簡易檢索 / 詳目顯示

研究生: 邱俊維
Jun-Wei Chiu
論文名稱: 積層列印之鞋底緩衝模組的設計與分析
The Design and Analysis of a Cushioning Module for Footwear using Additive Manufacturing
指導教授: 鄭正元
Jeng-Ywan Jeng
徐茂濱
Mau-Pin Hsu
口試委員: 鄭正元
Jeng-Ywan Jeng
徐茂濱
Mau-Pin Hsu
林上智
Shang-Chih Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 122
中文關鍵詞: 3D列印積層列印儲能有限元素法
外文關鍵詞: Cushioning Module, Additive Manufacturing, Stored Energy, Finite Element Analysis
相關次數: 點閱:129下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人口逐漸邁向高齡化社會,越來越多中高齡人口會遇到膝關節退化問題抑或是腳力逐漸衰退的問題,嚴重一點甚至會罹患膝關節炎,因此本研究透過力學分析,設計一款利用3D積層列印原理所打造具有緩衝儲能特性之鞋底模組,預期令中高齡人口能在一定程度上獲得較舒緩的感受,甚至是減緩疼痛等效果。

    本研究之緩衝模組因採用3D列印的製程,可以在相對短的時間內進行快速打樣評估,並且透過結構改良,使緩衝模組本身具有一定程度的非線性特性,使踩踏初期可減少衝擊力,並在下壓後期透過模組的變形獲得較多的儲能,使得跨出下一步更加輕鬆、省力。

    本研究使用有限元素分析法進行模擬分析,透過桁架結構的參數調整,以求得極佳之儲能且不致損毀之鞋底模組。模擬結果顯示,本研究設計出的緩衝模組,具備良好緩衝性能(初始剛性為120 N/mm),可儲存58%之步行落差位能。


    As the population ages, many seniors would face health issue stemming from Osteoarthritis (OA) or foot strength deterioration, more severe cases like Osteoarthritis (OA) is also not uncommon. This research aims to design a module for shoes which have cushioning and energy-storing by using 3D additive manufacturing with static structural analysis. The desired result is to provide elderly people comfort and even pain relief.

    Because the module is made by using 3D printing, it can be rapidly prototyped and evaluated. Through improvements in its structure, the module has a certain degree of non-linear characteristics, which in turns help the senior with the motion of walking. As the foot presses on the shoe, the impact is dampened, then as the entire weight is put on the shoe, the energy-storing design would store energy by deforming the module, helping with the next step forward.

    In this research, the parameters of the truss structure were adjusted through simulation using finite element analysis, and the parameters of the 3D printing material used in this research were substituted to find a reasonable physical property and less damageable shoe sole module. In this research, the cushion module with good cushioning (initial stiffness less than 200 N/mm) was actually designed, and the simulation results showed that it could store 58% of the walking energy.

    摘要 I Abstract II 致謝 IV 目錄 V 圖索引 VII 表索引 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 文獻回顧 3 1.4 本文架構 7 第二章 緩衝模組主體設計 9 2.1 設計理念 9 2.2 初期設計構想 11 2.3 緩衝模組結構單元設計 14 2.3.1 單一菱形結構單元 15 2.3.2 複數菱形結構單元 22 2.4緩衝模組整體設計 24 2.5 小結 26 第三章緩衝模組分析與探討 28 3.1 緩衝模組單一結構單元分析 28 3.1.1單一結構單元分析前置處理 28 3.1.2單一結構單元分析與探討 33 3.2 緩衝模組複數結構單元分析 49 3.2.1同平面雙單元串接分析 50 3.2.2異平面雙單元串接分析 58 3.2.3四單元串接分析 67 3.3 緩衝模組整體分析 83 3.4 垂直疊加菱形結構剛性降低驗證 90 3.5 疊層模組之剛性與儲能探討 93 3.6 錯誤與解決方法探討 97 3.7 小結 100 第四章 結論與建議 102 4.1 結論 102 4.2未來建議 103 參考文獻 105

    [1] 李秉儒,鞋底緩衝模組之設計與分析,國立臺灣科技大學研究所碩士論文,2018。
    [2] T. Yunlong, D. Guoying, X. Yi, and W. Qiusen, “Data-driven Design of Customized Porous Lattice Sole Fabricated by Additive Manufacturing,” Procedia Manufacturing, vol. 53, pp. 318-326, 2021.
    [3] G. Dong, D. Tessier, and Y. F. Zhao, “Design of shoe soles using lattice structures fabricated by additive manufacturing,” Proceedings of the Design Society: International Conference on Engineering Design, Vol. 1, No. 1, pp. 719-728, 2019.
    [4] N. Aamer, A. Mubasher, and J.-Y. Jeng, “Investigation of Compression and Buckling Properties of a Novel Surface-based lattice structure Manufactured using Multijet Fusion Technology,” Materials, Vol.14, No. 10, pp. 2599, 2021.
    [5] K. Ajeet, V. Saurav, and J.-Y. Jeng, “Support-less Lattice Structures for Energy Absorption Fabricated by Fused Deposition Modeling,” 3D Printing and Additive Manufacturing, Vol. 7, 2020.
    [6] L. Bingheng, L. Dichen, and T. Xiaoyong, “Development Trends in Additive Manufacturing and 3D Printing,” Engineering, vol. 1, issue 1, pp. 85-89, 2015.
    [7] 桁架結構,https://en.wikipedia.org/wiki/Truss

    [8] N. Aamer, B. A. Ahmad, and J.-Y. Jeng, “Buckling and Post-Buckling Behavior of Uniform and Variable-Density Lattice Columns Fabricated Using Additive Manufacturing,” Materials, Vol. 12, No. 21, pp. 3539, 2019.
    [9] BEAM188,https://www.mm.bme.hu/~gyebro/files/ans_help_v182/ans_elem/Hlp_E_BEAM188.html
    [10] SOLID186,https://www.mm.bme.hu/~gyebro/files/ans_help_v182/ans_elem/Hlp_E_SOLID186.html
    [11] 張宏浩,鞋底緩衝模組剛性曲線之緩衝與儲能性能的分析,國立臺灣科技大學研究所碩士論文,2022。
    [12] H. Wouter, K. Shalaya, H. F. Jesse, M. F. Emily, L. Geng, and K. Rodger, “A Comparison of the Energetic Cost of Running in Marathon Racing Shoes,” Sports Medicine, Vol. 48 , No. 4, pp. 1009-1019, 2018.
    [13] N. Aamer, B. A. Ahmad, C.-P. Hsu, and J.-Y. Jeng, “Effect of Fillets on Mechanical Properties of Cellular Structures Fabricated using Multijet Fusion Technology,” Materials, Vol. 14, No. 9, pp. 2194, 2021.
    [14] N. Aamer, J.-Y. Jeng, “A High-Speed Additive Manufacturing Approach for Achieving High Printing Speed and Accuracy,” Journal of Mechanical Engineering Science, Vol. 234, No. 14, pp. 2741–2749, 2020.
    [15] K. Ajeet, C. Luca, D. Alix, and J.-Y. Jeng, “Design and Additive Manufacturing of Closed Cell from Support-less Lattice Structure,” Additive Manufacturing, Vol. 33, Article 101168, 2020.
    [16] N. Aamer, J.-Y. Jeng, “Buckling behavior of additively manufactured cellular columns: Experimental and simulation validation,” Materials and Design, Vol. 186, Article 108349, 2020.
    [17] J. L. Tanja, K. Janos, and S. Aleksandar, “Biomechanical analysis of walking : Effects of gait velocity and arm swing amplitude,” Periodicum biologorum, Vol. 112, pp. 13-17, 2010.
    [18] 徐國峰,跑者都該懂的跑步關鍵數據,初版,臉譜出版社,2016。
    [19] A. J. Amir, M. S. Morteza, M. Mahdi, G. Urs, “A comparison of running kinetics in children with and without genu varus: A cross sectional study,” PLoS One., Vol. 12, No. 9, e0185057, 2017.

    無法下載圖示 全文公開日期 2027/02/09 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE