簡易檢索 / 詳目顯示

研究生: 黃世州
Shih-Chou Huang
論文名稱: 開發適用於蠶絲蛋白之三維列印程序
Development of 3D printing processes for silk fibroin
指導教授: 何明樺
Ming-Hua Ho
口試委員: 高震宇
ckao@mail.ntust.edu.tw
陳孟專
amber@ilfestartw.com
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 144
中文關鍵詞: 蠶絲蛋白3D列印蛋白質3D列印
外文關鍵詞: Silk Fibroin, 3D Printing, Protein 3D Printing
相關次數: 點閱:377下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 蠶絲蛋白(Silk Fibroin,SF) 是一種從家蠶蠶繭中提取的天然纖維蛋白。由於SF具有高度的生物相容性,不易引起免疫反應,並且有利於細胞增殖,是被廣泛研究的天然生物醫學材料之一。本研究主要專注於SF與3D列印程序的整合性,共分三個部分,分別是擠出式3D列印、光聚合式3D列印和化學改質SF的3D列印。在本研究的第一部分,我們將SF和阿拉伯膠 (Acacia Gum,AG)混合來建立適用於擠出式3D列印的生物墨水。並研究該生物墨水的穩定性、Zeta 電位和流變性。結果證實在AG水溶液內加入SF有效提高墨水的列印精度,並且可以使用生物墨水製備精細的結構。
    在研究的第二部分,我們在將SF水溶液加入至光聚合樹脂中。透過調整寡聚物、單體和 SF 的比例,具有SF 的光聚合樹脂可在商業化的數位光處理式3D 列印機 (Digital Light Processing,DLP) 中進行列印程序。我們探討了 SF 對於光固化成品的穩定性、精確度和機械性質的影響。結果表明,加入SF的光聚合樹脂能在一段時間內保持穩定均勻態,SF也沒有失活。列印成品的壓縮模量(Compressive modulus)接近人體軟骨組織,且無細胞毒性,顯示出作為軟骨支架的潛力。
    在第三部分中,我們用甲基丙烯酸酐(Methacrylic anhydride,MA)對SF進行了功能化,使SF具有光聚合反應能力,並將改質後的SF直接應用於光聚合式3D列印程序中。紅外光譜表明光固化官能基團的訊號峰確實出現在改質SF上,細胞培養結果表明功能化SF的高生物相容性,細胞的貼附狀態也顯示改質SF具有高細胞親和性。另一方面,功能化的 SF 將能夠在 2 分鐘內被照光固化,這證明了SF的可列印性高。
    根據本研究在以上三部分的實驗結果,我們成功開發了以SF與AG混摻的擠製式3D列印配方、SF與樹脂混摻的光聚合式3D列印配方與化學修飾SF的光聚合式3D列印配方對SF進行3D列印的程序,並證實了SF之3D列印產物的高生物相容性,具有生醫應用的潛力。


    Silk Fibroin (SF) is a natural fibrous protein extracted from Bombyxmori cocoon. Since SF is highly biocompatibile, not easy to cause immune responses, and befificial in cell proliferation, it is one of the natural biomedical materials that have been widely studied. This research mainly focuses on the integration of SF into 3D printing process, which is divided into three parts, including extrusion 3D printing, photopolymerization 3D printing, and the 3D printing of chemically functionlizaed SF. In the first part of the study, we mixed SF and Acacia gum (AG) to create the bioink which was sutible for extrusion 3D printing. The stability, Zeta potential and rheology of bioink was investigated. The results supported that the addition of silk protein effectively improved the printing accuracy of AG and delicate structures can be prepared by using the bioink.
    In the second part of the research, we added SF solution into the photo-resin. By adjusting the ratios of oligomers, momoner and SF, the photo-resin containing SF was printable on the commercial lighit processing 3D printer (DLP). We explored the effects of SF on the stability, resolution, and mechanical properties of photocured products. The results showed that after the resin with SF addition were maintained to be stable and homogeneous for a periods, and the SF was not detanured, either. The compression modulus of the printed product is close to human cartilage tissue not cytotoxicity, revealing the potential as a cartilage scaffold.
    In the third part, we functionlizaed SF with methacrylic anhydride to make SF potoreactive and applied the modified SF in photo-curing 3D printing process directly. The IR spectra indicated that the peak of photo-curing functional group indeed appear at modified SF, and the cell culture results supported the high biocompatibility and cell affinity of photo-reactive SF. On ther other hand, the functionalized SF would be able to be sodified in 2 minutes, which revealed the good printability of SF.
    According to the experimental results from above three parts, we have successfully developed the extrusion 3D printing system formed by SF and AG, photo-curing 3D printing system formed by SF and photo resin and functionlizaed SF system for SF 3D printing. The biocompatibility of 3D-printed SF was identified in this research, revealing the high potential in biomedical applications.

    摘要 Abstract 致謝 目錄 圖目錄 表目錄 方程式目錄 專有名詞以及縮寫 第一章 緒論 第二章 文獻回顧 2.1蠶絲蛋白 2.1.1蠶絲蛋白之基本性質 2.1.2蠶絲蛋白於生醫工程領域之應用 2.2積層製造技術說明與生醫工程中的應用 2.2.1 3D列印製程說明 2.2.2 3D列印原料與功能性添加劑 2.3 蠶絲蛋白於積層製造領域中的發展狀況 2.4 蠶絲蛋白3D列印程序改良 2.4.1配方系統流變性改良 2.4.2蛋白質化學交聯 2.4.3蠶絲蛋白化學修飾 2.5光聚合型蠶絲蛋白質合成反應 2.5.1親核酰基取代反應 2.5.2胺基酸側鏈與反應性關係 2.5.2.1胺基酸側鏈的親核性 2.5.2.2 胺基酸側鏈的酸度係數 2.5.3酰化試劑與反應性關係 第三章 實驗材料與方法 3.1實驗藥品 3.2實驗儀器 3.3 3D列印配方開發 3.3.1擠製式列印配方(SF/AG) 3.3.2光聚合樹脂配方(PCLDA/IBOA與PPGDA/PEG) 3.3.3化學修飾SF(SF-MA) 3.3.3.1 SF化學修飾 3.3.3.2 SF-MA光聚合配方 3.3.4 支撐材配方 3.4 擠製式列印配方(SF/AG)性質檢測 3.4.1穩定性測試 3.4.2 Zeta電位(Zeta Potential)測試 3.4.3流變性測試 3.4.4有限元素(Finite Element)流場模擬 3.4.5列印精確度測試 3.4.6 擠製式3D列印 3.5光聚合樹脂配方(PCLDA/IBOA與PPGDA/PEG)性質檢測 3.5.1穩定性測試 3.5.2接觸角測試(親疏水性分析) 3.5.3光聚合反應轉化率分析(FTIR) 3.5.4列印精確度與配方交聯密度分析 3.5.5機械性質分析 3.5.6 SF活性測試(自由基離子捕捉測試) 3.6化學修飾SF性質檢測 3.6.1官能基功能化分析 3.6.2 SF-MA/支撐材擠製式3D列印 3.6.3 SF-MA/支撐材擠製成品精確度分析 3.7體外細胞測試 3.7.1光聚合樹脂/SF水溶液與SF-MA材料樣品製作 3.7.2生物相容性檢測方式與操作 3.7.3細胞來源 3.7.4細胞培養 3.7.5細胞冷凍保存 3.7.6細胞解凍及培養 3.7.7細胞計數 3.7.8粒線體活性測試 3.7.9細胞直接培養觀察實驗 第四章 實驗結果 4.1 SF/AG擠製式配方系統 4.1.1 SF/AG之穩定度分析結果 4.1.2 SF/AG之Zeta電位與pH值(Zeta Potential) 4.1.3 SF/AG流變性質測試結果 4.1.4有限元素流場模擬結果 4.1.5 SF/AG之列印精確度趨勢 4.1.6 SF/AG擠製式3D列印 4.2光聚合樹脂/SF配方系統 4.2.1 PCLDA/IBOA/SF與PPGDA/PEG/SF之穩定性 4.2.2 PCLDA/IBOA/SF與PPGDA/PEG/SF之接觸角 4.2.3 PCLDA/IBOA/SF與PPGDA/PEG/SF之轉化率 4.2.4 PCLDA/IBOA/SF與PPGDA/PEG/SF之精確度 4.2.5 PCLDA/IBOA/SF與PPGDA/PEG/SF機械性質 4.2.6 PCLDA/IBOA/SF與PPGDA/PEG/SF之抗氧化性質 4.3 化學修飾蠶絲蛋白之3D列印程序 4.3.1官能基功能化 4.3.2 SF-MA 擠製式3D列印與精確度測試 4.4材料生物性質檢測 4.4.1光聚合樹脂配方/SF水溶液之細胞活性 4.4.2 SF-MA之細胞活性 第五章 討論 5.1 SF/AG擠製式配方系統討論 5.1.1 SF/AG之穩定度趨勢 5.1.2 SF/AG之Zeta電位與pH值分析 5.1.3 SF/AG的流變性質分析 5.1.4有限元素模擬結果分析 5.1.5 SF/AG之3D列印精確度分析 5.1.6 SF/AG生物活性評估 5.2光聚合樹脂/SF配方系統討論 5.2.1親疏水性對於光聚合樹脂/SF的穩定性影響 5.2.2 SF對於樹脂光聚合反應轉化率影響 5.2.3 SF對於光聚合3D列印成品精確度影響 5.2.4 SF對於光聚合3D列印成品機械性質影響 5.2.5 SF於光聚合樹脂中的生物活性分析 5.3 SF-MA之3D列印程序討論 5.3.1 SF官能基功能化分析 5.3.2 SF-MA 擠製式3D列印與精確度分析 5.4材料生物性質檢測討論 5.4.1 SF對於光聚合樹脂的細胞活性影響 5.4.2 SF-MA之細胞活性表現 第六章 結論 參考文獻

    1. Kim, S.H., K.Y. Yeung, M.L. Jung, J.R. Chao, J.L. Young, B.S. Ye, M.T. Sultan, J.L. Ok, J.S. Lee, S.l. Yoon, I.S. Hong, G. Khang, S.J. Lee, J.J. Yoo, and C.H. Park, “Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing” Nature communications;2018;9: 1-14
    2. Maziz1, A., O. Leprette, L. Boyer, C. Blatchém, and C. Bergaud, “Tuning the properties of silk fibroin biomaterial via chemical cross-linking” Biomedical Physics & Engineering Express;2018;4: 65012
    3. Honga, H., Y.B. Seo, D.Y. Kima, J.S. Leea, Y.J. Leea, H. Leea, O. Ajiterua, M.T. Sultana, O.J. Leea, S.H. Kim, and C.H. Parka, “Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering” Biomaterials;2020;232: 119679
    4. Sommer, M.R., M. Schaffner, D. Carnelli, and A.R. Studart, “3D printing of hierarchical silk fibroin structures” ACS applied materials & interfaces;2016; 8: 34677-34685.
    5. Rodriguez, M.J., T.A. Dixon, E. Cohen, W. Huang, F.G. Omenetto, and D.L. Kaplan “3D freeform printing of silk fibroin” Acta biomaterialia;2018;71: 379-387
    6. Zheng, Z., J. Wu, M. Liu, H. Wang, C. Li, M.J. Rodriguez, G. Li, X. Wang, and D.L. Kaplan, “3D bioprinting of self‐standing silk‐based bioink” Advanced healthcare materials;2018;7: 1701026
    7. Ghosh, S., S.T. Parker, X. Wang, D.L. Kaplan, and J.A. Lewis, “Direct‐write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications” Advanced Functional Materials;2008;18: 1883-1889
    8. Das, S., F. Pati, S. Chameettachal, S.Pahwa, A. R. Ray, S. Dhara, and S. Ghosh “Enhanced redifferentiation of chondrocytes on microperiodic silk/gelatin scaffolds: toward tailor-made tissue engineering” Biomacromolecules;2013;14: 311-321
    9. Das, S., F. Pati, Y.J. Choi, G. Rijal, J.H. Shim, S.W. Kim, A.R. Ray, D.W. Cho, and S. Ghosh, “Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs” Acta biomaterialia;2015;11: 233-246
    10. Kim, S.H., Y.B. Seo, Y. K. Yeon, Y. J. Lee, H.S. Park, M.T. Sultan, J.M. Lee, J.S. Lee, O.J. Lee, H. Hong, H. Lee, O. Ajiteru, Y.J. Suh, S.H. Song, K.H. Lee, and C.H. Park, “4D-bioprinted silk hydrogels for tissue engineering” Biomaterials;2020;260:120281
    11. Matsumura, Y., C. Satake, M. Egami, and T. Mori, “Interaction of gum arabic, maltodextrin and pullulan with lipids in emulsions” Bioscience,biotechnology, and biochemistry;2000;64: 1827-1835
    12. Sanchez, C., D. Renard, P. Robert, C. Schmitt, and J. Lefebvre, “Structure and rheological properties of acacia gum dispersions” Food hydrocolloids;2002; 16: 257-267
    13. Bessonov, I.V., Y.A. Rochev, А.Y. Arkhipova, M.N. Kopitsyna1, D.V. Bagrov, E.A. Karpushkin, T.N. Bibikova, A.M. Moysenovich, A.S. Soldatenko, I.I. Nikishin, M.S. Kotliarova, V.G. Bogush, K.V. Shaitan, and M.M. Moisenovich, “Fabrication of hydrogel scaffolds via photocrosslinking of methacrylated silk fibroin” Biomedical Materials;2019;14: 34102
    14. Bessonov, I., A. Moysenovich, A. Arkhipova, M. Ezernitskaya, Y. Efremov, V. Solodilov, P. Timashev, K. Shaytan, A. Shtil, and M. Moisenovich, “The mechanical properties, secondary structure, and osteogenic activity of photopolymerized fibroin” Polymers;2020;12: 646
    15. Matsumoto, A., J. Chen, A.L. Collette, U.J. Kim, G.H. Altman, P. Cebe, and D.L. Kaplan, “Mechanisms of silk fibroin sol− gel transitions” The Journal of Physical Chemistry B;2006;110: 21630-21638
    16. Murphy, A.R., and D.L. Kaplan, “Biomedical applications of chemically-modified silk fibroin” Journal of materials chemistry;2009;19: 6443-6450
    17. Marsh, R.E., R.B. Corey, and L. Pauling, “An investigation of the structure of silk fibroin” Biochimica et Biophysica acta;1955;16: 1-34
    18. Vickery, H.B., and R.J. Block, “The basic amino acids of silk fibroin. The determination of the basic amino acids yielded by proteins” Journal of Biological Chemistry;1931;93: 105-112
    19. Wong, S. S., and D.M. Jameson, Chemistry of protein and nucleic acid cross-linking and conjugation. 2011: CRC Press. chap.2:13-17
    20. Hermanson, G. T., Bioconjugate techniques. 2013: Academic press. chap.2:133-134
    21. Ichikawa, K., R. Sasada, K. Chiba, and H. Gotoh, “Effect of side chain functional groups on the DPPH radical scavenging activity of bisabolane-type phenols” Antioxidants;2019;8: 65
    22. Dash, R., C. Acharya, P.C. Bindu, and S.C. Kundu, “Antioxidant potential of silk protein sericin against hydrogen peroxide-induced oxidative stress in skin fibroblasts” BMB reports;2008;41: 236-241
    23. Nune, M., S. Manchineellab, T. Govindarajub, and K.S. Narayana, “Melanin incorporated electroactive and antioxidant silk fibroin nanofibrous scaffolds for nerve tissue engineering” Materials Science and Engineering: C;2019;94: 17-25
    24. Baycln, D., E. ALTlOK, S. ÜLKÜ, and O. Bayraktar, “Adsorption of olive leaf (Olea europaea L.) antioxidants on silk fibroin” Journal of agricultural and food chemistry;2007;55: 1227-1236
    25. Mottaghitalab, F., M. Farokhi, M.A. Shokrgozar, F. Atyabi, and H. Hosseinkhan, “Silk fibroin nanoparticle as a novel drug delivery system” Journal of Controlled Release;2015;206: 161-176
    26. Yucel, T., D.L. Kaplan, and L. Meinel, “Silk-based biomaterials for sustained drug delivery” Journal of Controlled Releas;2014;190: 381-397
    27. Ni, T., M. Liu, Y. Zhang, Y. Cao, and R. Pei, “3D bioprinting of bone marrow mesenchymal stem cell-laden silk fibroin double network scaffolds for cartilage tissue repair” Bioconjugate Chemistry;2020;31: 1938-1947
    28. Kim, D.K., J.M. Lee, J.Y. Jeong, H.J. Park, O.J. Lee, J. Chao, S.H. Kim, H.S. Park, G. Khang, and C.H. Park, “New fabrication method of silk fibroin plate and screw based on a centrifugal casting technique” Journal of tissue engineering and regenerative medicine;2018;12: 2221-2229
    29. Lee, J.M., T. Chae, O.J. Lee, H.W. Ju, B.M. Moon, H.J. Park, Y.R. Park, and C.H. Park, “Three dimensional poly (ε-caprolactone) and silk fibroin nanocomposite fibrous matrix for artificial dermis” Materials Science and Engineering: C;2016;68: 758-767
    30. Dal Pra, I., G. Freddib, J. Minicc, A. Chiarinia, and U.Armato, “De novo engineering of reticular connective tissue in vivo by silk fibroin nonwoven materials” Biomaterials;2005;26: 1987-1999
    31. Kasoju, N., N. Hawkins, O.P. Georgievski, D. Kubies, and F. Vollrath, “Silk fibroin gelation via non-solvent induced phase separation” Biomaterials science;2016; 4:460-473
    32. Nazarov, R., H.J. Jin, and D.L. Kaplan, “Porous 3-D scaffolds from regenerated silk fibroin” Biomacromolecules;2004;5: 718-726
    33. Teimouri, A., M. Azadi, R. Emadi, J. Lari, and A.N. Chermahini, “Preparation, characterization, degradation and biocompatibility of different silk fibroin based composite scaffolds prepared by freeze-drying method for tissue engineering application” Polymer degradation and stability;2015;121: 18-29
    34. Yan, X., and P. Gu, “A review of rapid prototyping technologies and systems” Computer-aided design ;1996;28: 307-318
    35. Ligon, S.C., R. Liska, J. Stampfl, M. Gurr, and R. Mülhaupt, “Polymers for 3D printing and customized additive manufacturing” Chemical reviews;2017; 117: 10212-10290
    36. Singh, S., G. Singh, C. Prakash, S. Ramakrishna, L. Lamberti, and C.I. Pruncu, “3D printed biodegradable composites: An insight into mechanical properties of PLA/chitosan scaffold” Polymer Testing;2020;89: 106722
    37. Raphael, B., T. Khalil, V.L. Workman, A. Smith, C.P. Brown, C. Streuli, A. Saiani, and M. Domingos, “3D cell bioprinting of self-assembling peptide-based hydrogels” Materials Letters;2017;190: 103-106
    38. Gudapati, H., M. Dey, and I. Ozbolat, “A comprehensive review on droplet-based bioprinting: past, present and future” Biomaterials;2016;102: 20-42
    39. Tao, H., B. Marelli, M. Yang , B. A, M.S.Onses, J.A. Rogers, D.L. Kaplan, and F. G. Omenetto, “Inkjet printing of regenerated silk fibroin: From printable forms to printable functions” Advanced materials;2015;27: 4273-4279
    40. Zhu, W., X. Ma, M. Gou, D. Mei,K. Zhang, and S. Chen, “3D printing of functional biomaterials for tissue engineering” Current opinion in biotechnology;2016;40: 103-112
    41. Quan, H., T. Zhang, H. Xu, S. Luo, J. Nie, and X. Zhu, “Photo-curing 3D printing technique and its challenges” Bioactive materials;2020;5: 110-115
    42. Turner, B.N., R. Strong, and S.A. Gold, “A review of melt extrusion additive manufacturing processes: I. Process design and modeling” Rapid Prototyping Journal;2014;20: 192-204
    43. Jose, R.R., M.J. Rodriquez, T.A. Dixon, F.G. Omenetto, and D.L. Kaplan, “Evolution of bioinks and additive manufacturing technologies for 3D bioprinting” ACS biomaterials science & engineering;2016;2: 1662-1678
    44. Farag, M. and H.S. Yun, “Effect of gelatin addition on fabrication of magnesium phosphate-based scaffolds prepared by additive manufacturing system” Materials Letters;2014;132: 111-115
    45. Aguado, B.A., W. Mulyasasmita, J. Su, K.J. Lampe, and S.C. Heilshorn, “Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers” Tissue Engineering Part A;2012;18: 806-815
    46. Xin, S., D. Chimene, J.E. Garza, A.K. Gaharwar, and D.L. Alge, “Clickable PEG hydrogel microspheres as building blocks for 3D bioprinting” Biomaterials science;2019;7: 1179-1187
    47. Guo, Y., H. Shabbir, P. Brice, B. Anson, and W.K. Ma, “Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance” Rapid Prototyping Journal;2017;23: 1-32
    48. Shen, X. and H.E. Naguib, “A robust ink deposition system for binder jetting and material jetting” Additive Manufacturing;2019;29: 100820
    49. Mostafaei, A., A.M. Elliott, J.E. Barnes, F. Li, W. Tan, C.L. Cramer, P. Nandwana, and M. Chmielus, “Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges” Progress in Materials Science;2021;119: 100707
    50. Decker, C., “Kinetic study and new applications of UV radiation curing” Macromolecular Rapid Communications;2002;23: 1067-1093
    51. Lee, J.Y., J. An, and C.K. Chua, “Fundamentals and applications of 3D printing for novel materials” Applied Materials Today;2017;7: 120-133
    52. Liska, R., M. Schuster, R. Infuhr, C. Turecek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna,A. Haase, F. Varga, H. Lichtenegger, and J. Stampf “Photopolymers for rapid prototyping” Journal of Coatings Technology and Research;2007;4: 505-510
    53. Bhattacharjee, T., S.M. Zehnder, K.G. Rowe, S. Jain, R.M. Nixon, W.G. Sawyer, and T.E. Angelini, “Writing in the granular gel medium” Science advances;2015; 1: 1500655
    54. Dankar, I., M. Pujolà, F.E. Omar, F. Sepulcre and A. Haddarah, “Impact of mechanical and microstructural properties of potato puree-food additive complexes on extrusion-based 3D printing” Food and Bioprocess Technology;2018;11: 2021-2031
    55. Kim, W.S., Y.C. Jeong, and J.K. Park, “Organic-inorganic hybrid photopolymer with reduced volume shrinkage” Applied Physics Letters;2005;87: 012106
    56. Ivanova, O., C. Williams, and T. Campbell, “Additive manufacturing (AM) and nanotechnology: promises and challenges” Rapid Prototyping Journal;2013;19: 335-364
    57. Liao, H., Stereolithography using compositions containing ceramic powders. 1998: University of Toronto. chap.3: 29-31
    58. Fujigaya, T., S. Haraguchi, T. Fukumaru, and N. Nakashima, “Development of novel carbon nanotube/photopolymer nanocomposites with high conductivity and their application to nanoimprint photolithography” Advanced Materials;2008;20: 2151-2155
    59. Ko, E.S., C. Kim, Y. Choi, and K.Y. Lee, “3D printing of self-healing ferrogel prepared from glycol chitosan, oxidized hyaluronate, and iron oxide nanoparticles” Carbohydrate Polymers;2020;245: 116496
    60. Wang, B., A.J. Benitez, F. Lossada, R. Merindol, and A. Walther, “Bioinspired mechanical gradients in cellulose nanofibril/polymer nanopapers” Angewandte Chemie;2016;128: 6070-6074
    61. Cho, J.D., Y.B. Kim, H.T. Ju, and J.W. Hong, “The effects of silica nanoparticles on the photocuring behaviors of UV-curable polyester acrylate-based coating systems” Macromolecular Research;2005;13: 362-365
    62. Domínguez-Robles, J., N.K. Martin, M. L. Fong , S. A. Stewart, N.J. Irwin, M.I. Rial-Hermida, R.F. Donnelly and E. Larrañeta, “Antioxidant PLA composites containing lignin for 3D printing applications: A potential material for healthcare applications” Pharmaceutics;2019;11: 165
    63. Guerra, A.J., H.L. Padilla, M.L. Becker, C.A. Rodriguez, and D. Dean, “Photopolymerizable resins for 3D-printing solid-cured tissue engineered implants” Current drug targets;2019;20: 823-838
    64. Yung, C., L.Q. Wu, J.A. Tullman, G.F. Payne, W.E. Bentley, and T.A. Barbari1, “Transglutaminase crosslinked gelatin as a tissue engineering scaffold” Journal of Biomedical Materials Research Part A;2007;83: 1039-1046
    65. Sung, H.W., R.N. Huang, L.L.H. Huang, C.C. Tsai, and C.T. Chiu, “Feasibility study of a natural crosslinking reagent for biological tissue fixation” Journal of Biomedical Materials Research;1998;42: 560-567
    66. Sung, H.W., R.N. Huang, L.H. Huang, and C.C.Tsai, “In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation” Journal of Biomaterials Science, Polymer Edition;1999;10: 63-78
    67. Liang, H.C., W.H. Chang, H.F. Liang, M.H. Lee, and H.W. Sung, “Crosslinking structures of gelatin hydrogels crosslinked with genipin or a water‐soluble carbodiimide” Journal of applied polymer science;2004;91: 4017-4026
    68. Tonda-Turo, C., P. Gentilea, S. Saracino, V. Chionoa, V.K. Nandagiri, G. Muzio, R.A. Canuto, and G. Ciardelli, “Comparative analysis of gelatin scaffolds crosslinked by genipin and silane coupling agent” International journal of biological macromolecules;2011;49: 700-706
    69. Shi, W., M. Hu, X. Ren, B. Cheng, and Y. Ao, “Structurally and functionally optimized silk‐fibroin–gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo” Advanced materials;2017;29: 1701089
    70. Loessner, D., C. Meinert, E. Kaemmerer, L.C. Martine, K. Yue, P.A. Levett, T.J. Klein, F.P.W. Melchels, A. Khademhosseini, and D.W. Hutmacher “Functionalization, preparation and use of cell-laden gelatin methacryloyl–based hydrogels as modular tissue culture platforms” Nature protocols;2016;11: 727
    71. Chen, Y.C., R.Z. Lin, H. Qi, Y. Yang, H. Bae, J.M. Melero-Martin, and A. Khademhosseini, “Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels” Advanced functional materials;2012;22: 2027-2039
    72. Krishnamoorthy, S., S.Wadnap, B. Noorani, H. and Xu, C. Xu “Investigation of gelatin methacrylate working curves in dynamic optical projection stereolithography of vascular-like constructs” European Polymer Journal;2020;124: 109487
    73. Lin, C.H., J.M. Sul, S.Y. Lee, and Y.M. Lin, “Stiffness modification of photopolymerizable gelatin‐methacrylate hydrogels influences endothelial differentiation of human mesenchymal stem cells” Journal of tissue engineering and regenerative medicine;2018;12: 2099-2111
    74. Pahoff, S., C. Meinert, O. Bas, L. Nguyen,T.J. Klein, and D.W. Hutmacher, “Effect of gelatin source and photoinitiator type on chondrocyte redifferentiation in gelatin methacryloyl-based tissue-engineered cartilage constructs” Journal of Materials Chemistry B;2019;7: 1761-1772
    75. Park, H.E., N. Gasek, J. Hwang, D.J. Weiss, and P.C. Lee, “Effect of temperature on gelation and cross-linking of gelatin methacryloyl for biomedical applications” Physics of Fluids;2020;32: 033102
    76. Thinon, E., and H.C. Hang, “Chemical reporters for exploring protein acylation” Biochemical Society Transactions;2015;43: 253-261
    77. Solomon, H., Writing reaction mechanisms in organic chemistry. 1999: Elsevier. chap.1:32-33
    78. Bischoff, R., and H. Schlüter, “Amino acids: chemistry, functionality and selected non-enzymatic post-translational modifications” Journal of proteomics;2012; 75: 2275-2296
    79. Ullmann, G.M., and E.W. Knapp, “Electrostatic models for computing protonation and redox equilibria in proteins” European Biophysics Journal;1999;28: 533-551
    80. Zatorski, J.M., et al., Quantification of fractional and absolute functionalization of gelatin hydrogels by optimized ninhydrin assay and 1 H NMR. Analytical and Bioanalytical Chemistry, 2020. 412: 6211-6220
    81. Kim, H., A.N. Montalbine, J.E. Ortiz-Cárdenas, and R.R. Pompano, “Characterization of silk hydrogel formed with hydrolyzed silk fibroin-methacrylate via photopolymerization” Polymer;2018;153: 232-240
    82. Shepherd, D., and B. Seedhom, “The ''instantaneous'' compressive modulus of human articular cartilage in joints of the lower limb” Rheumatology, 1999;38: 124-132
    83. Myers, D., Surfaces, interfaces, and colloids. 1999: Wiley New York. chap.5:79-96
    84. Azhar, U., R. Yaqub, H. Li, G. Abbas, Y. Wang, J. Chen, C. Zong, A. Xu, Z. Yabin, S.Zhang, and B. Geng, “Di-block copolymer stabilized methyl methacrylate based polyHIPEs: Influence of hydrophilic and hydrophobic co-monomers on morphology, wettability and thermal properties” Arabian Journal of Chemistry;2020;13: 3801-3816
    85. Mesa-Múnera, E., J.F. Ramírez–Salazar, P. Boulanger, and J.W. Branch, “Inverse-FEM characterization of a brain tissue phantom to simulate compression and indentation” Ingeniería y Ciencia;2012;8: 11-36
    86. Kaewpirom, S., and D. Kunwong, “Curing behavior and cured film performance of easy-to-clean UV-curable coatings based on hybrid urethane acrylate oligomers” Journal of Polymer Research;2012;19: 9995
    87. Gómez-Díaz, D., J.M. Navaza, and L. Quintáns-Riveiro, “Intrinsic viscosity and flow behaviour of Arabic gum aqueous solutions” International Journal of Food Properties;2008;11: 773-780
    88. Amr, M., I. Dykes, M. Counts, J. Kernan, A. Mallah, J. Mendenhall, B.V. Wie, N. Abu-Lailb, and B.A. Gozena, “3D printed, mechanically tunable, composite sodium alginate, gelatin and Gum Arabic (SA-GEL-GA) scaffolds” Bioprinting;2021;2: e00133
    89. Hanaor, D., M. Michelazzi, C. Leonelli, and C.C. Sorrell, “The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2” Journal of the European Ceramic Society;2012;32: 235-244
    90. Niu, F., M. Koua, J. Fana, W. Pana, Z.J. Fengb, Y. Suc, Y. Yangc, and W. Zhou, “Structural characteristics and rheological properties of ovalbumin-gum arabic complex coacervates” Food chemistry;2018;260: 1-6
    91. Liu, S., Y. Cao, S. Ghosh, D. Rousseau, N.H. Low, and M.T. Nickerson, “Intermolecular interactions during complex coacervation of pea protein isolate and gum Arabic” Journal of agricultural and food chemistry;2010;58: 552-556
    92. Allen, C., Y. Yu, D. Maysinger, and A. Eisenberg, “Polycaprolactone-b-poly (ethylene oxide) block copolymer micelles as a novel drug delivery vehicle for neurotrophic agents FK506 and L-685,818” Bioconjugate chemistry;1998;9: 564-572
    93. Tzeng, J. J., Y.T. Hsiao, Y.C. Wu, H. Chen, S.Y. Lee, and Y.M. Lin, “Synthesis, characterization, and visible light curing capacity of polycaprolactone acrylate” BioMed research international;2018: 1-8
    94. Müller, M., J. Becher, M. Schnabelrauch, and M. Zenobi-Wong, “Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting” Biofabrication;2015;7: 035006
    95. Serôdio, R., S.L. Schickert, A.R. Costa-Pinto, J.R. Dias, P.L. Granja, F. Yang, and A. L. Oliveira, “Ultrasound sonication prior to electrospinning tailors silk fibroin/PEO membranes for periodontal regeneration” Materials Science and Engineering: C;2019;98: 969-981
    96. Foo, C.W., E. Bini, J. Hensman, D.P. Knight, R.V. Lewis, and D.L. Kaplan “Role of pH and charge on silk protein assembly in insects and spiders” Applied Physics A;2006;82: 223-233
    97. İbanoğlu, E., “Rheological behaviour of whey protein stabilized emulsions in the presence of gum arabic” Journal of Food Engineering;2002;52: 273-277
    98. Omland, T.H., B. Dahl, A. Saasen, K. Svanes, and P.A. Amundsen, “The influence of particle type and size distribution on viscosity in a non-Newtonian drilling fluid” Annual Transactions of The Nordic Rheology Socirty;2005;13: 107-110
    99. Weinbreck, F., R.H.W. Wientjes, H. Nieuwenhuijse, G.W. Robjin, and C.G. de Kruif, “Rheological properties of whey protein/gum arabic coacervates” Journal of Rheology;2004;48: 1215-1228
    100. Chuanxing, F., W. Qi, L. Hui, Z. Quancheng, and M. Wang, “Effects of pea protein on the properties of potato starch-based 3D printing materials” International Journal of Food Engineering;2018;14: 0297
    101. Liu, Y., D. Liu, G. Wei, Y. Ma, B. Bhandari, and P. Zhou, “3D printed milk protein food simulant: Improving the printing performance of milk protein concentration by incorporating whey protein isolate” Innovative Food Science & Emerging Technologies;2018;49: 116-126
    102. Castle, J., E. Dickinson, B.S. Murray, and G. Stainsb, “Mixed-protein films adsorbed at the oil-water interface” ACS Symposium Series;1987;343 :118-134
    103. Houen, G., K. Bechgaard, J. Songstad, M. Leskelä, M. Polamo, M.N. Homsi, F.K. H. Kuske, M. Haugg, N. Trabesinger-Rüf, E.G. and Weinhold, “The solubility of proteins in organic solvents” Acta Chemica Scandinavica;1996. 50: 68-70
    104. Förch, R., H. Schönherr, and A.T.A. Jenkins, Surface design: applications in bioscience and nanotechnology. 2009: John Wiley & Sons: chap.1:1-28
    105. Yasuda, T., T. Okuno, and H. Yasuda, “Contact angle of water on polymer surfaces” Langmuir;1994;10: 2435-2439
    106. Back, A.J., and F.J. Schork, “Emulsion and miniemulsion polymerization of isobornyl acrylate” Journal of applied polymer science;2007;103: 819-833
    107. Wu, J., C. Zhao, W. Lin, R. Hu, Q. Wang, H. Chen, L. Li, S. Chen, and J. Zheng, “Binding characteristics between polyethylene glycol (PEG) and proteins in aqueous solution” Journal of Materials Chemistry B;2014;2: 2983-2992
    108. Stanislawski, L., X. Daniau, A. Lautie´, and M. Goldberg, “Factors responsible for pulp cell cytotoxicity induced by resin‐modified glass ionomer cements” Journal of Biomedical Materials Research;1999;48: 277-288
    109. Gupta, S.K., P. Saxena, V.A. Pant, and A.B. Pant, “Release and toxicity of dental resin composite” Toxicology international;2012;19: 225
    110. Nandiyanto, A.B.D., R. Oktiani, and R. Ragadhita, “How to read and interpret FTIR spectroscope of organic material” Indonesian Journal of Science and Technology;2019;4: 97-118
    111. Schwab, A., A. Schwab, R. Levato, M. D’Este, S. Piluso, D. Eglin, and J. Malda, “Printability and shape fidelity of bioinks in 3D bioprinting” Chemical reviews; 2020;120: 11028-11055
    112. Xing, Q., K. Yates, C. Vogt, Z. Qian, M.C. Frost, and F. Zhao, “Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal” Scientific reports;2014;4: 1-10
    113. Johnson, B., D. Beebe, and W. Crone, “Effects of swelling on the mechanical properties of a pH-sensitive hydrogel for use in microfluidic devices” Materials Science and Engineering: C;2004;24: 575-581

    無法下載圖示 全文公開日期 2031/08/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE