簡易檢索 / 詳目顯示

研究生: Kashif Azher
Kashif Azher
論文名稱: Study on the Fabrication and Characterization of ZnO Nanowires by Vacuum Die Casting using AAO as a Template
Study on the Fabrication and Characterization of ZnO Nanowires by Vacuum Die Casting using AAO as a Template
指導教授: 陳士勛
Shih-Hsun Chen
口試委員: 丘群
Chun Chiu
Chih Chen
Chih Chen
Hung-Wei Yen
Hung-Wei Yen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 100
中文關鍵詞: Zinc Oxide (ZnO)NanowiresAnodic Aluminium Oxide (AAO)Vacuum Die CastingOxidationAspect Ratio
外文關鍵詞: Zinc Oxide (ZnO), Nanowires, Anodic Aluminium Oxide (AAO), Vacuum Die Casting, Oxidation, Aspect Ratio
相關次數: 點閱:256下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Zinc Oxide (ZnO) is considered as the most promising metal oxide because of its numerous utilization in different fields. One of the most important application of ZnO is for gas sensing. In order to improve the sensitivity of materials, it is observed that high aspect ratio nanowires possess better sensing capability due to the high surface area and uniformity. The purpose of this study is to fabricate high aspect ratio ZnO nanowires by vacuum die casting and using Anodic Aluminium Oxide (AAO) as a template and to investigate their gas sensing performance.
    Firstly, AAO was fabricated by two-step anodization from aluminium. Then after observing AAO nano porous structure in SEM showing that the average pore diameter is 100nm, zinc was injected into AAO pores by vacuum die casting. The casting was carried out at the temperature of 500°C for 40 minutes respectively. Finally, the Zinc along with AAO is oxidized to form Zinc Oxide nanowires. The optimal condition for oxidation of zinc was found out to be 420°C for 48 hours. After dissolving AAO with acid ZnO nanowires were collected. Finally, ZnO nanowires were spread over silicon substrate to observe electrical properties and gas sensing.
    The porous structure of AAO was observed under SEM. Then after zinc casted into AAO, SEM was performed to observe success of casting. EDS and XRD analysis were also performed after oxidation of Zinc. EDS, XRD and TEM were also performed to further verify the purity of ZnO nanowires after dissolving AAO with acid. The average diameter of ZnO nanowires is 100nm. IV curves of different samples were obtained to further classify the ZnO nanowires and study the electrical behavior of single nanowire. Finally, gas sensing response were observed for 500ppm of H2 gas. From the observation, it can be concluded that ZnO nanowires fabricated by vacuum die casting has a potential to be utilized for nanowires gas sensing device.

    1. INTRODUCTION 1 2. LITERATURE REVIEW 4 2.1. Nanomaterials 4 2.2. Zinc Oxide 7 2.3. Template assisted fabrication techniques of ZnO nanowires 13 2.4. Introduction to Anodic Aluminium Oxide (AAO) 16 2.2.1 Electropolishing of Aluminium before anodization 18 2.2.2 Anodization of Aluminium 19 2.2.3 Mechanisms of AAO 20 2.2.4 Well Ordered AAO 22 2.5. High Vacuum Die Casting of fabricating nanowires 24 3. EXPERIMENTAL DETAILS 27 3.1. Experimental Flow chart 27 3.2. Preparation of Anodic Aluminium Oxide 28 3.2.1 Mechanical Polishing of Aluminium 28 3.2.2 Electro polishing of Aluminium 29 3.2.3 Anodic Anodization of Aluminium 30 3.2.4 Removal of Aluminium substrate 32 3.3. Vacuum Die Casting 32 3.4. Oxidation of Zinc/AAO to ZnO/AAO 35 3.5. Examining electrical properties of ZnO nanowires 37 3.6. Gas Sensing Response of ZnO nanowires 39 3.7. Experimental Parameters 40 3.8. Equipment used for Material Characterization Analysis 42 3.7.1. Field Emission Scanning Electron Microscope (FE-SEM) 42 3.7.2. X-Ray Diffraction (XRD) 43 3.7.3. Transmission Electron Microscope (TEM) 43 3.7.4. Energy Dispersive Spectrometer (EDS) 44 4. RESULTS AND DICUSSION 45 4.1. Anodic Aluminium Oxide 45 4.2. Vacuum die casting of Zinc inside AAO 50 4.3. Oxidation of Zinc to Zinc Oxide along with AAO 51 4.3.1. Mapping after oxidation 52 4.3.2. EDS analysis ZnO/AAO 52 4.3.3. XRD 53 4.4. Dissolution of AAO to release ZnO nanowires 55 4.4.1. SEM and XRD of ZnO nanowires after dissolving AAO using NaOH 55 4.4.2. SEM and EDS of ZnO nanowires after dissolving AAO using acid 56 4.4.3. XRD of ZnO nanowires 59 4.4.4. TEM of ZnO nanowires 62 4.4.5. Oxidation time relation with the length of ZnO nanowires 64 4.5. Electrical behavior of ZnO nanowires 65 4.6. Gas sensing response of ZnO nanowires 74 5. CONCLUSION / FUTURE WORK 78 6. REFERENCES 79

    [1] E. Roduner, “Size matters: Why nanomaterials are different,” Chem. Soc. Rev., vol. 35, no. 7, pp. 583–592, 2006, doi: 10.1039/b502142c.
    [2] S. Ganguly, K. Halder, N. Hoque, S. Das, and S. G Dastidar, “A Comparative Study Between Electrical Properties of Bulk and Synthesized Nano Material of Zinc Sulphide,” Am. J. Res. Commun., vol. 3, no. 3, 2015.
    [3] B. Han, S. Ding, J. Wang, and J. Ou, Nano-Engineered Cementitious Composites: Principles and Practices. 2019.
    [4] G. Cao and Y. Wang, Nanostructures and Nanomaterials, vol. 2. WORLD SCIENTIFIC, 2011.
    [5] D. Nunes, M. Vilarigues, J. B. Correia, and P. A. Carvalho, “Nickel-carbon nanocomposites: Synthesis, structural changes and strengthening mechanisms,” Acta Mater., vol. 60, no. 2, pp. 737–747, 2012, doi: 10.1016/j.actamat.2011.10.012.
    [6] N. Karak, “Fundamentals of Nanomaterials and Polymer Nanocomposites,” in Nanomaterials and Polymer Nanocomposites: Raw Materials to Applications, Elsevier, 2018, pp. 1–45.
    [7] N. A. K. Aznan and M. R. Johan, “Quantum size effect in ZnO nanoparticles via mechanical milling,” J. Nanomater., vol. 2012, pp. 1–5, 2012, doi: 10.1155/2012/439010.
    [8] S. Eustis and M. A. El-Sayed, “Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chem. Soc. Rev., vol. 35, no. 3, pp. 209–217, 2006, doi: 10.1039/b514191e.
    [9] I. Gonzalez-Valls and M. Lira-Cantu, “Vertically-aligned nanostructures of ZnO for excitonic solar cells: A review,” Energy Environ. Sci., vol. 2, no. 1, pp. 19–34, 2009, doi: 10.1039/b811536b.
    [10] S. L. Lai, J. Y. Guo, V. Petrova, G. Ramanath, and L. H. Allen, “Size-dependent melting properties of small tin particles: Nanocalorimetric measurements,” Phys. Rev. Lett., vol. 77, no. 1, pp. 99–102, 1996, doi: 10.1103/PhysRevLett.77.99.
    [11] G. Neri and N. Donato, “Resistive Gas Sensors,” Wiley Encycl. Electr. Electron. Eng., no. 3, pp. 1–12, 2016, doi: 10.1002/047134608x.w8337.
    [12] A. A. Ansari, M. Alhoshan, M. S. Alsalhi, and A. S. Aldwayyan, “Nanostructured Metal Oxides Based Enzymatic Electrochemical Biosensors,” Intech, vol. i, no. tourism, p. 13, 2016, doi: http://dx.doi.org/10.5772/57353.
    [13] Z. Chen and C. Lu, “Humidity sensors: A review of materials and mechanisms,” Sens. Lett., vol. 3, no. 4, pp. 274–295, 2005, doi: 10.1166/sl.2005.045.
    [14] Z. Liu et al., “Fabrication of UV Photodetector on TiO 2 /Diamond Film,” Sci. Rep., vol. 5, pp. 1–7, 2015, doi: 10.1038/srep14420.
    [15] E. Broughton, “The Bhopal disaster and its aftermath: A review,” Environ. Heal. A Glob. Access Sci. Source, vol. 4, pp. 1–6, 2005, doi: 10.1186/1476-069X-4-6.
    [16] H. Ji, W. Zeng, and Y. Li, “Gas sensing mechanisms of metal oxide semiconductors: A focus review,” Nanoscale, vol. 11, no. 47, pp. 22664–22684, 2019, doi: 10.1039/c9nr07699a.
    [17] L. Liao et al., “Size dependence of gas sensitivity of ZnO nanorods,” J. Phys. Chem. C, vol. 111, no. 5, pp. 1900–1903, 2007, doi: 10.1021/jp065963k.
    [18] A. Dey, “Semiconductor metal oxide gas sensors: A review,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 229, pp. 206–217, 2018, doi: 10.1016/j.mseb.2017.12.036.
    [19] M. M. Arafat, B. Dinan, S. A. Akbar, and A. S. M. A. Haseeb, “Gas sensors based on one dimensional nanostructured metal-oxides: A review,” Sensors (Switzerland), vol. 12, no. 6, pp. 7207–7258, 2012, doi: 10.3390/s120607207.
    [20] X. Wang, J. Song, J. Liu, and L. W. Zhong, “Direct-current nanogenerator driven by ultrasonic waves,” Science (80-. )., vol. 316, no. 5821, pp. 102–105, 2007, doi: 10.1126/science.1139366.
    [21] B. Deka Boruah, “Zinc oxide ultraviolet photodetectors: Rapid progress from conventional to self-powered photodetectors,” Nanoscale Adv., vol. 1, no. 6, pp. 2059–2085, 2019, doi: 10.1039/c9na00130a.
    [22] F. Solis-Pomar et al., “Rapid synthesis and photocatalytic activity of ZnO nanowires obtained through microwave-assisted thermal decomposition,” Ceram. Int., vol. 42, no. 16, pp. 18045–18052, 2016, doi: 10.1016/j.ceramint.2016.08.084.
    [23] O. Lupan, T. Pauporté, and B. Viana, “Low-temperature growth of ZnO nanowire arrays on p-silicon (111) for visible-light-emitting diode fabrication,” J. Phys. Chem. C, vol. 114, no. 35, pp. 14781–14785, 2010, doi: 10.1021/jp104684m.
    [24] N. Mohseni Kiasari and P. Servati, “Dielectrophoresis-assembled ZnO nanowire oxygen sensors,” IEEE Electron Device Lett., vol. 32, no. 7, pp. 982–984, 2011, doi: 10.1109/LED.2011.2149492.
    [25] Hind Ibraheem Abdulgafour, Hassan Hadi Darwoysh, and Faez Mohamad Hassan, “Hydrogen Gas Sensor Based on ZnO Nanoroads Grown on Si by Thermal Evaporation,” J. Mater. Sci. Eng. A, vol. 6, no. 2, pp. 51–56, 2016, doi: 10.17265/2161-6213/2016.3-4.002.
    [26] J. Y. Park, Y. K. Park, and S. S. Kim, “Formation of networked ZnO nanowires by vapor phase growth and their sensing properties with respect to CO,” Mater.
    Lett., vol. 65, no. 17–18, pp. 2755–2757, 2011, doi: 10.1016/j.matlet.2011.05.098. [27] J. Kim and K. Yong, “Mechanism study of ZnO nanorod-bundle sensors for H2S gas sensing,” J. Phys. Chem. C, vol. 115, no. 15, pp. 7218–7224, 2011, doi: 10.1021/jp110129f.
    [28] X. Zhou, J. Li, M. Ma, and Q. Xue, “Effect of ethanol gas on the electrical properties of ZnO nanorods,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 43, no. 5, pp. 1056–1060, 2011, doi: 10.1016/j.physe.2010.12.014.
    [29] Q. Wan et al., “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Appl. Phys. Lett., vol. 84, no. 18, pp. 3654–3656, 2004, doi: 10.1063/1.1738932.
    [30] C. W. Na, H. S. Woo, I. D. Kim, and J. H. Lee, “Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO nanowire network sensor,” Chem. Commun., vol. 47, no. 18, pp. 5148–5150, 2011, doi: 10.1039/c0cc05256f.
    [31] V. P. Verma, S. Das, S. Hwang, H. Choi, M. Jeon, and W. Choi, “Nitric oxide gas sensing at room temperature by functionalized single zinc oxide nanowire,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 171, no. 1–3, pp. 45–49, 2010, doi: 10.1016/j.mseb.2010.03.066.
    [32] L. Li et al., “Hydrothermal synthesis and gas sensing properties of single-crystalline ultralong ZnO nanowires,” Appl. Phys. A Mater. Sci. Process., vol. 98, no. 3, pp. 635–641, 2010, doi: 10.1007/s00339-009-5457-y.
    [33] W. P. Clavijo, G. M. Atkinson, C. E. Castano, and D. Pestov, “Novel low-temperature fabrication process for integrated high-aspect ratio zinc oxide nanowire sensors,” J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Meas. Phenom., vol. 34, no. 2, p. 022203, 2016, doi: 10.1116/1.4943041.
    [34] W. F. Hsu, C. G. Kuo, Y. C. Chao, J. F. Lee, C. F. Yang, and F. R. Juang, “Growth of ZnO nano-wire arrays using AAO template and atomic-layer deposition method,” in 2016 International Conference on Applied System Innovation, IEEE ICASI 2016, Aug. 2016, doi: 10.1109/ICASI.2016.7539895.
    [35] S. Öztürk, N. Klnç, N. Taşaltn, and Z. Z. Öztürk, “Fabrication of ZnO nanowires and nanorods,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 44, no. 6, pp. 1062–1065, 2012, doi: 10.1016/j.physe.2011.01.015.
    [36] S. Öztürk, N. Taşaltin, N. Kilinç, H. Yüzer, and Z. Z. Öztürk, “Fabrication of ZnO nanowires at room temperature by cathodically induced sol-gel method,” Appl. Phys. A Mater. Sci. Process., vol. 99, no. 1, pp. 73–78, 2010, doi: 10.1007/s00339-009-5504-8.
    [37] D. Wang, Y. Ruan, L. Zhang, S. Zhang, and P. Ma, “The study on preparation of ZnO nanowire in AAO by electrodeposition method,” in INEC 2010 - 2010 3rd International Nanoelectronics Conference, Proceedings, 2010, pp. 1335–1336, doi: 10.1109/INEC.2010.5424866.
    [38] Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties,” Appl. Phys. Lett., vol. 76, no. 15, pp. 2011–2013, 2000, doi: 10.1063/1.126238.
    [39] T. Mehmood, “Structural Analysis and Growth Mechanism of Zn/ZnO Nanowires in AAO Template by Electrodeposition,” Am. J. Chem. Eng., vol. 7, no. 1, pp. 51–56, 2019, doi: 10.11648/j.ajche.20190701.16.
    [40] J. Sunday, K. Amoah, and G. Slaughter, “Growth of electrodeposited ZnO nanowires,” Proc. IEEE Sensors, no. October 2012, pp. 10–13, 2012, doi: 10.1109/ICSENS.2012.6411395.
    [41] C. G. Kuo, H. Chang, and J. H. Wang, “Fabrication of ZnO nanowires arrays by anodization and high-vacuum die casting technique, and their piezoelectric properties,” Sensors (Switzerland), vol. 16, no. 4, pp. 1–10, 2016, doi: 10.3390/s16040431.
    [42] D. Gong et al., “Titanium oxide nanotube arrays prepared by anodic oxidation,” J. Mater. Res., vol. 16, no. 12, pp. 3331–3334, 2001, doi: 10.1557/JMR.2001.0457.
    [43] H. Z. Abdullah and C. C. Sorrell, “Titanium dioxide (TiO 2) films by anodic oxidation in phosphoric acid,” Adv. Mater. Res., vol. 545, pp. 223–228, 2012, doi: 10.4028/www.scientific.net/AMR.545.223.
    [44] N. V. Gaponenko, “Sol-gel derived films in meso-porous matrices: Porous silicon, anodic alumina and artificial opals,” Synth. Met., vol. 124, no. 1, pp. 125–130, 2001, doi: 10.1016/S0379-6779(01)00447-7.
    [45] J. Choi, G. Sauer, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio,” Chem. Mater., vol. 15, no. 3, pp. 776–779, 2003, doi: 10.1021/cm0208758.
    [46] J. Zhang, J. E. Kielbasa, and D. L. Carroll, “Controllable fabrication of porous alumina templates for nanostructures synthesis,” Mater. Chem. Phys., vol. 122, no. 1, pp. 295–300, 2010, doi: 10.1016/j.matchemphys.2010.02.023.
    [47] A. Yasui, M. Iwasaki, T. Kawahara, H. Tada, and S. Ito, “Color properties of gold-silver alternate nanowires electrochemically grown in the pores of aluminum anodic oxidation film,” J. Colloid Interface Sci., vol. 293, no. 2, pp. 443–448, 2006, doi: 10.1016/j.jcis.2005.06.083.
    [48] Z. Wu, Y. Zhang, and K. Du, “A simple and efficient combined AC-DC electrodeposition method for fabrication of highly ordered Au nanowires in AAO template,” Appl. Surf. Sci., vol. 265, pp. 149–156, 2013, doi: 10.1016/j.apsusc.2012.10.154.
    [49] S. Thongmee, H. L. Pang, J. Ding, and J. Y. Lin, “Fabrication and magnetic properties of metallic nanowires via AAO templates,” J. Magn. Magn. Mater., vol. 321, no. 18, pp. 2712–2716, 2009, doi: 10.1016/j.jmmm.2009.03.074.
    [50] A. J. Yin, J. Li, W. Jian, A. J. Bennett, and J. M. Xu, “Fabrication of highly ordered metallic nanowire arrays by electrodeposition,” Appl. Phys. Lett., vol. 79, no. 7, pp. 1039–1041, 2001, doi: 10.1063/1.1389765.
    [51] L. Cattaneo et al., “Electrodeposition of hexagonal Co nanowires with large magnetocrystalline anisotropy,” Electrochim. Acta, vol. 85, pp. 57–65, 2012, doi: 10.1016/j.electacta.2012.08.065.
    [52] J. Fu, S. Cherevko, and C. H. Chung, “Electroplating of metal nanotubes and nanowires in a high aspect-ratio nanotemplate,” Electrochem. commun., vol. 10, no. 4, pp. 514–518, 2008, doi: 10.1016/j.elecom.2008.01.015.
    [53] W. O. Rosa, L. G. Vivas, K. R. Pirota, A. Asenjo, and M. Vázquez, “Influence of aspect ratio and anisotropy distribution in ordered CoNi nanowire arrays,” J. Magn. Magn. Mater., vol. 324, no. 22, pp. 3679–3682, 2012, doi: 10.1016/j.jmmm.2012.05.047.
    [54] Y. Wang, H. Zhao, Y. Hu, C. Ye, and L. Zhang, “Thermal expansion behavior of hexagonal Zn nanowires,” J. Cryst. Growth, vol. 305, no. 1, pp. 8–11, 2007, doi: 10.1016/j.jcrysgro.2007.04.044.
    [55] H. Gomez et al., “Growth and characterization of ZnO nanowire arrays electrodeposited into anodic alumina templates in DMSO solution,” J. Solid State Electrochem., vol. 16, no. 1, pp. 197–204, 2012, doi: 10.1007/s10008-011-1309-8.
    [56] E. Gadalińska and W. Wronicz, “Electropolishing procedure dedicated to in-depth stress measurements with x-ray diffractometry,” Fatigue Aircr. Struct., vol. 1, no. 8, pp. 65–72, 2016, doi: 10.1515/fas-2016-0004.
    [57] H. Masuda and K. Fukuda, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina,” Science (80-. )., vol. 268, no. June, pp. 1466–1468, 1995, doi: 10.3233/JAD-180005.
    [58] H. Masuda and F. Hasegwa, “Self-Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution,” J. Electrochem. Soc., vol. 144, no. 5, pp. L127–L130, 1997, doi: 10.1149/1.1837634.
    [59] H. Masuda, K. Yada, and A. Osaka, “Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution,” Japanese J. Appl. Physics, Part 2 Lett., vol. 37, no. 11 PART A, p. L 1340–L 1342, 1998, doi: 10.1143/jjap.37.l1340.
    [60] V. P. Parkhutik and V. I. Shershulsky, “Theoretical Modelling of Porous Oxide Growth on Aluminium,” J. Phys. D. Appl. Phys., vol. 25, no. 8, pp. 1258–1263, 1992, doi: 10.1088/0022-3727/25/8/017.
    [61] O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett., vol. 72, no. 10, pp. 1173–1175, Mar. 1998, doi: 10.1063/1.121004.
    [62] A. P. Li, F. Müller, A. Bimer, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys., vol. 84, no. 11, pp. 6023–6026, 1998, doi: 10.1063/1.368911.
    [63] F. Li, L. Zhang, and R. M. Metzger, “On the Growth of Highly Ordered Pores in Anodized Aluminum Oxide,” Chem. Mater., vol. 10, no. 9, pp. 2470–2480, 1998, doi: 10.1021/cm980163a.
    [64] S. Tajima, “Anodic Oxidation of Aluminum,” Adv. Corros. Sci. Technol., pp. 229–362, 1970, doi: 10.1007/978-1-4615-8252-6_4.
    [65] K. M. Chahrour et al., “Effects of the voltage and time of anodization on modulation of the pore dimensions of AAO films for nanomaterials synthesis,” Superlattices Microstruct., vol. 88, pp. 489–500, 2015, doi: 10.1016/j.spmi.2015.10.011.
    [66] C. G. Kuo, J. H. Chen, and Y. H. Liu, “Fabrication of a zinc aluminum oxide nanowire array photoelectrode for a solar cell using a high vacuum die casting technique,” Int. J. Photoenergy, vol. 2014, 2014, doi: 10.1155/2014/302075.
    [67] C. G. Kuo et al., “Fabrication of a Pb-Sn nanowire array gas sensor using a novel high vacuum die casting technique,” Electron. Mater. Lett., vol. 9, no. 4, pp. 481–484, 2013, doi: 10.1007/s13391-013-0037-x.
    [68] C. G. Kuo, J. J. Huang, J. H. Chen, and R. J. Zeng, “Fabrication of high array zinc-indium oxide nanowires and a nanowire gas sensor,” Sensors Mater., vol. 29, no. 4, pp. 533–538, 2017, doi: 10.18494/SAM.2017.1535.
    [69] P.-C. Chen, C.-C. Chen, S.-H. Chen, C.-Y. Chou, and S.-J. Hsieh, “Highly sensitive arrayed indium-antimony nanowires for infrared detection,” Thermosense Therm. Infrared Appl. XXXVII, vol. 9485, p. 94850O, 2015, doi: 10.1117/12.2176796.
    [70] V. T. Duoc et al., “New design of ZnO nanorod- And nanowire-based NO2 room-temperature sensors prepared by hydrothermal method,” J. Nanomater., vol. 2019, 2019, doi: 10.1155/2019/6821937.
    [71] S. Sabir, M. Arshad, and S. K. Chaudhari, “Zinc oxide nanoparticles for revolutionizing agriculture: Synthesis and applications,” Sci. World J., vol. 2014, no. November, 2014, doi: 10.1155/2014/925494.
    [72] A. L. Chen, D. Xu, X. Y. Chen, W. Y. Zhang, and X. H. Liu, “Measurements of zinc oxide solubility in sodium hydroxide solution from 25 to 100 °c,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 22, no. 6, pp. 1513–1516, 2012, doi: 10.1016/S1003-6326(11)61349-6.
    [73] Y. T. Lim, J. Y. Son, and J. S. Rhee, “Vertical ZnO nanorod array as an effective hydrogen gas sensor,” Ceram. Int., vol. 39, no. 1, pp. 887–890, 2013, doi: 10.1016/j.ceramint.2012.06.035.
    [74] R. Nithya, A. G. Kannan, and T. E. Manjulavalli, “Investigation of pure and transition metal doped ZnO nanoparticles for photovoltaic applications,” Int. J. ChemTech Res., vol. 7, no. 3, pp. 1178–1184, 2014.
    [75] O. García-Martínez, R. M. Rojas, E. Vila, and J. L. M. de Vidales, “Microstructural characterization of nanocrystals of ZnO and CuO obtained from basic salts,” Solid State Ionics, vol. 63–65, no. C, pp. 442–449, 1993, doi: 10.1016/0167-2738(93)90142-P.
    [76] Z. M. Liao, Z. K. Lv, Y. B. Zhou, J. Xu, J. M. Zhang, and D. P. Yu, “The effect of adsorbates on the space-charge-limited current in single ZnO nanowires,” Nanotechnology, vol. 19, no. 33, 2008, doi: 10.1088/0957-4484/19/33/335204.
    [77] S. Rackauskas, N. Barbero, C. Barolo, and G. Viscardi, “ZnO nanowire application in chemoresistive sensing: A review,” Nanomaterials, vol. 7, no. 11, 2017, doi: 10.3390/nano7110381.
    [78] B. Bercu et al., “Characterizations of Ohmic and Schottky-behaving contacts of a single ZnO nanowire,” Nanotechnology, vol. 24, no. 41, 2013, doi: 10.1088/0957-4484/24/41/415202.
    [79] S. N. Das, J. H. Choi, J. P. Kar, K. J. Moon, T. Il Lee, and J. M. Myoung, “Junction properties of Au/ZnO single nanowire Schottky diode,” Appl. Phys. Lett., vol. 96, no. 9, 2010, doi: 10.1063/1.3339883.
    [80] J. Song, Y. Zhang, C. Xu, W. Wu, and Z. L. Wang, “Polar charges induced electric hysteresis of ZnO nano/microwire for fast data storage,” Nano Lett., vol. 11, no. 7, pp. 2829–2834, 2011, doi: 10.1021/nl2011966.
    [81] C. S. Rout, G. U. Kulkarni, and C. N. R. Rao, “Room temperature hydrogen and hydrocarbon sensors based on single nanowires of metal oxides,” J. Phys. D. Appl. Phys., vol. 40, no. 9, pp. 2777–2782, 2007, doi: 10.1088/0022-3727/40/9/016

    QR CODE