
    133. Tourkine, P., M. Le Merrer, and D. Quéré, Delayed freezing on water repellent materials. Langmuir, 2009. 25(13): p. 7214-7216.
    134. Varanasi, K.K., et al., Frost formation and ice adhesion on superhydrophobic surfaces. Applied Physics Letters, 2010. 97(23): p. 234102.
    135. Antonini, C., et al., Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold regions science and technology, 2011. 67(1-2): p. 58-67.
    136. Li, J., et al., Superhydrophobic copper surface textured by laser for delayed icing phenomenon. Langmuir, 2020. 36(5): p. 1075-1082.
    137. Latthe, S.S., et al., Recent developments in air-trapped superhydrophobic and liquid-infused slippery surfaces for anti-icing application. Progress in Organic Coatings, 2019. 137: p. 105373.
    138. Karmouch, R. and G.G. Ross, Experimental study on the evolution of contact angles with temperature near the freezing point. The Journal of Physical Chemistry C, 2010. 114(9): p. 4063-4066.
    139. Guo, P., et al., Icephobic/anti‐icing properties of micro/nanostructured surfaces. Advanced Materials, 2012. 24(19): p. 2642-2648.
    140. Qi, Y., et al., Fabrication of superhydrophobic surface with desirable anti-icing performance based on micro/nano-structures and organosilane groups. Applied Surface Science, 2020. 501: p. 144165.
    141. Loughborough, D.L. and E. Haas, Reduction of the adhesion of ice to de-icer surfaces. Journal of the aeronautical sciences, 1946. 13(3): p. 126-134.
    142. Raraty, L. and D. Tabor, The adhesion and strength properties of ice. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1958. 245(1241): p. 184-201.
    143. Meuler, A.J., et al., Relationships between water wettability and ice adhesion. ACS applied materials & interfaces, 2010. 2(11): p. 3100-3110.
    144. Jellinek, H., Ice adhesion. Canadian journal of physics, 1962. 40(10): p. 1294-1309.
    145. Wong, T.-S., et al., Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity. Nature, 2011. 477(7365): p. 443-447.
    146. Onda, T., et al., Super-water-repellent fractal surfaces. Langmuir, 1996. 12(9): p. 2125-2127.
    147. Saito, H., K.-i. Takai, and G. Yamauchi, A study on ice adhesiveness to water-repellent coating. Journal of the Society of Materials Science, Japan, 1997. 46(9Appendix): p. 185-189.
    148. Zhuo, Y., et al., Polysiloxane as icephobic materials–The past, present and the future. Chemical Engineering Journal, 2021. 405: p. 127088.
    149. Wilen, L., et al., Dispersion-force effects in interfacial premelting of ice. Physical Review B, 1995. 52(16): p. 12426.
    150. Ryzhkin, I.A. and V.F. Petrenko, Physical mechanisms responsible for ice adhesion. The Journal of Physical Chemistry B, 1997. 101(32): p. 6267-6270.
    151. Nihonyanagi, S., S. Yamaguchi, and T. Tahara, Water hydrogen bond structure near highly charged interfaces is not like ice. Journal of the American Chemical Society, 2010. 132(20): p. 6867-6869.
    152. Rønneberg, S., et al., Nanoscale correlations of ice adhesion strength and water contact angle. Coatings, 2020. 10(4): p. 379.
    153. Xiao, S., J. He, and Z. Zhang, Modeling nanoscale ice adhesion. Acta Mechanica Solida Sinica, 2017. 30: p. 224-226.
    154. Xiao, S., J. He, and Z. Zhang, Nanoscale deicing by molecular dynamics simulation. Nanoscale, 2016. 8(30): p. 14625-14632.
    155. Chen, K., et al., Moiré nanosphere lithography. ACS nano, 2015. 9(6): p. 6031-6040.
    156. Lee, C., et al., Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact. Soft Matter, 2015. 11(23): p. 4592-4599.
    157. Bahadur, V. and S.V. Garimella, Preventing the Cassie− Wenzel transition using surfaces with noncommunicating roughness elements. Langmuir, 2009. 25(8): p. 4815-4820.
    158. Zheng, H., et al., Ice-shedding polymer coatings with high hardness but low ice adhesion. ACS Applied Materials & Interfaces, 2022. 14(4): p. 6071-6082.
    159. Wang, C., et al., Factors affecting the adhesion of ice to polymer substrates. Journal of Applied Polymer Science, 2018. 135(24): p. 45734.
    160. Watanabe, Y., et al., Development of deep ultraviolet optical maskless exposure tool for advanced lithography. Journal of Micro/Nanopatterning, Materials, and Metrology, 2023. 22(4): p. 041403-041403.
    161. Yang, F., et al. Fabrication and characteristics on gallium nitride-based ultraviolet photodetectors for i-line lithography machines. in Ninth Symposium on Novel Photoelectronic Detection Technology and Applications. 2023. SPIE.
    162. Hooker, K., et al. New methodologies for lower-K1 EUV OPC and RET optimization. in Extreme Ultraviolet (EUV) Lithography VIII. 2017. SPIE.
    163. Spence, C. Full-chip lithography simulation and design analysis: how OPC is changing IC design. in Emerging Lithographic Technologies IX. 2005. SPIE.
    164. Xiao, L.-Y., et al., A Novel Optical Proximity Correction (OPC) System Based on Deep Learning Method for the Extreme Ultraviolet (EUV) Lithography. Progress In Electromagnetics Research, 2023. 176: p. 95-108.
    165. Urbieta, M., et al., Atomic-scale lightning rod effect in plasmonic picocavities: A classical view to a quantum effect. ACS nano, 2018. 12(1): p. 585-595.
    166. Khan, G.A., et al., Fabrication of flexible, cost-effective, and scalable silver substrates for efficient surface enhanced Raman spectroscopy based trace detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021. 619: p. 126542.
    167. Xu, X., et al., Multiple-patterning nanosphere lithography for fabricating periodic three-dimensional hierarchical nanostructures. Acs Nano, 2017. 11(10): p. 10384-10391.
    168. Yue, W., et al., Surface-enhanced Raman scattering with gold-coated silicon nanopillars arrays: The influence of size and spatial order. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2022. 267: p. 120582.
    169. Fang, M., et al., Polymer-confined colloidal monolayer: a reusable soft photomask for rapid wafer-scale nanopatterning. ACS Applied Materials & Interfaces, 2014. 6(23): p. 20837-20841.
    170. Li, L., et al., Controlling the geometries of Si nanowires through tunable nanosphere lithography. ACS applied materials & interfaces, 2017. 9(8): p. 7368-7375.
    171. Yue, W., et al., Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes. Journal of Physics D: Applied Physics, 2012. 45(42): p. 425401.
    172. Gupta, P., et al., On-demand electromagnetic hotspot generation in surface-enhanced Raman scattering substrates via “add-on” plasmonic patch. ACS applied materials & interfaces, 2019. 11(41): p. 37939-37946.
    173. Mandal, P. and B. Tewari, Progress in surface enhanced Raman scattering molecular sensing: A review. Surfaces and Interfaces, 2022. 28: p. 101655.
    174. Le Ru, E.C., et al., Surface enhanced Raman scattering enhancement factors: a comprehensive study. The Journal of Physical Chemistry C, 2007. 111(37): p. 13794-13803.
    175. Kumar, E.A., et al., Development of SERS platform based on ZnO multipods decorated with Ag nanospheres for detection of 4-nitrophenol and rhodamine 6G in real samples. Microchemical Journal, 2021. 170: p. 106660.
    176. Li, K., et al., A porous Au–Ag hybrid nanoparticle array with broadband absorption and high-density hotspots for stable SERS analysis. Nanoscale, 2019. 11(19): p. 9587-9592.
    177. Lu, Z., et al., A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytilus coruscus hybrid system. Sensors and Actuators B: Chemical, 2018. 261: p. 1-10.
    178. Shafi, M., et al., Highly efficient SERS substrates with different Ag interparticle nanogaps based on hyperbolic metamaterials. Applied Surface Science, 2021. 555: p. 149729.
    179. Xu, S., et al., Liquid–liquid interfacial self-assembled triangular Ag nanoplate-based high-density and ordered SERS-active arrays for the sensitive detection of dibutyl phthalate (DBP) in edible oils. Analyst, 2021. 146(15): p. 4858-4864.
    180. Sun, K., Q. Deng, and H. Tang, AAO template-assisted fabrication of ordered Ag nanoparticles-decorated Au nanotubes array for surface-enhanced Raman scattering detection. Sustainability, 2022. 14(3): p. 1305.
    181. Liu, C.-Y., Metallic nanotube arrays as the surface-enhanced Raman scattering (SERS) substrate: Fabrication and properties. 2021.
    182. Khan, G.A., et al., Facile fabrication of Au-Ag alloy nanoparticles on filter paper: Application in SERS based swab detection and multiplexing. Vibrational Spectroscopy, 2022. 120: p. 103359.
    183. Zhou, Z., et al., Silver nanocubes monolayers as a SERS substrate for quantitative analysis. Chinese Chemical Letters, 2021. 32(4): p. 1497-1501.
    184. Yu, M., et al., Surface-enhanced Raman scattering fiber probe based on silver nanocubes. Advanced Fiber Materials, 2021. 3: p. 349-358.
    185. Liao, F., et al., An effective oxide shell-protected surface-enhanced Raman scattering (SERS) substrate: the easy route to Ag@ Ag x O-silicon nanowire films via surface doping. Journal of Materials Chemistry C, 2013. 1(8): p. 1628-1632.
    186. Li, Q., et al., Tailored necklace-like Ag@ ZIF-8 core/shell heterostructure nanowires for high-performance plasmonic SERS detection. Chemical Engineering Journal, 2019. 371: p. 26-33.
    187. Yan, X., et al., Sandwich-like Ag@ Cu@ CW SERS substrate with tunable nanogaps and component based on the Plasmonic nanonodule structures for sensitive detection crystal violet and 4-aminothiophenol. Applied Surface Science, 2019. 479: p. 879-886.
    188. Xu, D., et al., Copper nanoleaves SERS substrates with high surface roughness for sensitive detection crystal violet and rhodamine 6G. Optics & Laser Technology, 2022. 145: p. 107502.
    189. Gonzalez-Martin, M., et al., Analysis of the silica surface free energy by the imbibition technique. Journal of colloid and interface science, 2001. 240(2): p. 467-472.
    190. Żenkiewicz, M., Comparative study on the surface free energy of a solid calculated by different methods. Polymer Testing, 2007. 26(1): p. 14-19.
    191. Barnat-Hunek, D. and P. Smarzewski, Influence of hydrophobisation on surface free energy of hybrid fiber reinforced ultra-high performance concrete. Construction and Building Materials, 2016. 102: p. 367-377.
    192. Wang, X., et al., Surface free energy and microstructure dependent environmental stability of sol–gel SiO2 antireflective coatings: Effect of combined vapor phase surface treatment. Journal of colloid and interface science, 2019. 555: p. 124-131.
    193. Shirgholami, M.A., M. Shateri-Khalilabad, and M.E. Yazdanshenas, Effect of reaction duration in the formation of superhydrophobic polymethylsilsesquioxane nanostructures on cotton fabric. Textile Research Journal, 2013. 83(1): p. 100-110.
    194. Deng, T., et al., Nonwetting of impinging droplets on textured surfaces. Applied Physics Letters, 2009. 94(13): p. 133109.
    195. Zhuo, Y., et al., One-step fabrication of bioinspired lubricant-regenerable icephobic slippery liquid-infused porous surfaces. ACS omega, 2018. 3(8): p. 10139-10144.
    196. Zheng, J., et al., Slippery liquid infused porous surfaces with anti-icing performance fabricated by direct laser interference lithography. Progress in Organic Coatings, 2023. 175: p. 107308.
    197. Chen, X., G. Wen, and Z. Guo, What are the design principles, from the choice of lubricants and structures to the preparation method, for a stable slippery lubricant-infused porous surface? Materials Horizons, 2020. 7(7): p. 1697-1726.

    QR CODE