簡易檢索 / 詳目顯示

研究生: 林新傑
Hsin-Chieh Lin
論文名稱: 3D列印晶格結構應用在機車鼓式煞車盤輕量化之研究
3D Printing Lattices Structures in Front brake panel of Bike for Lightweight
指導教授: 鄭正元
Jeng-Ywan Jeng
陳俊名
Chun-Ming Chen
口試委員: 謝志華
Chih-Hua Hsieh
許啟彬
Chi-Pin Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 66
中文關鍵詞: 前鼓式煞車盤網格結構有限元素分析輕量化
外文關鍵詞: Front brake panel,, lattice structure, finite element analysis, lightweight
相關次數: 點閱:202下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 3D列印技術發展日益純熟廣泛,結合網格結構可輕量化設計早已逐漸導入到航太、汽車及醫材工業應用中,有少量立即生產之特點,結合網格結構可達複雜化生產、設計最佳化、輕量化,同樣輕量化若應用到機車零件亦可減輕重量、降低油耗。
    3D金屬燒結列印結合網格結構設計應用於機車前鼓式煞車盤,利用專業3D CAD軟體作零件實體版建模,再另建立一導入三角形、六角Honey comb及Kelvin網格結構,來嵌入於煞車盤部分結構中,用以來比較網格結構前後輕量化程度,網格以Solidworks 3D CAD軟體建模插入。
    再運用有限元素分析軟體,作應力及應變分析確認,重量從263.44 g減輕到233.81. g,重量減輕有11%。


    The development of 3D printing is getting more and more mature and extensive. Gradually finding applications in the aerospace industry. It has the characteristics of a small amount of production and flexibility and immediate. Combining the lattice structure in design, the design can be optimized, the number of parts can be integrated, and the weight and fuel consumption can be reduced. If a method for lightweight is applied to bikes, it can increase flexibility and reduce fuel consumption.
    3D printing integrated lattice structure design in front brake panel, use 3D CAD software to model the solid type and create a new latticed model. Insert the lattices structure of triangle, hexagonal Honey comb, and Kelvin in the parts. Compared to the lightweight one, the lattices structure model by Solidworks 3D CAD.
    Use finite element analysis software to perform stress and deformation analysis to confirm that the weight is reduced from 263.44 g to 233.81 g, which is -11%.
    Keyword: Front brake panel, lattice structure, finite element analysis, lightweight

    中文摘要 第1章 緒論 1 1.1 前言 1 1.2 研究背景及目的 2 1.3 論文架構 4 第2章 文獻回顧 5 2.1 前鼓式煞車盤 5 2.2 輕量化探討 6 2.3 積層製造技術與演進 8 2.4 3D列印七大技術 9 2.4.1 黏著劑噴印成型技術BJ(Binder Jetting) 9 2.4.2 粉床熔融成型技術PBF(Powder Bed Fusion) 11 2.4.3 指向性能源沉積成型技術DED(Direct Energy Deposition) 12 2.5 網格結構 14 2.5.1 網格分類 15 2.5.2 網格結構之機械性能 17 2.5.3 網格結構設計步驟 17 2.5.4 網格結構應用 19 第3章 建模及網格結構設計 21 3.1 實體版建模 21 3.2 網格結構設計分析 22 3.3 以SW網格化煞車盤 23 3.3.1 三角網格結構建立 23 3.3.2 Honey comb網格結構建立 24 3.3.3 Kelvin網格結構建立 24 3.3.4 Kelvin網格的排列 26 3.4 3D列印煞車盤 28 第4章 有限元素分析 33 4.1 實體版參數設定 33 4.2 實體版網格化 33 4.3 邊界條件設定 36 4.4 網格版網格生成 38 4.5 Kelvin網格排列密度比較 39 4.6 分析結果 44 4.7 結果與討論 45 第5章 討論與未來展望 50 5.1 結論 50 5.2 未來展望 50 圖目錄 圖 1煞車盤 6 圖 2黏著劑噴印技術 10 圖 3粉末床熔融成型技術 12 圖 4選擇性雷射熔融技術 13 圖5 (A)綠色細紋蝶翅膀雙螺旋結構 (B)人類腿骨結構 14 圖 6 HONEY COMB結構特點 15 圖 7 KELVIN結構 15 圖 8依邊框排序之三類網格 16 圖 9 TPMS (A)P-TYPE, (B)GYROID, (C)D-TYPE, (D)I-WP TYPE 16 圖 10 3D列印使用3種不同之網格構造 17 圖 11 開放式KELVIN網格建模步驟 18 圖 12網格孔洞結構分類 19 圖 13晶格結構應用在產品設計上 20 圖 14網格結構設計產品之有限元素強度分析 20 圖 15 實體與晶格版設計步驟 21 圖 16前鼓式煞車盤建模流程圖 22 圖 17三角網格建立 24 圖 18 HONEY COMB網格建立 24 圖 19 KELVIN網格建立 25 圖 20 KELVIN網格嵌入剖面內部 25 圖 21不同KELVIN網格排列情形 27 圖 22 用HP JET FUSION 3D 4200粉床式3D列印 29 圖 23舊KELVIN網格設計3D列印 29 圖 24三角網格之3D列印 30 圖 25長型與圓型排粉孔塞粉確認 31 圖 28輕量化比較(左)實體版 (右)網格版D1版 32 圖 29實體版網格化 34 圖 30實體版應力分析 35 圖 31網格化大小收斂 35 圖 32插入固定點 37 圖 33插入施力 38 圖 34插入壓力 38 圖 35 D1網格版網格生成 39 圖 36 (A組)應力及質量分析 40 圖 37 (B組)應力及質量分析 40 圖 38 (C組)應力及質量分析 41 圖 39 (D1組)應力及質量分析 41 圖 40 (D2組)應力及質量分析 42 圖 41 (D3組)應力及質量分析 42 圖 42 (E組)應力及質量分析 43 圖 43 (F組)應力及質量分析 43 圖 44 (D1組)總形變量 45 圖 45 GYROID與KELVIN結網全剖面比較 46 圖 46(A)實體版與 (B) D1組應力分析比較 47 圖 47以3MATIC MAGIC建HONEY COMB網格 48 圖 48以NTOP建立網格 48 表目錄 表 1A383的材料物性表 6 表2 3D列印七大技術總結 13 表3 各網格結構之參數 26 表 4不同KELVIN網格方式 28 表 5鋁合金物性表 33 表 6 KELVIN網格排列密度與分析得出質量與最大應力值比較 44 表7網格化後輕量化之比較 44 方程式目錄 方程式 1滾動阻抗 7 方程式 2加速阻抗 7

    [1] M. Cotteleer, Deloitte "3D printing: “Complexity is free” may be costly for some." https://www2.deloitte.com/us/en/insights/focus/3d-opportunity/3d-printing-complexity-is-free-may-be-costly-for-some.html. Accessed 17 Sep 2021
    [2]C. Doug Gross, CNN, "Obama's speech highlights rise of 3-D printing." https://edition.cnn.com/2013/02/13/tech/innovation/obama-3d-printing/index.html. Accessed 17 Sep 2021
    [3]葉雲鵬、鄭正元.(2020) 智慧機械與數位製造3D列印的發展-儀科中心. 儀科新知,第222期,第100頁.
    [4] caemolding.org, "DMG MORI創新的產."https://www.caemolding.org/cmm/dmg-mori%E5%89%B5%E6%96%B0%E7%9A%84%E7%94%A2%E5%93%81%E8%A7%A3%E6%B1%BA%E6%96%B9%E6%A1%88%E9%87%8D%E5%A1%91%E5%B8%82%E5%A0%B4%E6%A0%BC%E5%B1%80/.Accessed 17 Sep 2021
    [5] 劉文海(2009), "輕金屬於機車的應用動向," 工業材料, 266期, P63頁.
    [6] T. Kellner, "An Epiphany Of Disruption: GE Additive Chief Explains How 3D Printing Will Upend Manufacturing," https://www.ge.com/reports/epiphany-disruption-ge-additive-chief-explains-3d-printing-will-upend-manufacturing/ Accessed 17 Sep 2021
    [7] R Jaiswal, AR Jha, A Karki, D Das(2016) Structural and thermal analysis of disc brake using solidworks and ansys International Journal of Mechanical Engineering and Technology (IJMET)
    [8] T. Watson, "Motorcycle History: Brakes." https://www.rideapart.com/features/255230/motorcycle-history-brakes/
    [9] I. NADCA TECHNICAL DIE-CASTING, "Alloy Properties." https://www.tech-die-casting.com/engineering/
    [10] "積層製造成型技術與應用," 工業材料雜誌, vol. 9月, no. 357, p. 103, 2016.
    [11] 蕭瑞聖, 機車原理與機構. 徐氏基金會, 1992.
    [12] w. qingsong, "摩托車架材質決定該車質量及操控舒適度,看看你的!," ed, 2019.
    [13] wikipedia.org, "3D printing." https://en.wikipedia.org/wiki/3D_printing
    [14] P. Ślusarczyk, "Introduction to metal 3D printing with Binder Jetting technology." https://3dprintingcenter.net/introduction-to-metal-3d-printing-with-binder-jetting-technology/
    [15]郭妍希報導, "3D列印關鍵專利明年到期!Shapeways:成長爆發." https://news.cnyes.com/news/id/1573443
    [16] 葉雲鵬, "3D列印專題講座," 葉雲鵬, 2019.
    [17] 葉雲鵬、鄭正元, "智慧機械與數位製造3D列印的發展." https://www.tiri.narl.org.tw/Files/Doc/Publication/InstTdy/222/02220927.pdf
    [18] ASTM, "Standard Terminology for Additive Manufacturing Technologies, ASTM F2792-12a, “Rapid Manpp10-12, 2015,." DOI: 10.1520/F2792-12A
    [19] 3Dexperience, "3D PRINTING - ADDITIVE," ed.
    [20] S. K. Mark Helou. (2017, 12) Design, analysis and manufacturing of lattice structures: an overview.
    [21] K. M. a. D. G. Stavenga. (2007, 6 13) Gyroid cuticular structures in butterfly wing scales: biological photonic crystals. Journal of Royal Society.
    [22]"“Biomimetic gyroid nanostructures exceeding their natural origins,”". https://www.researchgate.net/figure/Comparison-of-an-artificial-gyroid-structure-with-a-natural-one-A-Photograph-of-the_fig1_303097738
    [23] wikimedia.org, ""Femur (caput femoris) - bone structure detail (vertical cut) 2.jpg," 2020.."https://commons.wikimedia.org/wiki/File:Femur_(caput_femoris)_-_bone_structure_detail_(vertical_cut)_2.jpg
    [24] medcell.org, "Structure and Function of Connective Tissue and Bone." http://medcell.org/tbl/structure_and_function_of_connective_tissue_and_bone/reading.php
    [25] Y. T. G. Dong, and Y. F. Zhao. (2017, 8) A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing. ASME.
    [26]"Types of lattices for additive manufacturing – the terms all engineers need to know," Gen3D. https://gen3d.com/news-and-articles/types-of-lattices-for-additive-manufacturing/
    [27]"Meet the gyroid." https://plus.maths.org/content/meet-gyroid
    [28]"蜂巢為何能承受沉重的重量." http://scistore.colife.org.tw/management/Upload/dragon/20170102150757975_%5B114%5D.pdf
    [29]"Researchers design one of the strongest, lightest materials known." https://news.mit.edu/2017/3-d-graphene-strongest-lightest-materials-0106
    [30]wikipedia.org,"History and the Kelvin problem.
    "https://en.wikipedia.org/wiki/Weaire%E2%80%93Phelan_structure#History_and_the_Kelvin_problem
    [31] J. Banhart, "Manufacture, characterisation and application of cellular metals and metal foams."
    [32]"Cost-effective printing of 3D objects with skin-frame structures. ACM Trans Graph. 2013;32:177. [Google Scholar]." https://dl.acm.org/doi/abs/10.1145/2508363.2508382
    [33]J. JANCSURAK, "GE Additive Efforts Taking Flight." https://www.3dmpmag.com/article/?/applications/aerospace/ge-additive-efforts-taking-flight
    [34] N. MISTRY, "HUMBLE 3D PRINTED PRODUCT DESIGNS THAT CAN EFFORTLESSLY CHANGE THE WORLD!." https://www.yankodesign.com/2020/03/18/humble-3d-printed-product-designs-that-can-effortlessly-change-the-world/
    [35] P. ADM, "ADDITIVE MANUFACTURING FOR MEDICAL," ed.
    [36]"剖析高分子粉末3D列印材料需求與市場動向,," 工業材料雜誌, no. 388期, p. P84頁, 4 2019.
    [37]"Development of a New Span-Morphing Wing Core Design." https://www.mdpi.com/2411-9660/3/1/12/htm
    [38] "晶格設計最佳化." http://www.caemolding.org/cmm/lattice-structure-in-3d-printing/
    [39] E. Pilz, "nTop Live: Conformal Isogrid Ribbing on Low Bypass Turbofan Engine Casing," ed: ntopology.

    QR CODE