簡易檢索 / 詳目顯示

研究生: Fekadu Wubatu Fenta
Fekadu Wubatu Fenta
論文名稱: 水系可充電鋅離子電池的錳基氧化物正極材料設計及其性能與反應機制之研究
Manganese-Based Oxide Cathodes for Aqueous Rechargeable Zinc-Ion Batteries: Design, Performance, and Reaction Mechanism Study
指導教授: 黃炳照
BING-JOE HWANG
蘇威年
WEI-NIEN SU
吳溪煌
SHE-HUANG WU
口試委員: 吳乃立
Nae-Lih Wu
鄧熙聖
Hsisheng Teng
黃炳照
BING-JOE HWANG
蘇威年
WEI-NIEN SU
吳溪煌
SHE-HUANG WU
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 161
中文關鍵詞: 水系鋅離子電池水系電解質錳基氧化物正極離子摻雜
外文關鍵詞: Aqueous Zn-Ion Batteries, Aqueous Electrolyte, Manganese-based Oxide Cathodes, Ion Doping
相關次數: 點閱:244下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於日益增加的能源危機和環境問題,尋求高效的可充電電池在近年來獲得研究人員的極大關注。儘管過去鋰離子電池(LIBs)已被用作重要的儲能裝置,然而它們的有機電解質之易燃特性和鋰金屬資源稀缺問題正是使人們尋找其他替代可充電電池的動力。
    使用水性電解質的水系可充電電池由於其高安全性、環保和水性電解質的高離子傳導性而受到極大關注。特別是偏酸性電解質的水性可充電鋅離子電池(ZIBs),由於其成本低、理論電容量高(820 mAh g-1)與氧化還原電勢相對較低(-0.76 V vs. SHE),因此與LIBs相比,使用鋅金屬作為負極被認為很有潛力。到目前為止,水系ZIBs的效能研究上已顯示出可觀的進步,但仍有一些問題需要克服,如高性能正極材料的設計是提高能量密度的主要挑戰之一。
    錳基材料是具有不同多晶型的二氧化錳,如-MnO2、-MnO2、-MnO2、 -MnO2和其他低價態錳氧化物(MnO、Mn2O3、Mn3O4),在水系ZIBs中表現出良好的電化學性能,因為其在地球上的豐度高、能量密度高、成本低以及多價晶體結構的結果。然而,由於它們的低電導率、結構穩定性高、結構轉變和自身氧化還原反應引起的錳溶解,使它們在電池循環過程中造成嚴重的電容量衰減。在這項研究中,我們專注於通過金屬摻雜來改善錳基氧化物正極材料的性能並研究其儲能機制。
    在這項工作中,摻雜Cu0.09MnO將設計成水系ZIBs的高容量正極材料。電化學機制研究結果表明,初始的Cu0.09MnO奈米球(nanospheres) 於H+/Zn2+離子的共遷入/遷出轉化為Cu0.01MnO2.nH2O奈米花(nanoflowers),然後在Cu-MnO2.nH2O和ZnCu-MnO2.nH2O / MnOOH之間進行可逆相變。利用不同的非臨場表徵技術系統地研究Cu0.044MnO的基本相變化和活化的Cu-MnO2.nH2O的儲能機制。結果表明,活化的Cu-MnO2.nH2O具有錳空位,這會明顯誘發Cu-MnO2.nH2O晶格中的氧化還原反應以進行電荷補償。結果顯示,Zn / Cu-MnO2.nH2O電池在0.5C時可提供320 mAh g-1的高比容量,且具有長圈數循環壽命,值得一提的是,在1C下1000次循環中可保持70%的電容量。此外,探討了在沒有MnSO4添加劑下Cu-MnO電極的電化學特性及結構演變,除電容量衰退快速外,證明了與加入MnSO4添加劑後相似的行為。
    在第二項工作中,我們通過-MnO2的結構工程設計了Ag0.4Mn8O16,並通過Ag +摻入ZIBs正極材料,證明其電化學性能的提升和儲能機制。在材料製備上,銀奈米粒子很好地分散在Mn-MnO2的奈米棒中,從而導致更大的表面積,更小的奈米棒和在Ag0.4Mn8O16結構中所產生的氧空位。觀察到H+ / Zn2+離子的共遷入/遷出和Ag+的氧化/還原以及在Ag0.4Mn8O16和ZnxMn8O16/MnOOH之間的可逆相變/轉化反應。結果顯示,Zn/Ag0.4Mn8O16電池具有出色的電化學性能,例如優異的倍率性能:與-MnO2相比(在0.1 A g-1時為227 mAh g-1),0.1 A g-1時的高比容量是306 mAh g-1和1 A g-1時的800次循環的長期循環壽命。
    最後,研究鉀離子(K+)濃度對電子電導率和離子擴散率的影響。-MnO2中更多的K+不僅通過使用Mn3+ / Mn4+混合物增加電子躍遷以增強電子電導率,並通過穿隧擴張來改善離子擴散率。


    The search for high efficient rechargeable batteries has attracted researcher’s great attention due to the increasing energy crisis and environmental concerns. Although lithium-ion batteries (LIBs) have been employed as crucial energy storage devices recently, their use of flammable organic electrolytes and scarce resources are driving the search for alternative rechargeable batteries.
    Aqueous rechargeable batteries employing water-based electrolytes are drawing tremendous attention owing to their high safety, environmentally friendly, and ionic conductivity of aqueous electrolytes. Particularly, aqueous rechargeable zinc-ion batteries (ZIBs) using mild acidic electrolytes are considered promising compared to LIBs due to low cost, high theoretical capacity (820 mAh g-1), and relatively low redox potential (-0.76 V vs SHE) of Zn metal anode. So far, aqueous ZIBs have been shown considerable progress, but there are still issues that should be overcome. The design and development of high-performance cathodes are one of the main problems to boost energy density.
    Manganese-based materials such as MnO2 with different polymorphs (-MnO2,-MnO2, -MnO2, -MnO2) and other lower valance manganese oxides (MnO, Mn2O3, Mn3O4) have revealed good electrochemical performance in aqueous ZIBs as a result of their high abundance on earth, high energy density, low cost, and multi-valent crystal structures. However, they undergo capacity fading during cycling because of their low conductivity, low structural stability, structural transformations, and manganese dissolution caused by the disproportionation reaction. In this study, we focus on improving the performance and elucidating the energy storage mechanism of manganese-based oxide cathodes through transition metal doping for ZIBs.
    In the first work, Cu doped and manganese/oxygen-deficient Cu0.09MnO is designed as high capacity cathode for aqueous ZIBs. Electrochemical mechanism investigation results show that the initial Cu0.09MnO nanospheres are transformed to Cu0.01MnO2.nH2O nanoflowers for co-insertion/extraction of H+/Zn2+ ions followed by reversible phase transformation between Cu-MnO2.nH2O and ZnCu-MnO2.nH2O/MnOOH. The underlying phase transformation of Cu0.044MnO and the energy storage mechanism of the activated Cu-MnO2.nH2O are systematically investigated with different ex-situ characterization techniques. The activated Cu-MnO2.nH2O has manganese vacancies, which remarkably triggers lattice oxygen redox reaction in Cu-MnO2.nH2O for charge compensation. As a result, the Zn/Cu-MnO2.nH2O batteries delivered a high specific capacity of 320 mAh g-1 at 0.5C and long-term cycling life with 70% capacity retention over 1000 cycles at 1C. In addition, the electrochemical properties and structural evolution of Cu-MnO electrodes were investigated without MnSO4 additive, demonstrating similar behavior with that of MnSO4 additive except the capacity fades rapidly.
    In the second work, we designed Ag0.4Mn8O16 by structural engineering of -MnO2 via Ag+ incorporation for ZIBs cathode material and demonstrate the electrochemical performance and energy storage mechanism. The sliver species are well dispersed in the tunnels of -MnO2, which results in higher surface area, smaller nanorods, and oxygen vacancies in Ag0.4Mn8O16 structure. The H+/Zn2+ insertion/extraction and Ag+ reduction/oxidation accompanied by the reversible phase transformation/conversion reaction between Ag0.4Mn8O16 and ZnxMn8O16/MnOOH are observed. As a result, Zn/Ag0.4Mn8O16 batteries delivered an excellent electrochemical performance such as impressive rate capability, high specific capacity of 306 mAh g-1 at 0.1 A g-1, and long-term cycling life over 800 cycles at 1 A g-1 compared to -MnO2 (227 mAh g-1 at 0.1 A g-1).
    Lastly, the role of tunnel potassium (K+) concentration on the electronic conductivity and ion diffusivity was investigated. The more tunnel K+ in -MnO2 not only enhances the electronic conductivity through increasing electron hopping using Mn3+/Mn4+ mixtures but also improves ion diffusivity via tunnel expansion.

    摘要 i Abstract v Acknowledgment viii Table of contents ix Index of figures xiii Index of tables xix List of units and abbreviations xxi Chapter 1: General background 1 1.1. Energy sources and their storage systems 1 1.2. Rechargeable batteries 1 1.3. Aqueous rechargeable zinc-ion batteries (ZIBs) 3 1.4. Components of aqueous ZIBs 5 1.5. Device structure and working principles of aqueous ZIBs 5 1.6. Challenges of aqueous ZIBs 7 1.7. Anode materials 8 1.8. Aqueous electrolytes 9 1.9. Current collectors 10 1.10. Cathode materials 10 1.10.1. Manganese-based cathodes 11 1.10.2. Vanadium (V)-based cathodes 12 1.10.3. Prussian Blue, organic compound, and other types of cathode materials 14 Chapter 2: Electrochemistry and Zn2+ storage mechanism of manganese-based oxide cathodes 15 2.1. Introduction 15 2.2. Energy storage mechanism in manganese oxide cathode materials 16 2.2.1. Zn2+ insertion/extraction mechanism 16 2.2.2. Chemical conversion reaction mechanism 17 2.2.3. H+ and Zn2+ Co-insertion/extraction Mechanism 19 2.2.4. Dissolution-deposition reaction mechanism 20 2.3. Challenges of Mn-based oxide cathode materials 23 2.4. Strategies to improve stability and performance of Mn-based cathodes 24 2.4.1. Nanostructure design 24 2.4.2. Pre-intercalation of ions and molecules 25 2.4.3. Electrolyte additive 27 2.4.4. Surface coating 28 2.4.5. Defect engineering 29 2.5. Motivation and objectives 35 2.5.1. Motivation 35 2.5.2. Objectives of the study 36 Chapter 3: Materials, experimental methods, and characterization techniques 37 3.1. Chemicals and reagents 37 3.2. Experimental section 39 3.2.1. Synthesis of Cu-MnO nanospheres 39 3.2.2. Synthesis of Ag0.4Mn8O16 nanorods 39 3.2.3. Synthesis of -MnO2 nanofibers 40 3.3. Cathode preparation 40 3.4. Materials characterization 41 3.5. Electrochemical measurement 42 Chapter 4: Electrochemical transformation reaction of Cu-MnO in aqueous rechargeable zinc-ion batteries for high performance and long cycle life 43 4.1. Introduction 43 4.2. Results and discussion 45 4.2.1. Synthesis and characterization of Cu-MnO nanospheres 45 4.2.2. Phase transformation of Cu-MnO Nanospheres 53 4.2.3. Energy storage mechanism of Zn/Cu-MnO2.H2O batteries 61 4.2.4. Electrochemical tests 66 4.2.5. Summary 73 Chapter 5: Structural engineering of -MnO2 cathode by Ag+ incorporation for high capacity aqueous zinc-ion batteries 75 5.1. Introduction 75 5.2. Results and Discussion 77 5.2.1. Morphological and structural characterization of Ag0.4Mn8O16 nanorods 77 5.2.2. Electrochemical performance of Ag0.4Mn8O16 cathode 83 5.2.3. Energy storage mechanism 89 5.2.4. Summary 96 Chapter 6: The role of tunnel K+ concentration on the performance of -MnO2 cathode materials for rechargeable aqueous zinc-ion batteries 97 6.1. Introduction 97 6.2. Results and discussion 98 6.2.1. Structural and morphological characterization of -MnO2 nanofibers 98 6.2.2. Electrochemical tests 101 6.2.3. Energy storage mechanism 105 6.2.4. Summary 107 Chapter 7: Conclusions and perspectives 109 7.1. Conclusions 109 7.2. Perspectives 111 Reference 113 List of research papers 133 Conference presentations 134 Award 135

    1. Zachos, J. C.; Dickens, G. R.; Zeebe, R. E., An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 2008, 451 (7176), 279-283.
    2. Schubert, C., Renewable energy: making fuels for the future. Nature 2011, 474 (7352), 531-533.
    3. Yu, P.; Zeng, Y.; Zhang, H.; Yu, M.; Tong, Y.; Lu, X., Flexible Zn‐ion batteries: recent progresses and challenges. Small 2019, 15 (7), 1804760.
    4. Simon, P.; Gogotsi, Y.; Dunn, B., Where do batteries end and supercapacitors begin? Science 2014, 343 (6176), 1210-1211.
    5. Larcher, D.; Tarascon, J.-M., Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7 (1), 19-29.
    6. Demir-Cakan, R.; Palacin, M. R.; Croguennec, L., Rechargeable aqueous electrolyte batteries: from univalent to multivalent cation chemistry. J. Mater. Chem. A 2019, 7 (36), 20519-20539.
    7. Battlebury, D. R., A high performance lead–acid battery for EV applications. J. Power Sources 1999, 80 (1-2), 7-11.
    8. Goodenough, J. B., Evolution of strategies for modern rechargeable batteries. Acc. Chem. Res. 2013, 46 (5), 1053-1061.
    9. Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G., The lithium-ion battery: State of the art and future perspectives. Renew. Sust. Energ. Rev. 2018, 89, 292-308.
    10. Xia, C.; Guo, J.; Lei, Y.; Liang, H.; Zhao, C.; Alshareef, H. N., Rechargeable aqueous zinc‐ion battery based on porous framework zinc pyrovanadate intercalation cathode. Adv. Mater. 2018, 30 (5), 1705580.
    11. Zhang, N.; Dong, Y.; Jia, M.; Bian, X.; Wang, Y.; Qiu, M.; Xu, J.; Liu, Y.; Jiao, L.; Cheng, F., Rechargeable aqueous Zn–V2O5 battery with high energy density and long cycle life. ACS Energy Lett. 2018, 3 (6), 1366-1372.
    12. Li, W.; Dahn, J. R.; Wainwright, D. S., Rechargeable lithium batteries with aqueous electrolytes. Science 1994, 264 (5162), 1115-1118.
    13. Huang, J.; Guo, Z.; Ma, Y.; Bin, D.; Wang, Y.; Xia, Y., Recent progress of rechargeable batteries using mild aqueous electrolytes. Small Methods 2019, 3 (1), 1800272.
    14. Song, M.; Tan, H.; Chao, D.; Fan, H. J., Recent advances in Zn‐ion batteries. Adv. Funct. Mater. 2018, 28 (41), 1802564.
    15. Zhang, X.; Lv, R.; Tang, W.; Li, G.; Wang, A.; Dong, A.; Liu, X.; Luo, J., Challenges and Opportunities for Multivalent Metal Anodes in Rechargeable Batteries. Adv. Funct. Mater. 2020, 2004187.
    16. Jia, X.; Liu, C.; Neale, Z. G.; Yang, J.; Cao, G., Active Materials for Aqueous Zinc Ion Batteries: Synthesis, Crystal Structure, Morphology, and Electrochemistry. Chem. Rev. 2020, 120 (15), 7795-7866.
    17. Chao, D.; Zhou, W.; Xie, F.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S.-Z., Roadmap for advanced aqueous batteries: From design of materials to applications. Sci. Adv. 2020, 6 (21), eaba4098.
    18. Mainar, A. R.; Iruin, E.; Colmenares, L. C.; Blázquez, J. A.; Grande, H. J., Systematic cycle life assessment of a secondary zinc–air battery as a function of the alkaline electrolyte composition. Energy Sci. Eng. 2018, 6 (3), 174-186.
    19. Shi, Y.; Chen, Y.; Shi, L.; Wang, K.; Wang, B.; Li, L.; Ma, Y.; Li, Y.; Sun, Z.; Ali, W., An Overview and Future Perspectives of Rechargeable Zinc Batteries. Small 2020, 16, 2000730.
    20. Wang, F.; Borodin, O.; Gao, T.; Fan, X.; Sun, W.; Han, F.; Faraone, A.; Dura, J. A.; Xu, K.; Wang, C., Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17 (6), 543-549.
    21. R. Mainar, A.; Leonet, O.; Bengoechea, M.; Boyano, I.; de Meatza, I.; Kvasha, A.; Guerfi, A.; Alberto Blázquez, J., Alkaline aqueous electrolytes for secondary zinc–air batteries: an overview. Int. J. Energy Res. 2016, 40 (8), 1032-1049.
    22. Hugot-Le Goff, A.; Joiret, S.; Saidani, B.; Wiart, R., In-situ Raman spectroscopy applied to the study of the deposition and passivation of zinc in alkaline electrolytes. J. electroanal. chem. 1989, 263 (1), 127-135.
    23. Powers, R.; Breiter, M., The anodic dissolution and passivation of zinc in concentrated potassium hydroxide solutions. J. Electrochem. Soc. 1969, 116 (6), 719.
    24. Yamamoto, T.; Shoji, T., Rechargeable Zn vertical stroke ZnSO/sub 4/vertical stroke MnO/sub 2/-type cells. Inorg. Chim. Acta 1986, 117, L27.
    25. Xu, C.; Du, H.; Li, B.; Kang, F.; Zeng, Y., Reversible insertion properties of zinc ion into manganese dioxide and its application for energy storage. ESL 2009, 12 (4), A61.
    26. Xu, C.; Li, B.; Du, H.; Kang, F., Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. Int. Ed. 2012, 124 (4), 957-959.
    27. Yan, J.; Wang, J.; Liu, H.; Bakenov, Z.; Gosselink, D.; Chen, P., Rechargeable hybrid aqueous batteries. J. Power Sources 2012, 216, 222-226.
    28. Li, H.; Ma, L.; Han, C.; Wang, Z.; Liu, Z.; Tang, Z.; Zhi, C., Advanced rechargeable zinc-based batteries: Recent progress and future perspectives. Nano Energy 2019, 62, 550-587.
    29. Zhang, N.; Chen, X.; Yu, M.; Niu, Z.; Cheng, F.; Chen, J., Materials chemistry for rechargeable zinc-ion batteries. Chem. Soc. Rev. 2020, 49, 4203--4219.
    30. Goodenough, J. B.; Kim, Y., Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22 (3), 587-603.
    31. Fu, Y.; Wei, Q.; Zhang, G.; Wang, X.; Zhang, J.; Hu, Y.; Wang, D.; Zuin, L.; Zhou, T.; Wu, Y., High‐Performance Reversible Aqueous Zn‐Ion Battery Based on Porous MnOx Nanorods Coated by MOF‐Derived N‐Doped Carbon. Adv. Energy Mater. 2018, 8 (26), 1801445.
    32. Liu, C.; Massé, R.; Nan, X.; Cao, G., A promising cathode for Li-ion batteries: Li3V2(PO4)3. Energy Storage Mater. 2016, 4, 15-58.
    33. Konarov, A.; Voronina, N.; Jo, J. H.; Bakenov, Z.; Sun, Y.-K.; Myung, S.-T., Present and future perspective on electrode materials for rechargeable zinc-ion batteries. ACS Energy Lett. 2018, 3 (10), 2620-2640.
    34. Cao, Z.; Zhuang, P.; Zhang, X.; Ye, M.; Shen, J.; Ajayan, P. M., Strategies for Dendrite‐Free Anode in Aqueous Rechargeable Zinc Ion Batteries. Adv. Energy Mater. 2020, 10 (30), 2001599.
    35. Fu, J.; Cano, Z. P.; Park, M. G.; Yu, A.; Fowler, M.; Chen, Z., Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Adv. Mater. 2017, 29 (7), 1604685.
    36. Fang, G.; Zhou, J.; Pan, A.; Liang, S., Recent advances in aqueous zinc-ion batteries. ACS Energy Lett. 2018, 3 (10), 2480-2501.
    37. Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P., Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1 (5), 1-7.
    38. Hao, J.; Li, X.; Zhang, S.; Yang, F.; Zeng, X.; Zhang, S.; Bo, G.; Wang, C.; Guo, Z., Designing Dendrite‐Free Zinc Anodes for Advanced Aqueous Zinc Batteries. Adv. Funct. Mater. 2020, 2001263.
    39. Mainar, A. R.; Iruin, E.; Colmenares, L. C.; Kvasha, A.; De Meatza, I.; Bengoechea, M.; Leonet, O.; Boyano, I.; Zhang, Z.; Blazquez, J. A., An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc. J. Energy Storage 2018, 15, 304-328.
    40. Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J., Cation-deficient spinel ZnMn2O4 cathode in Zn (CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138 (39), 12894-12901.
    41. Soundharrajan, V.; Sambandam, B.; Kim, S.; Alfaruqi, M. H.; Putro, D. Y.; Jo, J.; Kim, S.; Mathew, V.; Sun, Y.-K.; Kim, J., Na2V6O16·3H2O barnesite nanorod: an open door to display a stable and high energy for aqueous rechargeable Zn-ion batteries as cathodes. Nano Lett. 2018, 18 (4), 2402-2410.
    42. Yue, Y.; Liang, H., 3D Current Collectors for Lithium‐Ion Batteries: A Topical Review. Small Methods 2018, 2 (8), 1800056.
    43. Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J., Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8 (1), 1-9.
    44. Zhu, C.; Fang, G.; Liang, S.; Chen, Z.; Wang, Z.; Ma, J.; Wang, H.; Tang, B.; Zheng, X.; Zhou, J., Electrochemically induced cationic defect in MnO intercalation cathode for aqueous zinc-ion battery. Energy Storage Mater. 2020, 24, 394-401.
    45. Jiang, B.; Xu, C.; Wu, C.; Dong, L.; Li, J.; Kang, F., Manganese sesquioxide as cathode material for multivalent zinc ion battery with high capacity and long cycle life. Electrochim. Acta 2017, 229, 422-428.
    46. Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y., Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat. Commun. 2018, 9 (1), 1-8.
    47. Alfaruqi, M. H.; Mathew, V.; Gim, J.; Kim, S.; Song, J.; Baboo, J. P.; Choi, S. H.; Kim, J., Electrochemically induced structural transformation in a γ-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 2015, 27 (10), 3609-3620.
    48. Mathew, V.; Sambandam, B.; Kim, S.; Kim, S.; Park, S.; Lee, S.; Alfaruqi, M. H.; Soundhararajan, V.; Islam, S.; Putro, D. Y., Manganese and Vanadium Oxide Cathodes for Aqueous Rechargeable Zinc-ion Batteries: A Focused View on Performance, Mechanism and Developments. ACS Energy Lett. 2020, 5, 2376−2400.
    49. Tang, B.; Shan, L.; Liang, S.; Zhou, J., Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12 (11), 3288-3304.
    50. Tang, H.; Peng, Z.; Wu, L.; Xiong, F.; Pei, C.; An, Q.; Mai, L., Vanadium-based cathode materials for rechargeable multivalent batteries: challenges and opportunities. EER 2018, 1 (2), 169-199.
    51. Wan, F.; Niu, Z., Design Strategies for Vanadium‐based Aqueous Zinc‐Ion Batteries. Angew. Chem. Int. Ed. 2019, 58 (46), 16358-16367.
    52. Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F., A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1 (10), 1-8.
    53. Paolella, A.; Faure, C.; Timoshevskii, V.; Marras, S.; Bertoni, G.; Guerfi, A.; Vijh, A.; Armand, M.; Zaghib, K., A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives. J. Mater. Chem. A 2017, 5 (36), 18919-18932.
    54. Trócoli, R.; La Mantia, F., An aqueous zinc‐ion battery based on copper hexacyanoferrate. ChemSusChem 2015, 8 (3), 481-485.
    55. Zhang, L.; Chen, L.; Zhou, X.; Liu, Z., Towards high‐voltage aqueous metal‐ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 2015, 5 (2), 1400930.
    56. Ma, L.; Chen, S.; Long, C.; Li, X.; Zhao, Y.; Liu, Z.; Huang, Z.; Dong, B.; Zapien, J. A.; Zhi, C., Achieving High‐Voltage and High‐Capacity Aqueous Rechargeable Zinc-Ion Battery by Incorporating Two‐Species Redox Reaction. Adv. Energy Mater. 2019, 9 (45), 1902446.
    57. Liu, Z.; Pulletikurthi, G.; Endres, F., A prussian blue/zinc secondary battery with a bio-ionic liquid–water mixture as electrolyte. ACS appl. Mater. Interfaces 2016, 8 (19), 12158-12164.
    58. Lin, K.; Chen, Q.; Gerhardt, M. R.; Tong, L.; Kim, S. B.; Eisenach, L.; Valle, A. W.; Hardee, D.; Gordon, R. G.; Aziz, M. J., Alkaline quinone flow battery. Science 2015, 349 (6255), 1529-1532.
    59. Ma, L.; Chen, S.; Li, H.; Ruan, Z.; Tang, Z.; Liu, Z.; Wang, Z.; Huang, Y.; Pei, Z.; Zapien, J. A., Initiating a mild aqueous electrolyte Co3O4/Zn battery with 2.2 V-high voltage and 5000-cycle lifespan by a Co (III) rich-electrode. Energy Environ. Sci. 2018, 11 (9), 2521-2530.
    60. Xu, W.; Sun, C.; Zhao, K.; Cheng, X.; Rawal, S.; Xu, Y.; Wang, Y., Defect engineering activating (Boosting) zinc storage capacity of MoS2. Energy Storage Mater. 2019, 16, 527-534.
    61. Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J.; Pham, D. T.; Jo, J.; Xiu, Z.; Mathew, V.; Kim, J., A layered δ-MnO2 nanoflake cathode with high zinc-storage capacities for eco-friendly battery applications. Electrochem. Commun. 2015, 60, 121-125.
    62. Sun, W.; Wang, F.; Hou, S.; Yang, C.; Fan, X.; Ma, Z.; Gao, T.; Han, F.; Hu, R.; Zhu, M., Zn/MnO2 battery chemistry with H+ and Zn2+ coinsertion. J. Am. Chem. Soc. 2017, 139 (29), 9775-9778.
    63. Oberholzer, P.; Tervoort, E.; Bouzid, A.; Pasquarello, A.; Kundu, D., Oxide versus nonoxide cathode materials for aqueous Zn batteries: an insight into the charge storage mechanism and consequences thereof. ACS appl. Mater. Interfaces 2018, 11 (1), 674-682.
    64. Chao, D.; Zhou, W.; Ye, C.; Zhang, Q.; Chen, Y.; Gu, L.; Davey, K.; Qiao, S. Z., An Electrolytic Zn–MnO2 Battery for High‐Voltage and Scalable Energy Storage. Angew. Chem. Int. Ed. 2019, 58 (23), 7823-7828.
    65. Zhong, C.; Liu, B.; Ding, J.; Liu, X.; Zhong, Y.; Li, Y.; Sun, C.; Han, X.; Deng, Y.; Zhao, N., Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nat. Energy 2020, 5, 440–449.
    66. Xue, T.; Fan, H. J., From aqueous Zn-ion battery to Zn-MnO2 flow battery: A brief story. J. Energy Chem. 2021, 54, 194–201.
    67. Novak, P.; Desilvestro, J., Electrochemical insertion of magnesium in metal oxides and sulfides from aprotic electrolytes. J. Electrochem. Soc. 1993, 140 (1), 140.
    68. Mizuno, Y.; Okubo, M.; Hosono, E.; Kudo, T.; Zhou, H.; Oh-ishi, K., Suppressed activation energy for interfacial charge transfer of a Prussian blue analog thin film electrode with hydrated ions (Li+, Na+, and Mg2+). J. Phys. Chem. C 2013, 117 (21), 10877-10882.
    69. Islam, S.; Alfaruqi, M. H.; Mathew, V.; Song, J.; Kim, S.; Kim, S.; Jo, J.; Baboo, J. P.; Pham, D. T.; Putro, D. Y., Facile synthesis and the exploration of the zinc storage mechanism of β-MnO2 nanorods with exposed (101) planes as a novel cathode material for high performance eco-friendly zinc-ion batteries. J. Mater. Chem. A 2017, 5 (44), 23299-23309.
    70. Alfaruqi, M. H.; Islam, S.; Putro, D. Y.; Mathew, V.; Kim, S.; Jo, J.; Kim, S.; Sun, Y.-K.; Kim, K.; Kim, J., Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochim. Acta 2018, 276, 1-11.
    71. Jain, A.; Ong, S.; Hautier, G.; Chen, W.; Richards, W.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G., APL Mater. 2013, 1, 011002; b) JE Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton. JOM 2013, 65, 1501.
    72. Liu, M.; Rong, Z.; Malik, R.; Canepa, P.; Jain, A.; Ceder, G.; Persson, K. A., Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations. Energy Environ. Sci. 2015, 8 (3), 964-974.
    73. Cheng, F.; Zhao, J.; Song, W.; Li, C.; Ma, H.; Chen, J.; Shen, P., Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorg. Chem. 2006, 45 (5), 2038-2044.
    74. Guo, C.; Liu, H.; Li, J.; Hou, Z.; Liang, J.; Zhou, J.; Zhu, Y.; Qian, Y., Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery. Electrochim. Acta 2019, 304, 370-377.
    75. Ren, H.; Zhao, J.; Yang, L.; Liang, Q.; Madhavi, S.; Yan, Q., Inverse opal manganese dioxide constructed by few-layered ultrathin nanosheets as high-performance cathodes for aqueous zinc-ion batteries. Nano Res. 2019, 12 (6), 1347-1353.
    76. Wang, Y.; Wu, Z.; Jiang, L.; Tian, W.; Zhang, C.; Cai, C.; Hu, L., A long-lifespan, flexible zinc-ion secondary battery using a paper-like cathode from single-atomic layer MnO2 nanosheets. Nanoscale Advances 2019, 1 (11), 4365-4372.
    77. Nam, K. W.; Kim, H.; Choi, J. H.; Choi, J. W., Crystal water for high performance layered manganese oxide cathodes in aqueous rechargeable zinc batteries. Energy Environ. Sci. 2019, 12 (6), 1999-2009.
    78. Wu, B.; Zhang, G.; Yan, M.; Xiong, T.; He, P.; He, L.; Xu, X.; Mai, L., Graphene Scroll‐Coated α‐MnO2 Nanowires as High‐Performance Cathode Materials for Aqueous Zn‐Ion Battery. Small 2018, 14 (13), 1703850.
    79. Ko, J. S.; Sassin, M. B.; Parker, J. F.; Rolison, D. R.; Long, J. W.; Fuels, Combining battery-like and pseudocapacitive charge storage in 3D MnOx@ carbon electrode architectures for zinc-ion cells. Sustain. Energy Fules 2018, 2 (3), 626-636.
    80. Liu, Y.; Chi, X.; Han, Q.; Du, Y.; Huang, J.; Liu, Y.; Yang, J., α-MnO2 nanofibers/carbon nanotubes hierarchically assembled microspheres: Approaching practical applications of high-performance aqueous Zn-ion batteries. J. Power Sources 2019, 443, 227244.
    81. Hu, P.; Yan, M.; Wang, X.; Han, C.; He, L.; Wei, X.; Niu, C.; Zhao, K.; Tian, X.; Wei, Q., Single-nanowire electrochemical probe detection for internally optimized mechanism of porous graphene in electrochemical devices. Nano Lett. 2016, 16 (3), 1523-1529.
    82. Xiong, T.; Yu, Z. G.; Wu, H.; Du, Y.; Xie, Q.; Chen, J.; Zhang, Y. W.; Pennycook, S. J.; Lee, W. S. V.; Xue, J., Defect Engineering of Oxygen‐Deficient Manganese Oxide to Achieve High‐Performing Aqueous Zinc Ion Battery. Adv. Energy Mater. 2019, 9 (14), 1803815.
    83. Han, M.; Huang, J.; Liang, S.; Shan, L.; Xie, X.; Yi, Z.; Wang, Y.; Guo, S.; Zhou, J., Oxygen Defects in β-MnO2 Enabling High-Performance Rechargeable Aqueous Zinc/Manganese Dioxide Battery. Iscience 2020, 23 (1), 100797.
    84. Fang, G.; Zhu, C.; Chen, M.; Zhou, J.; Tang, B.; Cao, X.; Zheng, X.; Pan, A.; Liang, S., Suppressing manganese dissolution in potassium manganate with rich oxygen defects engaged high‐energy‐density and durable aqueous zinc‐ion battery. Adv. Funct. Mater. 2019, 29 (15), 1808375.
    85. Tan, Q.; Li, X.; Zhang, B.; Chen, X.; Tian, Y.; Wan, H.; Zhang, L.; Miao, L.; Wang, C.; Gan, Y., Valence Engineering via In Situ Carbon Reduction on Octahedron Sites Mn3O4 for Ultra‐Long Cycle Life Aqueous Zn‐Ion Battery. Adv. Energy Mater. 2020, 2001050.
    86. Zhang, H.; Wang, J.; Liu, Q.; He, W.; Lai, Z.; Zhang, X.; Yu, M.; Tong, Y.; Lu, X., Extracting oxygen anions from ZnMn2O4: robust cathode for flexible all-solid-state Zn-ion batteries. Energy Storage Mater. 2019, 21, 154-161.
    87. Yadav, G. G.; Gallaway, J. W.; Turney, D. E.; Nyce, M.; Huang, J.; Wei, X.; Banerjee, S., Regenerable Cu-intercalated MnO2 layered cathode for highly cyclable energy dense batteries. Nat. Commun. 2017, 8 (1), 1-9.
    88. Koski, K. J.; Wessells, C. D.; Reed, B. W.; Cha, J. J.; Kong, D.; Cui, Y., Chemical intercalation of zerovalent metals into 2D layered Bi2Se3 nanoribbons. J. Am. Chem. Soc. 2012, 134 (33), 13773-13779.
    89. Deng, H.; Kang, S.; Ma, J.; Zhang, C.; He, H., Silver incorporated into cryptomelane-type Manganese oxide boosts the catalytic oxidation of benzene. Appl. Catal. B 2018, 239, 214-222.
    90. Yuan, Y.; Zhan, C.; He, K.; Chen, H.; Yao, W.; Sharifi-Asl, S.; Song, B.; Yang, Z.; Nie, A.; Luo, X., The influence of large cations on the electrochemical properties of tunnel-structured metal oxides. Nat. Commun. 2016, 7 (1), 1-9.
    91. Dunn, B.; Kamath, H.; Tarascon, J.-M., Electrical energy storage for the grid: a battery of choices. Science 2011, 334 (6058), 928-935.
    92. Wang, P.-F.; Guo, Y.-J.; Duan, H.; Zuo, T.-T.; Hu, E.; Attenkofer, K.; Li, H.; Zhao, X. S.; Yin, Y.-X.; Yu, X., Honeycomb-ordered Na3Ni1. 5M0. 5BiO6 (M= Ni, Cu, Mg, Zn) as high-voltage layered cathodes for sodium-ion batteries. ACS Energy Lett. 2017, 2 (12), 2715-2722.
    93. Luo, J. Y.; Xia, Y. Y., Aqueous lithium‐ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Adv. Funct. Mater. 2007, 17 (18), 3877-3884.
    94. Goodenough, J. B.; Park, K.-S., The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 2013, 135 (4), 1167-1176.
    95. Xie, J.; Zhang, Q., Recent Progress in Multivalent Metal (Mg, Zn, Ca, and Al) and Metal‐Ion Rechargeable Batteries with Organic Materials as Promising Electrodes. Small 2019, 15 (15), 1805061.
    96. Wu, X.; Markir, A.; Xu, Y.; Zhang, C.; Leonard, D. P.; Shin, W.; Ji, X., A Rechargeable Battery with an Iron Metal Anode. Adv. Funct. Mater. 2019, 29 (20), 1900911.
    97. He, P.; Quan, Y.; Xu, X.; Yan, M.; Yang, W.; An, Q.; He, L.; Mai, L., High‐performance aqueous zinc–ion battery based on layered H2V3O8 nanowire cathode. Small 2017, 13 (47), 1702551.
    98. Zhu, G.; Wang, L.; Lin, H.; Ma, L.; Zhao, P.; Hu, Y.; Chen, T.; Chen, R.; Wang, Y.; Tie, Z., Walnut‐Like Multicore–Shell MnO Encapsulated Nitrogen‐Rich Carbon Nanocapsules as Anode Material for Long‐Cycling and Soft‐Packed Lithium‐Ion Batteries. Adv. Funct. Mater. 2018, 28 (18), 1800003.
    99. Zeng, Y.; Zhang, X.; Meng, Y.; Yu, M.; Yi, J.; Wu, Y.; Lu, X.; Tong, Y., Achieving Ultrahigh Energy Density and Long Durability in a Flexible Rechargeable Quasi‐Solid‐State Zn–MnO2 Battery. Adv. Mater. 2017, 29 (26), 1700274.
    100. Zhao, Q.; Huang, W.; Luo, Z.; Liu, L.; Lu, Y.; Li, Y.; Li, L.; Hu, J.; Ma, H.; Chen, J., High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 2018, 4 (3), eaao1761.
    101. Qiu, W.; Li, Y.; You, A.; Zhang, Z.; Li, G.; Lu, X.; Tong, Y., High-performance flexible quasi-solid-state Zn–MnO2 battery based on MnO2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth. J. Mater. Chem. A 2017, 5 (28), 14838-14846.
    102. Lee, B.; Lee, H. R.; Kim, H.; Chung, K. Y.; Cho, B. W.; Oh, S. H., Elucidating the intercalation mechanism of zinc ions into α-MnO2 for rechargeable zinc batteries. Chem. Commun. 2015, 51 (45), 9265-9268.
    103. Yang, C.; Yao, Y.; Lian, Y.; Chen, Y.; Shah, R.; Zhao, X.; Chen, M.; Peng, Y.; Deng, Z., A Double‐Buffering Strategy to Boost the Lithium Storage of Botryoid MnOx/C Anodes. Small 2019, 15 (16), 1900015.
    104. Zhang, L.; Ge, D.; Qu, G.; Zheng, J.; Cao, X.; Gu, H., Formation of porous nitrogen-doped carbon-coating MnO nanospheres for advanced reversible lithium storage. Nanoscale 2017, 9 (17), 5451-5457.
    105. Zou, Y.; Zhang, W.; Chen, N.; Chen, S.; Xu, W.; Cai, R.; Brown, C. L.; Yang, D.; Yao, X., Generating oxygen vacancies in MnO hexagonal sheets for ultralong life lithium storage with high capacity. ACS Nano 2019, 13 (2), 2062-2071.
    106. Geim, A. K.; Grigorieva, I. V., Van der Waals heterostructures. Nature 2013, 499 (7459), 419-425.
    107. Koketsu, T.; Ma, J.; Morgan, B. J.; Body, M.; Legein, C.; Dachraoui, W.; Giannini, M.; Demortière, A.; Salanne, M.; Dardoize, F., Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2. Nat. Mater. 2017, 16 (11), 1142-1148.
    108. Lian, S.; Sun, C.; Xu, W.; Huo, W.; Luo, Y.; Zhao, K.; Yao, G.; Xu, W.; Zhang, Y.; Li, Z., Built-in oriented electric field facilitating durable ZnMnO2 battery. Nano Energy 2019, 62, 79-84.
    109. Li, Y. R.; Poyraz, A. S.; Hu, X.; Cuiffo, M.; Clayton, C. R.; Wu, L.; Zhu, Y.; Takeuchi, E. S.; Marschilok, A. C.; Takeuchi, K. J., Zerovalent copper intercalated birnessite as a cathode for lithium ion batteries: extending cycle life. J. Electrochem. Soc. 2017, 164 (9), A2151-A2158.
    110. Zhao, Y.; Jia, X.; Chen, G.; Shang, L.; Waterhouse, G. I.; Wu, L.-Z.; Tung, C.-H.; O’Hare, D.; Zhang, T., Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: an active water oxidation electrocatalyst. J. Am. Chem. Soc. 2016, 138 (20), 6517-6524.
    111. Wu, Y.; Wei, Z.; Xu, R.; Gong, Y.; Gu, L.; Ma, J.; Yu, Y., Boosting the rate capability of multichannel porous TiO2 nanofibers with well-dispersed Cu nanodots and Cu2+-doping derived oxygen vacancies for sodium-ion batteries. Nano Res. 2019, 12 (9), 2211-2217.
    112. Zhao, Y.; Cui, Y.; Shi, J.; Liu, W.; Shi, Z.; Chen, S.; Wang, X.; Wang, H., Two-dimensional biomass-derived carbon nanosheets and MnO/carbon electrodes for high-performance Li-ion capacitors. J. Mater. Chem. A 2017, 5 (29), 15243-15252.
    113. Wang, J.; Wang, J.-G.; Liu, H.; You, Z.; Wei, C.; Kang, F., Electrochemical activation of commercial MnO microsized particles for high-performance aqueous zinc-ion batteries. J. Power Sources 2019, 438, 226951.
    114. Nam, K.-W.; Kim, M. G.; Kim, K.-B., In situ Mn K-edge X-ray absorption spectroscopy studies of electrodeposited manganese oxide films for electrochemical capacitors. J. Phys. Chem. C 2007, 111 (2), 749-758.
    115. Ma, R.; Bando, Y.; Zhang, L.; Sasaki, T., Layered MnO2 nanobelts: hydrothermal synthesis and electrochemical measurements. Adv. Mater. 2004, 16 (11), 918-922.
    116. Gaillot, A.-C.; Lanson, B.; Drits, V., Structure of birnessite obtained from decomposition of permanganate under soft hydrothermal conditions. 1. Chemical and structural evolution as a function of temperature. Chem. Mater. 2005, 17 (11), 2959-2975.
    117. Nam, K. W.; Kim, S.; Lee, S.; Salama, M.; Shterenberg, I.; Gofer, Y.; Kim, J.-S.; Yang, E.; Park, C. S.; Kim, J.-S., The high performance of crystal water containing manganese birnessite cathodes for magnesium batteries. Nano Lett. 2015, 15 (6), 4071-4079.
    118. Rong, F.; Zhao, J.; Chen, Z.; Xu, Y.; Zhao, Y.; Yang, Q.; Li, C., Highly active water oxidation on nanostructured biomimetic calcium manganese oxide catalysts. J. Mater. Chem. A 2016, 4 (17), 6585-6594.
    119. Wang, J.; Li, J.; Jiang, C.; Zhou, P.; Zhang, P.; Yu, J., The effect of manganese vacancy in birnessite-type MnO2 on room-temperature oxidation of formaldehyde in air. Appl. Catal. B 2017, 204, 147-155.
    120. Gao, P.; Metz, P.; Hey, T.; Gong, Y.; Liu, D.; Edwards, D. D.; Howe, J. Y.; Huang, R.; Misture, S. T., The critical role of point defects in improving the specific capacitance of δ-MnO2 nanosheets. Nat. Commun. 2017, 8 (1), 1-10.
    121. McCalla, E.; Rowe, A.; Camardese, J.; Dahn, J., The role of metal site vacancies in promoting Li–Mn–Ni–O layered solid solutions. Chem. Mater. 2013, 25 (13), 2716-2721.
    122. Armand, M.; Tarascon, J.-M., Building better batteries. Nature 2008, 451 (7179), 652-657.
    123. Chu, S.; Majumdar, A., Opportunities and challenges for a sustainable energy future. Nature 2012, 488 (7411), 294-303.
    124. Kim, T. H.; Park, J. S.; Chang, S. K.; Choi, S.; Ryu, J. H.; Song, H. K., The current move of lithium ion batteries towards the next phase. Adv. Energy Mater. 2012, 2 (7), 860-872.
    125. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12 (3), 194.
    126. Kim, H.; Hong, J.; Park, K.-Y.; Kim, H.; Kim, S.-W.; Kang, K., Aqueous rechargeable Li and Na-ion batteries. Chem. Rev. 2014, 114 (23), 11788-11827.
    127. Yang, Z.; Zhang, J.; Kintner-Meyer, M. C.; Lu, X.; Choi, D.; Lemmon, J. P.; Liu, J., Electrochemical energy storage for green grid. Chem. Rev. 2011, 111 (5), 3577-3613.
    128. Shan, L.; Yang, Y.; Zhang, W.; Chen, H.; Fang, G.; Zhou, J.; Liang, S., Observation of combination displacement/intercalation reaction in aqueous zinc-ion battery. Energy Storage Mater. 2019, 18, 10-14.
    129. Olbasa, B. W.; Fenta, F. W.; Chiu, S.-F.; Tsai, M.-C.; Huang, C.-J.; Jote, B. A.; Beyene, T. T.; Liao, Y.-F.; Wang, C.-H.; Su, W.-N. J. A. A. E. M., High-Rate and Long-Cycle Stability with a Dendrite-Free Zinc Anode in an Aqueous Zn-Ion Battery Using Concentrated Electrolytes. 2020, 3 (5), 4499-4508.
    130. Zhu, K.; Wu, T.; Huang, K. J. A. n., A High Capacity Bilayer Cathode for Aqueous Zn-Ion Batteries. 2019, 13 (12), 14447-14458.
    131. Liu, C.; Neale, Z.; Zheng, J.; Jia, X.; Huang, J.; Yan, M.; Tian, M.; Wang, M.; Yang, J.; Cao, G., Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12 (7), 2273-2285.
    132. Zhang, L.; Chen, L.; Zhou, X.; Liu, Z., Towards high‐voltage aqueous metal‐ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Advanced Energy Materials 2015, 5 (2), 1400930.
    133. Huang, J.; Hu, X.; Brady, A. B.; Wu, L.; Zhu, Y.; Takeuchi, E. S.; Marschilok, A. C.; Takeuchi, K. J., Unveiling the Structural Evolution of Ag1. 2Mn8O16 under Coulombically Controlled (De) Lithiation. Chem. Mater. 2018, 30 (2), 366-375.
    134. Yuan, Y.; Liu, C.; Byles, B. W.; Yao, W.; Song, B.; Cheng, M.; Huang, Z.; Amine, K.; Pomerantseva, E.; Shahbazian-Yassar, R., Ordering heterogeneity of [MnO6] octahedra in tunnel-structured MnO2 and its influence on ion storage. Joule 2019, 3 (2), 471-484.
    135. Suib, S. L., Structure, porosity, and redox in porous manganese oxide octahedral layer and molecular sieve materials. J. Mater. Chem. 2008, 18 (14), 1623-1631.
    136. Xu, C.; Li, B.; Du, H.; Kang, F., Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angewandte Chemie International Edition 2012, 51 (4), 933-935.
    137. Wang, L.; Wu, Q.; Abraham, A.; West, P. J.; Housel, L. M.; Singh, G.; Sadique, N.; Quilty, C. D.; Wu, D.; Takeuchi, E. S., Silver-Containing α-MnO2 Nanorods: Electrochemistry in Rechargeable Aqueous Zn-MnO2 Batteries. J. Electrochem. Soc. 2019, 166 (15), A3575.
    138. Shan, L.; Zhou, J.; Han, M.; Fang, G.; Cao, X.; Wu, X.; Liang, S., Reversible Zn-driven reduction displacement reaction in aqueous zinc-ion battery. J. Mater. Chem. A 2019, 7 (13), 7355-7359.
    139. Wu, L.; Xu, F.; Zhu, Y.; Brady, A. B.; Huang, J.; Durham, J. L.; Dooryhee, E.; Marschilok, A. C.; Takeuchi, E. S.; Takeuchi, K. J., Structural defects of silver hollandite, AgxMn8Oy, nanorods: dramatic impact on electrochemistry. ACS Nano 2015, 9 (8), 8430-8439.
    140. Takeuchi, K. J.; Yau, S. Z.; Menard, M. C.; Marschilok, A. C.; Takeuchi, E. S., Synthetic Control of Composition and Crystallite Size of Silver Hollandite, AgxMn8O16: Impact on Electrochemistry. ACS appl. Mater. Interfaces 2012, 4 (10), 5547-5554.
    141. Kundu, D.; Vajargah, S. H.; Wan, L.; Adams, B.; Prendergast, D.; Nazar, L. F., Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Energy Environ. Sci. 2018, 11 (4), 881-892.
    142. Fenta, F. W.; Olbasa, B. W.; Tsai, M.-C.; Weret, M. A.; Zegeye, T. A.; Huang, C.-J.; Huang, W.-H.; Zeleke, T. S.; Sahalie, N. A.; Pao, C.-W., Electrochemical transformation reaction of Cu–MnO in aqueous rechargeable zinc-ion batteries for high performance and long cycle life. J. Mater. Chem. A 2020, 8, 17595–17607.
    143. El-Sawy, A. M.; King’ondu, C. K.; Kuo, C.-H.; Kriz, D. A.; Guild, C. J.; Meng, Y.; Frueh, S. J.; Dharmarathna, S.; Ehrlich, S. N.; Suib, S., X-ray absorption spectroscopic study of a highly thermally stable manganese oxide octahedral molecular sieve (OMS-2) with high oxygen reduction reaction activity. Chem. Mater. 2014, 26 (19), 5752-5760.
    144. Zeng, Y.; Lai, Z.; Han, Y.; Zhang, H.; Xie, S.; Lu, X., Oxygen‐Vacancy and Surface Modulation of Ultrathin Nickel Cobaltite Nanosheets as a High‐Energy Cathode for Advanced Zn‐Ion Batteries. Adv. Mater. 2018, 30 (33), 1802396.
    145. Alfaruqi, M. H.; Gim, J.; Kim, S.; Song, J.; Jo, J.; Kim, S.; Mathew, V.; Kim, J., Enhanced reversible divalent zinc storage in a structurally stable α-MnO2 nanorod electrode. J. Power Sources 2015, 288, 320-327.
    146. Zhang, H.; Liu, Q.; Wang, J.; Chen, K.; Xue, D.; Liu, J.; Lu, X., Boosting the Zn-ion storage capability of birnessite manganese oxide nanoflorets by La3+ intercalation. J. Mater. Chem. A 2019, 7 (38), 22079-22083.
    147. Alfaruqi, M. H.; Islam, S.; Mathew, V.; Song, J.; Kim, S.; Tung, D. P.; Jo, J.; Kim, S.; Baboo, J. P.; Xiu, Z., Ambient redox synthesis of vanadium-doped manganese dioxide nanoparticles and their enhanced zinc storage properties. Appl. Surf. Sci. 2017, 404, 435-442.
    148. Wei, T.; Li, Q.; Yang, G.; Wang, C., Highly reversible and long-life cycling aqueous zinc-ion battery based on ultrathin (NH4)2V10O25·8H2O nanobelts. J. Mater. Chem. A 2018, 6 (41), 20402-20410.
    149. Augustyn, V.; Come, J.; Lowe, M. A.; Kim, J. W.; Taberna, P.-L.; Tolbert, S. H.; Abruña, H. D.; Simon, P.; Dunn, B., High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance. Nat. Mater. 2013, 12 (6), 518-522.
    150. Jin, Y.; Zou, L.; Liu, L.; Engelhard, M. H.; Patel, R. L.; Nie, Z.; Han, K. S.; Shao, Y.; Wang, C.; Zhu, J., Joint Charge Storage for High‐Rate Aqueous Zinc–Manganese Dioxide Batteries. Adv. Mater. 2019, 31 (29), 1900567.
    151. Qiu, W.; Li, Y.; You, A.; Zhang, Z.; Li, G.; Lu, X.; Tong, Y., High-performance flexible quasi-solid-state Zn–MnO 2 battery based on MnO 2 nanorod arrays coated 3D porous nitrogen-doped carbon cloth. J. Mater. Chem. A 2017, 5 (28), 14838-14846.
    152. Luo, J.-Y.; Cui, W.-J.; He, P.; Xia, Y.-Y., Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2010, 2 (9), 760-765.
    153. Li, B.; Nie, Z.; Vijayakumar, M.; Li, G.; Liu, J.; Sprenkle, V.; Wang, W., Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 2015, 6, 6303.
    154. Verma, V.; Kumar, S.; Manalastas Jr, W.; Satish, R.; Srinivasan, M., Progress in rechargeable aqueous zinc‐and aluminum‐ion battery electrodes: challenges and outlook. Adv. Sustain. Syst. 2019, 3 (1), 1800111.
    155. Zhang, Q.; Luan, J.; Tang, Y.; Ji, X.; Wang, H., Interfacial design of dendrite‐free zinc anodes for aqueous zinc‐ion batteries. Angew. Chem. Int. Ed. 2020, 59, 13180 –13191
    156. Shin, J.; Lee, J.; Park, Y.; Choi, J. W., Aqueous zinc ion batteries: focus on zinc metal anodes. Chem. Sci. 2020, 11 (8), 2028-2044.
    157. Feng, Q.; Kanoh, H.; Miyai, Y.; Ooi, K., Alkali metal ions insertion/extraction reactions with hollandite-type manganese oxide in the aqueous phase. Chem. Mater. 1995, 7 (1), 148-153.
    158. Kijima, N.; Ikeda, T.; Oikawa, K.; Izumi, F.; Yoshimura, Y., Crystal structure of an open-tunnel oxide α-MnO2 analyzed by Rietveld refinements and MEM-based pattern fitting. J. Solid State Chem. 2004, 177 (4-5), 1258-1267.
    159. Feng, Q.; Kanoh, H.; Ooi, K., Manganese oxide porous crystals. J. Mater. Chem. 1999, 9 (2), 319-333.
    160. Tan, Q.; Li, X.; Zhang, B.; Chen, X.; Tian, Y.; Wan, H.; Zhang, L.; Miao, L.; Wang, C.; Gan, Y., Valence Engineering via In Situ Carbon Reduction on Octahedron Sites Mn3O4 for Ultra‐Long Cycle Life Aqueous Zn‐Ion Battery. Adv. Energy Mater. 2020, 10 (38), 2001050.
    161. Li, Z.; Ganapathy, S.; Xu, Y.; Zhou, Z.; Sarilar, M.; Wagemaker, M., Mechanistic insight into the electrochemical performance of Zn/VO2 batteries with an aqueous ZnSO4 electrolyte. Adv. Energy Mater. 2019, 9 (22), 1900237.

    無法下載圖示 全文公開日期 2026/02/03 (校內網路)
    全文公開日期 2026/02/03 (校外網路)
    全文公開日期 2026/02/03 (國家圖書館:臺灣博碩士論文系統)
    QR CODE