簡易檢索 / 詳目顯示

研究生: 王浩宇
Hao-Yu Wang
論文名稱: Cu2O介電層膜厚對Ti/Cu2O/Ti元件電阻切換之影響
The effect of Cu2O thickness on resistive switching of Ti/Cu2O/Ti device
指導教授: 周賢鎧
Shyan-kay Jou
口試委員: 王秋燕
Chiu-yen Wang
蔡豐羽
Feng-yu Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 122
中文關鍵詞: 氧化亞銅界面反應電阻式記憶體互補電阻式記憶體
外文關鍵詞: Cu2O, TiOx interface, RRAM, CRS
相關次數: 點閱:284下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以金屬鈦(Titanium, Ti)為上下電極,氧化亞銅(Cuprous oxide, Cu2O)為介電層,利用磁控濺鍍將薄膜沉積於玻璃基材上,並製作出不同中間層厚度之Ti/Cu2O/Ti三層結構電阻式記憶體,探討元件退火後的結構與電性之影響。
    Ti/Cu2O (130 nm)/Ti元件經過forming可作電阻切換達700次以上,且高低電阻比約達8倍,為可穩定操作之電阻式記憶體。而Ti/Cu2O (130 nm)/Ti元件退火後不需要forming,高低電阻比達56倍且可穩定操作100次。經由結構與成分分析發現,在Ti上下電極靠近Cu2O之交界有TiOx界面層形成,並且在退火後Cu2O中有Cu晶粒還原出,因此降低元件中Cu2O的膜厚,希望藉此能讓Ti/Cu2O/Ti元件在退火後轉變為Ti/TiOx/Cu/TiOx/Ti之結構,製作出互補電阻式記憶體。
    在Ti/Cu2O (25 nm)/Ti元件中,元件之傳導機制與電阻切換特性隨著電壓多次來回掃描而改變,初始元件呈現以高電阻態為SCLC,低電阻態為Ohmic conduction之雙極式電阻記憶體;經過多次掃描後轉變成“0”和“1”為Schottky emission,“ON”為Ohmic conduction之CRS元件。而退火後之Ti/Cu2O (25 nm)/Ti元件為穩定之CRS元件,可穩定操作達80次,且其 “ON” window中之高低電阻比約9倍。經由結構與成分分析發現,Ti/Cu2O (25 nm)/Ti退火元件內中間層之Cu2O已被還原成Cu,而Cu與TiOx之接觸為Schottky contact,可解釋在 “0”和“1”之狀態下傳導機制為Schottky emission;改變溫度測試之結果則可推斷低電阻態為銅燈絲傳導之Ohmic conduction。
    最後利用製作Cu/TiOx/Ti之電阻式記憶體進行電性量測與導電機制分析,並且發現與Ti/Cu2O (25 nm)/Ti退火元件分析之結果相同,證明Ti/Cu2O (25 nm)/Ti元件經退火後已轉變成Ti/TiOx/Cu/TiOx/Ti之互補電組式記憶體。


    In this study, we used titanium (Ti) as the top and bottom electrode, cuprous oxide (Cu2O) as the dielectric layer to fabricateTi/Cu2O/Ti RRAM device by magnetic sputtering process. We also analyzed the structure and electrical properties of the devices with different thickness of Cu2O.
    After a forming process by applying a positive bias, the as-prepared Ti/Cu2O (130nm)/Ti device could switch in high resistance state (HRS) and low resistance state (LRS) over 700 times by bipolar switching. The ratio between two resistance state was about 7.5. However, the annealed Ti/Cu2O (130nm)/Ti device could normally operate without a forming process and exhibited the ratio of HRS to LRS about 53 during 100 cycles of testing. By the structure and component analysis, it was found that Cu grains formed in the Cu2O layer and a TiOx interface layer formed between the Ti electrode and the Cu2O. Therefore, we reduced the thickness of Cu2O in Ti/Cu2O/Ti device in order to obtain Ti/TiOx/Cu/TiOx/Ti CRS device after vacuum annealing process.
    The resistace switching was unstable in the as-prepared Ti/Cu2O (25nm)/Ti device, and the mechanism of conduction was changed after doing several I-V cycles. At first, the device exhibited bipolar resistive switching and it showed SCLC in HRS and Ohmic conduction in LRS. And it turned into complementary resistive switching (CRS) with Schottky emission in “0” and “1” state while “ON” state was still Ohmic conduction. On the other hand, the annealed Ti/Cu2O (25nm)/Ti device showed good stability as a CRS device. The raio of the high resistance “0” and “1” to low resistance in the “ON” window was about 9 during 80 times of operation. And the mechanim of “0” and “1” state were Schottky emission due to the Schottky contact betwee Cu and TiOx. For the mechanism of “ON” state, we carried out electrical measurements at various temperatures and found that the resistance increased with increase temperature. It suggested that Cu was an active electrode and provided Cu filaments for the carriers to transport.
    We also prepared Cu/TiOx/Ti RRAM device to analyze the electrical properties and elucidated that it’s one of the cells in Ti/TiOx/Cu/TiOx/Ti CRS device. In other words, we proved that Ti/Cu2O/Ti becomes Ti/TiOx/Cu/TiOx/Ti after vacuum annealing process.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖目錄 VIII 表目錄 XIV 第一章 前言 1 第二章 文獻回顧 2 2.1記憶體簡介 2 2.1.1 鐵電式記憶體 (Ferroelectric Random Access Memory, FeRAM) 2 2.1.2 磁阻式記憶體 (Magnetoresistive Random Access Memory, MRAM) 2 2.1.3 相變化式記憶體 (Phase-change Random Access Memory, PRAM) 3 2.1.4 電阻式記憶體 (Resistive Random Access Memory, ReRAM) 3 2.2 互補電阻式記憶體 (Complementary Resistive Switches, CRS) 6 2.2.1 互補電阻式記憶體發展背景 6 2.2.2 互補電阻式記憶體模型與操作 9 2.2.3 互補電阻式記憶體訊號讀取與寫入 11 2.3 電阻轉換機構 13 2.3.1 導電燈絲機構 13 2.3.2 界面導電機構 14 2.3.3 離子遷徙機構 15 2.4 漏電流導電機制 16 2.4.1 蕭特基發射 (Schottky Emission) 17 2.4.2 歐姆接觸 (Ohmic Contact) 17 2.4.3 傅勒-諾德翰穿隧 (Fowler-Nordheim Tunneling) 18 2.4.4 普爾-法蘭克發射 (Poole-Frenkel Emission) 19 2.4.5 空間電荷限制傳導 (Space Charge Limited Current, SCLC) 20 2.5 Cu氧化物電阻切換及Ti作為電極的界面效應之相關研究 22 2.6 互補式電阻式記憶體相關文獻 30 2.7 研究動機 37 第三章 實驗方法與步驟 38 3.1 實驗材料與藥品規格 38 3.2 實驗儀器 39 3.3 實驗原理 40 3.3.1 真空鍍膜簡介 40 3.3.2 電漿 (Plasma) 40 3.3.3 磁控濺鍍 (Magnetic Sputtering) 41 3.3.4 場發射雙束型聚焦離子束顯微鏡 (DB FIB) 42 3.3.5 場發射掃描式電子顯微鏡 (FESEM) 43 3.3.6 高解析度場發射穿透式電子顯微鏡 (FETEM 44 3.3.7 X-ray繞射分析儀 (X-ray Diffractometer, XRD) 45 3.3.8 X射線光電子能譜儀 (X-ray Photoelectron Spectrum, XPS) 46 3.4 實驗步驟 47 3.4.1 基材清洗 48 3.4.2 元件製備 49 第四章 結果與討論 55 4.1 Cu2O與Ti單層膜之材料特性分析 55 4.1.1 Cu2O薄膜之XRD分析 55 4.1.2 Cu2O之膜厚量測 56 4.1.3 Ti電極之膜厚量測 58 4.1.4 Ti電極之XRD分析 58 4.2 Ti/Cu2O (130 nm)/Ti材料特性與電性分析 59 4.2.1 Ti/Cu2O (130 nm)/Ti元件之XRD分析 59 4.2.2 Ti/Cu2O (130 nm)/Ti元件退之高解析微結構與成分分析 60 4.2.3 Ti/Cu2O (130 nm)/Ti元件退火後之高解析微結構與成分分析 63 4.2.4 Ti/Cu2O (130 nm)/Ti退火元件之縱深分析 69 4.2.5 Ti/Cu2O (130 nm)/Ti未退火元件之電性量測 71 4.2.6 Ti/Cu2O (130 nm)/Ti退火元件之電性量測 73 4.3 Ti/Cu2O (25 nm)/Ti材料特性與電性分析 79 4.3.1 Ti/Cu2O (25 nm)/Ti元件之XRD分析 79 4.3.2 Ti/Cu2O (25 nm)/Ti元件之高解析微結構與成分分析 80 4.3.3 Ti/Cu2O (25 nm)/Ti退火元件之縱深分析 84 4.3.4 Ti/Cu2O (25 nm)/Ti未退火元件之電性量測 87 4.3.5 Ti/Cu2O (25 nm)/Ti退火元件之電性量測 91 4.4 Cu/TiOx/Ti元件製作與分析 97 4.4.1 Cu/TiOx/Ti元件之電性量測 98 4.4.2 Cu/TiOx/Ti元件之漏電傳導機制分析 99 4.5 Ti/Cu2O/Ti 其他厚度 (35 nm、70 nm) 退火元件之電性量測 101 第五章 結論 104 第六章 未來展望 105 參考文獻 106 附錄 114

    [1] H. Ishiwara, "Impurity substitution effects in BiFeO3 thin films-From a viewpoint of FeRAM applications", Current Applied Physics 12 (2012) 603-611.
    [2] N. Settera, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H.Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V.Taylor, T. Yamada, S. Streiffer, "Ferroelectric thin films: Review of materials, properties, and applications", Journal of Applied Physics 100 (2006) 051606.
    [3] R. C. Sousa, I. L. Prejbeanu, "Non-volatile magnetic random access memories (MRAM)" , Comptes Rendus Physique 6 (2005) 1013-1021.
    [4] G. A. Gibson, A. Chaiken, T. Hurst, "Phase-change data storage:Recording technologies", Encyclopedia of Materials: Science and Technology (2007) 0-08-043152-6, 1-4.
    [5] A. Sawa, "Resistive switching in transition metal oxides", Materials Today 11 (2008) 28-36.
    [6] J. Shin, G. Choi, J. Woo, J. Park, S. Park, W. Lee, S. Kim, M. Son, H. Hwang, "MIM-type cell selector for high-density and low-power cross-point memoryapplication", Microelectronic Engineering 93 (2012) 81-84.
    [7] H.-S.Philip Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai, “Metal-oxide RRAM”, Proceedings of the IEEE 100 (2012) 1951-1970.
    [8] S.-H. Jo, K.-H. Kim, W. Lu, “High-Density Crossbar Arrays Based on a Si Memristive System”, Nano Letters 9 (2009) 870-874.
    [9] E. C. Linn, Complementary resistive switches, Dissertation Rheinisch - Westfälische Technische Hochschule Aachen (2012).
    [10] J. V. D. Hurk, V. Havel, E. Linn, R. Waser, I. Valov, “Ag/GeSx/Pt-based complementary resistive switches for hybrid CMOS/Nanoelectronic logic and memory architectures”, Scientific Reports 3 (2013) 2856.
    [11] J. J. Yang, M.-X. Zhang, M. D. Pickett, F. Miao, J. P. Strachan, W.-D. Li, Wei Yi1, Douglas A. A. Ohlberg, Byung Joon Choi1, Wei Wu, Janice H. Nickel1, G. Medeiros-Ribeiro, R. S. Williams, “Engineering nonlinearity into memristors for passive crossbar application”, Applied Physics Letters 100 (2012) 113501.
    [12] E. Linn, R. Rosezin, C. Kügeler, R.Waser, “Complementary resistive switches for passive nanocrossbar memories”, Nature Materials 9 (2010) 403-406.
    [13] S. Yu, J. Liang, Y. Wu, H-S PhilipWong, “Read/write schemes analysis for novel complementary resistive switches in passive crossbar memory arrays”, Nanotechnology 21 (2010) 465202.
    [14] H. Akinaga, H. Shima, "Resistive random access memory (ReRAM) based on metal oxides", Proceedings of the IEEE 98 (2010) 2237-2251.
    [15] K. Fujiwara, T. Nemoto, M.J. Rozenberg, Y. Nakamura, H. Takagi, “Resistance switching and formation of a conductive bridge in metal/binary oxide/metal structure for memory devices.” Japanese Journal of Applied Physics 47 (2008) 6266-6271.
    [16] G.-S. Park, X.-S. Li, D.-C. Kim, R.-J. Jung, M.-J. Lee, S. Seo, “Observation of electric-field induced Ni filament channels in polycrystalline NiOx film.” Applied Physics Letters 91 (2007) 222103.
    [17] U. Russo, C. Cagli, S. Spiga, E. Cianci, D. Ielmini, “Impact of electrode materials on resistive-switching memory programming.” IEEE Electron Device Letters 30 (2009) 817-819.
    [18] D. Ielmini, S. Spiga, F. Nardi, C. Cagli, A. Lamperti, E. Cianci, M. Fanciulli, “Scaling analysis of submicrometer nickel-oxide-based resistive switching memory devices.” Journal of Applied Physics 109 (2011) 034506.
    [19] J. Park, S. Jung, J. Lee, W. Lee , S. Kim , J. Shin ,H. Hwang “Resistive switching characteristics of ultra-thin TiOx”, Microelectronic Engineering 88 (2011) 1136-1139.
    [20] E. Hern´andez-Rodr´ıguez, A. M´arquez-Herrera, E. Zaleta-Alejandre, M Mel´endez-Lira, W de la Cruz, M Zapata-Torres, “Effect of electrode type in the resistive switching behaviour of TiO2 thin films”, Journal of Physics D: Applied Physics 46 (2013) 045103.
    [21] A. Sawa, “Resistive switching in transistion metal oxides”, Meterials Today 11 (2008) 28-36.
    [22] B. Streetman, S. Banerjee, Solid state electronic devices, Pearson Education International, 6th edition, USA (2006)
    [23] R. Waser, R. Dittmann, G. Staikov, K. Szot, "Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges", Advanced Materials 21 (2009) 2632-2663.
    [24] I. Valov, R. Waser, J. R Jameson,M, N Kozicki, “Electrochemical metallization memories-fundamentals, applications, prospects”, Nanotechnology 22 (2011) 254003.
    [25] R. Soni, P. Meuffels, A. Petraru, M. Hansen, M. Ziegler, O. Vavra, H. Kohlstedta, D. S. Jeong, “Bipolar switching polarity reversal by electrolyte layer sequence in electrochemical metallization cells with dual-layer solid electrolytes”, Nanoscale 5 (2013) 12598.
    [26] S. Peng, F. Zhuge, X. Chen, X. Zhu, B. Hu, L. Pan, B. Chen, R.-W. Li, “Mechanism for resistive switching in an oxide-based electrochemical metallization memory”, Applied Physics Letters 100 (2012) 072101.
    [27] D. A. Neamen, Semiconductor physics & devices, McGraw-Hill Science Inc, 2002.
    [28] B. L. Sharma, Metal-semiconductor Schottky Barrier Junctions and Their Applications, Plenum Press, New York, 1984.
    [29] Juan C. Ranua´rez, M.J. Deen , C.-H. Chen, “A review of gate tunneling current in MOS devices”, Microelectronics Reliability 46 (2006) 1939-1956.
    [30] F.-C. Chiu, “A review on conduction mechanisms in dielectric Films”, Advances in Materials Science and Engineering 2014 (2014) 1-18.
    [31] A. E. Rakhshani, “The role of space‐charge‐limited‐current conduction in evaluation of the electrical properties of thin Cu2O films”, Journal of Applied Physics 69 (1991) 2365.
    [32] A. Chen, S. Haddad, Y.-C. Wu, T.-N. Fang, Z. Lan, S. Avanzino, S. Pangrle, M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, M. Taguchi, “Non-volatile resistive switching for advanced memory applications”, Electron Devices Meeting (IEDM), 2010 IEEE International (2010) 746- 749.
    [33] S.-Y. Wang, C.-W. Huang, D.-Y. Lee, T.-Y. Tseng, and T.-C. Chang, “Multilevel resistive switching in Ti/Cu xO/Pt memory devices”, Journal of Applied Physics 108 (2010) 114110.
    [34] B. Singh, B. R. Mehta, D. Varandani1, A. V. Savu, J. Brugger, “CAFM investigations of filamentary conduction in Cu2O ReRAM devices fabricated using stencil lithography technique”, Nanotechnology 23 (2012) 495707.
    [35] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, “Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface”, Applied Physics Letters 85 (2004) 4073.
    [36] S.-Y. Wang, D.-Y. Lee, T.-Y. Tseng, C.-Y. Lin, “Effects of Ti top electrode thickness on the resistive switching behaviors of rf sputtered ZrO2 memory films”, Applied Physics Letters 95 (2009) 112904.
    [37] D.-Y. Lee, S.-Y. Wang, T.-Y. Tseng, “Ti-induced recovery phenomenon of resistive switching in ZrO2 thin films”, Journal of The Electrochemical Society, 157 (2010) G166-G169.
    [38] D. R. Gaskell, Introduction to the thermodynamics of materials, Fifth Edition, Taylor & Francis (2008).
    [39] 黃欣萍,「界面氧化鈦對Ti/ITO及ITO/Ti元件之雙極式電阻切換影響」,國立台灣科技大學材料科學與工程研究所碩士學位論文,民國103年。
    [40] S.Y. Lee, N. Mettlach, N. Nguyen, Y.M. Sun, J.M. White, “Copper oxide reduction through vacuum annealing”, Applied Surface Science 206 (2003) 102–109.
    [41] S.-M. Lin, J.-S. Huang, W.-C. Chang, T.C. Hou, H.-W. Huang, C.-H. Huang, S.-J. Lin, and Y.-L. Chueh, “Single-step formation of ZnO/ZnWOx bilayer structure via interfacial engineering for high performance and low energy consumption resistive memory with controllable high resistance states”, Appl. Mater. Interfaces 5 (2013) 7831-7837.
    [42] C. Chen, S. Gao, G. -S. Tang, H. -D. Fu, G. -Y. Wang, C. Song, F. Zeng, F. Pan, “Effect of electrode materials on AlN-based bipolar and complementary resistive switching”, ACS Applied Materials & Interface 5 (2013) 1793-1799.
    [43] A. R. Lee, Y. C. Bae, H. S. Im, J. P. Hong, “Complementary resistive switching mechanism in Ti-based triple TiOx/TiN/TiOx and TiOx/TiOxNy/TiOx matrix”, Applied Surface Science 274 (2013) 85-88.
    [44] Y. H. Do, J. S. Kwak, Y. C. Bae, J. H. Lee, Y. Kim, H. Im, J. P. Hong, “TiN electrode-induced bipolar resistive switching of TiO2 thin films”, Current Applied Physics 10 (2010) e71-e74.
    [45] J. S. Kwak, Y. H. Do , Y. C. Bae, H. S. Im, J. H. Yoo, M. G. Sung, Y. T. Hwang, J. P. Hong, “Roles of interfacial TiOxN1−x layer and TiN electrode on bipolar resistive switching in TiN/TiO2/TiN frameworks”, Applied Physics Letters 96 (2010) 223502.
    [46] S.-M. Lin, J.-Y. Tseng, T.-Y. Su, Y.-C. Shih, J.-S. Huang, C.-H. Huang, S.-J. Lin, Y.-L. Chueh, “Tunable multilevel storage of complementary resistive switching on single-step formation of ZnO/ZnWOx bilayer structure via interfacial engineering”, ACS Applied Material & Interfaces 6 (2014) 17686-17693.
    [47] J. Lee, J. Shin, D. Lee, W. Lee, S. Jung, M. Jo, J. Park, K. P. Biju, S. Kim, S. Park, H. Hwang, “Diode-less nano-scale ZrOx/HfOx RRAM device with excellent switching uniformity and reliability for high-density cross-point memory applications”, Electron Devices Meeting (IEDM), 2010 IEEE International (2010) 19.5.1-19.5.4.
    [48] G. Tang, F. Zeng, C. Chen, H. Liu, S. Gao, C. Song, Y. Lin, G. Chen, F, Pan, “Programmable complementary resistive switching behaviours of a plasma-oxidised titanium oxide nanolayer”, Nanoscale 5 (2013) 422-428.
    [49] X. Liu, S. M. Sadaf, S. Park, S. Kim, E. Cha, D. Lee, G.-Y. Jung, H. Hwang, “Complementary resistive switching in niobium oxide-based resistive memory devices”, IEEE Eelctron Device Letters 34 (2013) 235-237.
    [50] S. Kim , J. Park, J. Woo, C. Cho, W. Lee, J. Shin, G. Choi, S. Park, D. Lee, B. Hun Lee, H. Hwang, “Threshold-switching characteristics of a nanothin-NbO2-layer-based Pt/NbO2/Pt stack for use in cross-point-type resistive memories”, Microelectronic Engineering 107 (2013) 33-36.
    [51] 柯賢文,「表面與薄膜處理技術」,全華科技圖書股份有限公司,民國94年。
    [52] B.Chapman, Glow discharge process, John Wiley & Sons (1982)
    [53] H. V. Boening, Plasma science and technology, Cornell University Press,(1982)
    [54] C. A. Volkert, A. M. Minor, “Focused ion beam microscopy and micromachining”, MRS Bulletin 32 (2007) 389-399.
    [55] D. J. O’Connor, B. A. Sexton, R. St. C. Smart (Eds), Surface analysis methods in materials science, 2nd Edition, Springer (2003).
    [56] B. D. Cullity, S. R. Stock, Elements of x-ray diffraction, Prentice Hall, U.S.A (2001).
    [57] 楊秉融,「摻鋁氧化鋅對透明AZO/SiOx/ITO元件之電阻切換影響」,國立台灣科技大學材料科學與工程研究所碩士學位論文,民國102年。
    [58] A. Chen, S. Haddad, Y. C. Wu, Z. Lan, T. N. Fang, S. Kaza, “Switching characteristics of Cu2O metal-insulator-metal resistive memory”, Applied Physics Letters 91 (2007) 123517.
    [59] R. Dong, D. S. Lee, W. F. Xiang, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, S. N. Seo, M. B. Pyun, M. Hasan,H. Hwang, “Reproducible hysteresis and resistive switching in metal-CuxO-metal heterostructures”, Applied Physics Letters 90 (2007) 042107.
    [60] S. Fujishiro, H.L. Gegel, “Calculated zone axes and the standard electron diffraction patterns for titanium”, Journal of the Less Common Metals 14 (1968) 467-471.
    [61] H. Lv, M. Wang, H. Wan, Y. Song, W. Luo, P. Zhou, Tingao. Tang, Y. Lin, R. Huang, S. Song, J. G. Wu, H. M. Wu, M. H. Chi, “Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode”, Applied Physics Letters 94 (2009) 213502.
    [62] Y. C. Bae , A. R. Lee , J. B. Lee , J. H. Koo , K. C. Kwon , J. G. Park , H. S. Im ,J. P. Hong, “Oxygen ion drift-Induced complementary resistive switching in homo TiOx /TiOy/TiOx and hetero TiOx/TiON/TiOx triple multilayer frameworks”, Advanced Functional Materials 22 (2012) 709-716.
    [63] X. Yin, C. Battaglia, Y. Lin, K. Chen, M. Hettick, M. Zheng, C. -Y. Chen, D. Kiriya, A. Javey, “19.2% Efficient InP heterojunction solar cell with electron-selective TiO2 contact”, ACS Photonics 1 (2014) 1245-1250
    [64] W. Y.g Park, G. H. Kim, J. Y. Seok, K. M. Kim, S. J. Song, M. H. Lee, C. S. Hwang, “A Pt/TiO2/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays”, Nanotechnology 21 (2010) 195201.
    [65] Y.-C. Huang, H.-M. Lin, H.-C. Cheng, “Superior resistive switching characteristics of Cu-TiO2 based RRAM cell”, Nanoelectronics Conference (INEC), 2013 IEEE 5th International (2013) 236-239.
    [66] L.W Zhou, X. L. Shao, C. J. Chen, H. Jiang, J. Y. Wang, R. Chen, Q. M. Zong, J. S. Zhao, L. R. Lv, “Electroforming-free and multilevel resistance switching properties in Al/TiOx/Cu structure”, ECS Solid State Letters 4 (2015) 8-11.

    QR CODE