簡易檢索 / 詳目顯示

研究生: 黃日亮
Jih-Liang Huang
論文名稱: 高分子取栓支架開發及可行性研究
Development and Feasibility Study for Polymer Stent Retrievers
指導教授: 張復瑜
Fuh-Yu Chang
口試委員: 鄭逸琳
Yih-Lin Cheng
林清安
Ching-An Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 114
中文關鍵詞: 急性缺血性腦中風取栓支架機械取栓術3D列印
外文關鍵詞: Acute Ischemic Stroke, Stent Retriever, Mechanical Thrombectomy, 3D Printing
相關次數: 點閱:279下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 腦部取栓支架(stent retriever)是用來治療腦部血管栓塞的醫療器材,可透過微創手術以微導管輸送至栓塞部位並將血栓取出。一般市售取栓支架多以鎳鈦支架為主,藉其形狀記憶特性使支架在人體溫度下得以自擴張,但鎳鈦支架具有加工程序繁複、材料及加工成本較高且難以客制化等問題。

    本研究以開發高分子取栓支架為目標。支架高分子材料選用TPC(Thermoplastic copolyester),因其具有出色的回彈性、可恢復性及生物相容性,且適合以3D列印製程進行支架製作。利用電腦數值模擬分析與3D列印製程開發製作TPC取栓支架,並探討不同機械特性的血栓對支架取栓性能的影響。

    以實驗探討三款TPC支架(支架外徑及結構寬度均為4mm及0.2mm,三款支架結構厚度分別為0.2、0.4、0.6mm)壓縮至微導管內釋放時的徑向力,與模擬所得切穿血栓所需的徑向力進行比較,藉此評估不同支架設計其取栓性能的表現。藉由血栓模擬物的製作及體外取栓系統的建構,驗證所開發製作支架的取栓性能。透過調製不同硬度的洋菜凍模擬血栓之機械特性,並利用體外取栓系統進行實驗驗證。實驗驗證結果與模擬結果相符,並成功驗證高分子取栓支架之可行性。


    The stent retriever is a medical device used to treat cerebral vascular embolism. Currently, most of the stent retrievers are nitinol stents. By virtue of its shape memory property, the stent can self-expand at human body temperature to provide sufficient radial force to penetrate and capture the thrombus and then retract it into the catheter, but nitinol stents have many problems such as complicated processing procedures, high material and processing costs and difficult to be customized.

    The purpose of this study is to develop a polymer stent retriever. TPC (Thermoplastic copolyester) was selected as the polymer stent material because of its excellent resilience, restorability and biocompatibility, and suitable for 3D printing process. In this study, computer numerical simulation analysis and 3D printing process were used to develop and fabricate the TPC stent retriever, and discuss the effects of different mechanical characteristics of thrombus on the stent clot-capturing abilities.

    In this study, we discussed the radial force of three TPC stent retrievers (the thickness of the three stents are 0.2, 0.4, and 0.6mm respectively) and compared with the radial force required to penetrate the thrombus by the simulation to evaluate the stent clot-capturing abilities with different stent designs. This study about clot-capturing abilities of the stent was verified by preparing embolus analogues and setting up an in-vitro thrombectomy system. Agar jelly of different hardness were used to simulate the mechanical properties of thrombus with the thrombectomy system for experimental verification. The experimental results are consistent with the simulation results and the feasibility of polymer stent retriever is verified successfully.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 X 第一章 緒論 12 1.1 研究背景 12 1.2 研究動機與目的 14 第二章 文獻回顧 16 2.1 腦部取栓支架 16 2.2 支架自擴張之材料 20 2.2.1 熱塑性共聚酯彈性體 (Thermoplastic copolyester) 20 2.2.2 鎳鈦合金材料 21 2.3 血栓 23 2.3.1 血栓材料特性 23 2.3.2 血栓機械性質 26 2.4 積層製造 27 2.4.1 熔融沉積成型(Fused Deposition Modeling, FDM) 27 2.4.2 FDM製造熱塑性共聚酯支架 28 第三章 實驗方法 29 3.1 取栓支架設計 32 3.1.1 支架設計概念 32 3.1.2 定義設計參數 35 3.2 有限元素模擬 38 3.2.1 切穿血栓之下壓模擬 39 3.2.2 血栓模擬物之下壓模擬及驗證實驗 52 3.2.3 支架徑向力模擬 54 3.2.4 支架作動模擬 58 3.2.5 網格大小與收斂性分析 61 3.3 支架3D列印製作 63 3.3.1 3D列印機及TPC線材 63 3.3.2 3D列印路徑規劃 66 3.3.3 3D列印製程參數 67 3.4 實驗驗證方法 69 3.4.1 支架徑向力測試 69 3.4.2 血栓模擬物機械性質驗證 70 3.4.3 支架取栓性能驗證 71 3.5 實驗設備 73 3.5.1 3D列印機台 73 3.5.2 壓縮裝置(Loadcell) 74 3.5.3 壓縮裝置(Crimping Device) 75 第四章 實驗結果與討論 76 4.1 取栓支架設計與模擬 76 4.1.1 切穿血栓之下壓模擬 76 4.1.2 血栓模擬物之下壓模擬及驗證實驗 79 4.1.3 支架徑向力模擬 84 4.1.4 支架作動模擬 87 4.2 支架3D列印製作 90 4.2.1 3D列印路徑規劃 90 4.2.2 3D列印製程參數 93 4.3 TPC支架實驗驗證結果 94 4.3.1 支架徑向力驗證實驗 94 4.3.2 支架取栓性能實驗 96 4.3.3 TPC及鎳鈦取栓支架之比較 103 第五章 結論與未來展望 104 5.1 結論 104 5.2 未來展望 107 參考文獻 108

    [1] X. Gu, Y. Qi and A.G. Erdman," The Wall Apposition Evaluation for a Mechanical Embolus Retrieval Device," Hindawi Journal of Healthcare Engineering, 2018, Article ID 9592513, 8 pages.
    [2] C. Zerna, J. Hegedus, and M.D. Hill, "Evolving treatments for acute ischemic stroke," Circulation Research, vol. 118, 2016, pp.1425–1442.
    [3] G. Luraghi, J. F. R. Matas, G. Dubini, F. Berti, S. Bridio, S. Duffy, A. Dwivedi, R. McCarthy, B. Fereidoonnezhad, P. McGarry, C. B. L. M. Majoie, F. Migliavacca, " Applicability assessment of a stent-retriever thrombectomy finite element model," Interface Focus 11, 20190123.
    [4] J.L. Saver, M. Goyal, A. Bonafe, et al. SWIFT PRIME Investigators, "Stent-retriever thrombectomy after intravenoust-PA vs. t-PA alone in stroke," The New England Journal of Medicine 372, pp.2285–2295.
    [5] H. Janssen, H. Brückmann, M. Killer, S. Heck, G. Buchholz, and J. Lutz, "Acute basilar thrombosis : Recanalization following intravenous thrombolysis is dependent on thrombus length," PLoS ONE 13(2), 2018.
    [6] W. J. Powers, C.P. Derdeyn, J.Biller, C.S. Coffey, B.L. Hoh, E.C. Jauch, et al, "American Heart Association Stroke Council. 2015 American Heart Association/American Stroke Association focused update of the 2013 guidelines for the early management of patients with acute ischemic stroke regarding endovascular treatment: a guideline for healthcare professionals from the American Heart Association/American Stroke Association," Stroke, vol.46, 2015, pp.3020–3035. doi: 10.1161/STR.0000000000000074.
    [7] F. Zhao, Y. Yang, Y. Zhao, Y. Wei, L. Quan, C. Pan, "Design and mechanical properties simulation of fish scale-like intracranial thrombectomy stent," Material Research Society, 2020.
    [8] A. J. Yoo and T. Andersson, "Thrombectomy in acute ischemic stroke: challenges to procedural success," Journal of Stroke, vol.19, no.2, 2017, p.121.
    [9] A. A. Fanous and A. H. Siddiqui, "Mechanical thrombectomy: stent retrievers vs. aspiration catheters," Cor et Vasa, vol.58, no.2, 2016, pp.e193-e203.
    [10] C.H. Chon, Z. Qin, A.K.N. Lam, J.C.K. Kwok, M.M. Yuen, D.C. Lam, "In-vitro testing of RF-enabled low force mechanical thrombectomy for ischemic stroke," Conference Proceedings - IEEE Engineering in Medicine and Biology Society, 2015, pp.1349–52.
    [11] J. M. Katz, A. M. Hakoun, A. R. Dehdashti, A. B. Chebl, V. Janardhan, V. Janardhan, "Understanding the Radial Force of Stroke Thrombectomy Devices to Minimize Vessel Wall Injury: Mechanical Bench Testing of the Radial Force Generated by a Novel Braided Thrombectomy Assist Device Compared to Laser-Cut Stent Retrievers in Simulated MCA Vessel Diameters," Intervent Neurol, vol.8, 2019, pp.206–214.
    [12] H. C. Prince, A. J. Saliba, J. Wheeler, and S. Bruder, "Development of the Trevo ProVue Retriever for intracranial clot removal in acute ischemic stroke," Annals of the New York Academy of Sciences, vol. 1329, no.1, 2014, pp.107-115.
    [13] N. Larsen, K. Oberbeck, R. L. de Miranda, J. Trentmann, J. Madjidyar, E. Quandt, O. Jansen, "Comparison of Efficacy, Embolism Rate and Safety of Thrombectomy with Stent Retrievers in an Anterior Circulation Stroke Model," Georg Thieme Verlag KG, Stuttgart New York, 190(11), 2018, pp.1053-1058.
    [14] P. Płatek, P. Baranowski, K. Cieplak, M. Sarzyński, J. Sienkiewicz, J. Janiszewski and J. Małachowski, " Investigation on Deformation Process of Cellular Structures with Gradient Topology Manufactured Additively," In AIP Conference Proceedings, vol.2078, 2019, pp.020108.
    [15] D. E. Hodgson, W. Ming, and R. J. Biermann, "Shape memory alloys," ASM International, Metals Handbook, Tenth Edition., vol. 2, 1990, pp. 897-902.
    [16] N. Krasokha, W. Theisen, S. Reese, P. Mordasini, C. Brekenfeld, J. Gralla, J. Slotboom, G. Schrott, H. Monstadt, " Mechanical properties of blood clots – a new test method," Mat.-wiss. u.Werkstofftech, vol.41, no.12, 2010.
    [17] S. Liu, G. Bao, Z. Ma, C. J. Kastrup and J. Li, "Fracture Mechanics of Human Blood Clots: Measurements of Toughness and Critical Length scales," Extreme Mechanics Letters, vol,48, October 2021, pp.101444.
    [18] J.Y. Chueh, A.K. Wakhloo, G.H. Hendricks, C.F. Silva, J.P. Weaver and M.J. Gounis, "Mechanical Characterization of Thromboemboli in Acute Ischemic Stroke and Laboratory Embolus Analogs," American Journal of Neuroradiology 32, Aug 2011, pp.1237– 44.
    [19] A. Subash, B. Kandasubramanian, "4D printing of shape memory polymers," European Polymer Journal, vol.134, 5 July 2020, pp.109771.
    [20] A. A. Azli, N. Muhammad, M. M. A. Albakri, M. F. Ghazali, S. Z. A. Rahim and S. A. Victor, "Printing Parameter Optimization of Biodegradable PLA Stent Strut Thickness by using Response Surface Methodology (RSM)," Materials Science and Engineering 864, 2020, pp.012154.
    [21] M. S. Cabrera, B. Sanders, O. J.G.M. Goor, A. Driessen-Mol, C. W.J Oomens and F. P.T. Baaijens, "Computationally Designed 3D Printed Self-Expandable Polymer Stents with Biodegradation Capacity for Minimally Invasive Heart Valve Implantation: A Proof-of-Concept Study," 3D PRINTING AND ADDITIVE MANUFACTURING, Mary Ann Liebert,Inc, vol.4, no.1, 2017.
    [22] P. Machi, F. Jourdan, D. Ambard, C. Reynaud, K. Lobotesis, M. Sanchez, A. Bonafe, V. Costalat, "Experimental evaluation of stent retrievers’ mechanical properties and effectiveness," Journal of NeuroInterventional Surgery 9, 2017, pp.257-263.
    [23] H. Imamura, N. Sakai, H. Yamagami, T. Satow, Y. Matsumoto, K. Imai, S. Ota, N. Horie, R. Kondo, Y. Enomoto, S. Yoshimura, M. Hirohata, M. Shibata, Y. Matsumaru, N. Ohara, and C. Sakai, "Clinical Trial of the New Stent Retriever Tron FX for both Proximal and Distal Intracranial Large Vessel Occlusions," Journal of Stroke and Cerebrovascular Diseases, vol 30, no. 3, March 2021, pp.105585.
    [24] C. Roth, D. Junk, P. Papanagiotou, A. Keuler, H. Korner, M. Schumacher, W. Reith, "A Comparison of 2 Stroke Devices: The New Aperio Clot-Removal Device and the Solitaire AB/FR," American Journal of Neuroradiology 33, August 2012, pp.1317–20.
    [25] 張庭瑋, "腦部取栓支架設計及製程開發," 碩士, 機械工程系, 國立台灣科技大學, 2018.
    [26] O. O. Zaidat, D. C. Haussen, A. E. Hassan, A. P. Jadhav, B. P. Mehta, M. Mokin, N. H. Mueller-Kronast, M. T. Froehler, "Impact of Stent Retriever Size on Clinical and Angiographic Outcomes in the STRATIS Stroke Thrombectomy Registry," Stroke 50, 2019, pp.441-447, DOI: 10.1161/STROKEAHA.118.022987.
    [27] K Wenger, F Nagl, M Wagner, J Berkefeld, "Improvement of stent retriever design and efficacy of mechanical thrombectomy in a flow model", Cardiovascular and Interventional Radiology 36.1, 2013, pp.192-197.
    [28] B. Fereidoonnezhad, A. Dwivedi, S. Johnson, R. McCarthy, P. McGarry, " Blood clot fracture properties are dependent on red blood cell and fibrin content," Acta Biomater 127, Jun 2021, pp.213-228.
    [29] V. Tutwiler, J. Singh, R.I. Litvinov, J.L. Bassani, P. K. Purohit, J. W. Weisel, " Rupture of blood clots:Mechanics and pathophysiology," Science Advance 6, 2020, eabc0496.
    [30] A. Karimi, M. Navidbakhsh, A. Shojaei, K. Hassani, S. Faghihi, "STUDY OF PLAQUE VULNERABILITY IN CORONARY ARTERY USING MOONEY-RIVLIN MODEL: A COMBINATION OF FINITE ELEMENT AND EXPERIMENTAL METHOD," Biomedical Engineering: Applications, Basis and Communications, vol.26, no.1, 2014, pp.1450013(7 pages).
    [31] A. Shahidian, A. G. Hassankiadeh, " STRESS ANALYSIS OF INTERNAL CAROTID ARTERY WITH LOW STENOSIS LEVEL: THE EFFECT OF MATERIAL MODEL AND PLAQUE GEOMETRY," Journal of Mechanics in Medicine and Biology, vol. 17, no.6, 2017, pp.1750098(14 pages).
    [32] A. T. Rai, J. P. Hogg, B. Cline,G. Hobbs, "Cerebrovascular geometry in the anterior circulation:an analysis of diameter, length and the vessel taper," Journal of NeuroInterventional Surgery 5, 2013, pp.371–375.
    [33] E. Jarauta, R. M. Gallego, A. Bea, E. Burillo, P. Calmarza, "Carotid Intima-Media Thickness in Subjects With No Cardiovascular Risk Factors," Revista Española de Cardiología 63(1), 2010, pp.97-102.
    [34] T. Ohshima, S. Goto, T. Yamamoto, K. Ishikawa, "Experimental evaluation and training of stent clot retrieval: the confront clot scrambling method," Nagoya Journal of Medical Science 79, 2017, pp.401-406.
    [35] B. M. Kim, D. J. Kim, D. I. Kim, "Stent Application for the Treatment of Cerebral Aneurysms," Neurointervention 6, 2011, pp.53-70.
    [36] ASTM International, "Guide for Radial Loading of Ballon Expandable and Self Expanding Vascular Stents,"Current edition approved, Oct. 15, 2014, Published March 2015.
    [37] A.J. Ulm, T. Khachatryan, A. Grigorian, R.G. Nogueira, " Preclinical Evaluation of the NeVaTM Stent Retriever: Safety and Efficacy in the Swine Thrombectomy Model," Intervent Neurol 7, 2018, pp.205–217.

    無法下載圖示 全文公開日期 2031/10/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE